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Abstract

This paper tackles the domain of multimodal prompt-
ing for visual recognition, specifically when dealing with
missing modalities through multimodal Transformers. It
presents two main contributions: (i) we introduce a novel
prompt learning module which is designed to produce
sample-specific prompts and (ii) we show that modality-
agnostic prompts can effectively adjust to diverse missing
modality scenarios. Our model, termed SCP, exploits the
semantic representation of available modalities to query
a learnable memory bank, which allows the generation of
prompts based on the semantics of the input. Notably,
SCP distinguishes itself from existing methodologies for
its capacity of self-adjusting to both the missing modal-
ity scenario and the semantic context of the input, without
prior knowledge about the specific missing modality and
the number of modalities. Through extensive experiments,
we show the effectiveness of the proposed prompt learn-
ing framework and demonstrate enhanced performance and
robustness across a spectrum of missing modality cases.
Our source code is available at https://github.com/
vittoriopipoli/SCP_WACV2025.

1. Introduction

Emulating human perceptual abilities has been a driving
force of Deep Learning research. Over the years, the aspira-
tion to mirror such a rich sensory integration has catalyzed
the development of effective computational models capable
of processing and relating information from diverse modali-
ties [23,26,33]. Such models, referred to in the literature as
multimodal models, are characterized by a fusion step, the
critical point where the information from different modal-
ities is combined to enable multimodal interactions. The
fusion step determines the granularity at which the interac-
tions between different modalities can be modelled by sub-

Figure 1. Top, from left to right: illustration of different missing
modality scenarios: modality-complete (0), missing-text (1), and
missing-image (2); the architecture employed as a basis for our
contributions, ViLT [14]. Bottom: comparison between prompt-
learning strategies for missing modalities – Lee et al. [16] and our
SCP module, which generates sample-specific prompts.

sequent layers [20]. The literature distinguishes multimodal
models mainly in early fusion ones, such as ViLT [14], and
late fusion ones, like VATT [1], CLIP [27], and Image-
Bind [10]. The former models usually feed the concate-
nation of raw features coming from different modalities to a
single encoder, which can thus harness fine-grained multi-
modal interactions. In contrast, the latter family feeds each
modality to a specific encoder and then combines all the
output feature vectors with a shallow network which mod-
els coarse-grained multimodal interactions [4].

Despite the recent advances, multimodal learning also
comes with its own challenges [20]. The absence of one
or more expected data streams (known as missing modal-
ity) is one of the most pressing issues and represents a crit-
ical barrier to the deployment of robust multimodal sys-
tems. The assumption of data completeness, which is usu-
ally made during training, is indeed frequently violated in
real-world scenarios where models encounter partial or in-
complete data – a circumstance leading to significant per-
formance degradation. Factors that can contribute to data
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incompleteness are, for instance, privacy concerns that re-
quire the omission of certain modalities; device and security
constraints that may preclude comprehensive data capture;
and unintentional data leakages that may result in incom-
plete datasets. As a practical example, missing modality
caused by various clinical and social reasons is a common
issue in real-world healthcare scenarios [36].

The missing modality problem impacts early and late fu-
sion models differently. In early fusion models the main
encoder, trained to jointly process information from multi-
ple modalities, loses part of its input, disrupting the fine-
grained multimodal interactions it used to rely on and re-
ducing performance. In late fusion models, the encoder for
the missing modality becomes unusable, though the other
encoders remain unaffected. The final layer, which com-
bines feature vectors, receives an out-of-distribution input,
leading to performance degradation.

Such problems are deeply different and need different
solutions. Since mitigating the missing modality problem
for an entire deep encoder is much more challenging than
the final shallow aggregator, we focus on the former case
in our analysis. In particular, following Ma et al. [23]
and Lee et al. [16], we carry on our analysis focusing on
Transformer-based early fusion models, adopting the ViLT
architecture for our experiments [14]. Lee et al. [16] have
been among the first to investigate the missing modality
problem and proposed a realistic experimental setting in
which the missing modality cannot be known apriori and the
data leakages can occur both during training and test phases.
The same approach copes with the missing modality prob-
lem via prompt learning (Fig. 1), an effective and efficient
transfer-learning technique that avoids the fine-tuning of the
whole architecture [3, 7, 11, 17]. Their approach requires
training a different pool of prompts for each missing modal-
ity scenario. As the number of missing modality scenarios
scales exponentially with the number of possibly missing
modalities1, the adoption of such methodology is unfeasi-
ble for systems having several modalities. Moreover, ro-
bustness concerns can also be raised in the simplest case
with two modalities. Indeed, if during the training phase
the three prompt pools are not trained evenly, some of them
may encounter overfitting or underfitting, negatively affect-
ing performance during inference. Most importantly, such
prompts have limited expressive and adaptation power, as
they need to be shared across all possible input samples.

These shortcomings motivate us to devise a prompt-
ing methodology independent of the number of missing
modality scenarios. In particular, we propose a novel
prompt-learning module that can generate sample-specific
prompts explicitly conditioned on the semantics of input
samples, rather than solely relying on the missing modal-

1Given M modalities, the number of missing modality scenarios is
2M − 1.

ity case. Through the proposed prompt module, termed
SCP, we are able to exploit a vast spectrum of prompts
alongside a limited number of learnable parameters, end-
ing up with a flexible and robust solution that automati-
cally adapts multimodal Transformers to datasets with dif-
ferent semantics and number of modalities. Also, to en-
sure proper transfer learning, we integrate our semantically-
conditioned prompts with agnostic prompts. Experimen-
tally, we validate our solution across a range of multimodal
datasets, namely MM-IMDb [2], Food-101 [32], and Hate-
ful Memes [13], and demonstrate its effectiveness in com-
parison with previous methods and baselines.

Contributions. To sum up, our contributions are as follows:
• We propose a semantically-conditioned prompting

module that leverages the semantic representation of
the available modalities to generate prompts tailored
for each specific sample.

• We show that integrating agnostic prompts with se-
mantically conditioned prompts promotes Transformer
adaptation to both task and missing mode scenarios;

• Experimentally, we demonstrate that SCP is more re-
silient to extreme cases of complete/incomplete bal-
ance ratio, making it more reliable in real scenarios;

• Through t-SNE [31] visualizations, we show how the
agnostic prompts used by our SCP reorganize them-
selves in as many clusters equal to the missing modal-
ity scenarios, preventing the burden of instantiating
a pool of prompts for each of them, and that our
semantically-conditioned prompts effectively organize
themselves in different semantic levels.

2. Related Work
Multimodal Learning and Missing Modalities. The in-
tegration of heterogeneous data streams in Deep Learn-
ing models is a demanding problem in multimodal learn-
ing [6, 9, 14, 18]. Among them, the missing modality prob-
lem, wherein one or more modalities may be absent during
inference or even training, is one of the most challenging.

Contemporary studies [16,23,24,38] have been directed
towards the development of multimodal frameworks ca-
pable of handling datasets with absent modalities. The
SMIL approach [24] is introduced to infer the latent fea-
tures of data with incomplete modalities using Bayesian
meta-learning. Zeng et al. [37] has designed a tag-encoding
mechanism that aids in the training of Transformer encoders
to cope with absent modalities. The MMIN method [38]
deduces the missing modality representation leveraging a
unified multimodal representation from the remaining avail-
able modalities through cross-modality imagination with
stacked residual autoencoders [29]. Furthermore, Ma et
al. [23] delve into the resilience of multimodal Transform-
ers when faced with missing modalities, improving their ro-
bustness by automatically searching for an optimal fusion



strategy. Lately, Lee et al. [16] exploits pools of learn-
able prompts for each possible missing modality scenario to
mitigate missing modality issues. Despite its effectiveness,
we recognize two main flaws. Firstly, it requires a number
of prompt pools equal to the number of different scenarios
that, if not equally trained, can undermine model robust-
ness. Secondly, it only conditions the prompting with re-
spect to the missing modality scenario, providing the same
prompt regardless of the semantics of the input.

Prompt Learning. It marks a strategic advancement in
transfer learning, providing a resource-efficient alterna-
tive to the computational demands of fine-tuning large-
scale Transformer models. It adapts task-specific input
prompts to leverage the pre-existing knowledge of the
model without extensive retraining. Prompts can be ei-
ther expert-designed [7] or learned autonomously by the
model, with techniques like prompt-tuning [17] and prefix-
tuning [19] being prominent examples. These strategies en-
hance the generalizability of Transformer models to down-
stream tasks, even in few-shot or zero-shot settings.

In vision, visual prompts [3, 11] modify Transformers
for specific tasks, with techniques like L2P [35] and Du-
alPrompt [34] addressing continual learning. CoOp [39]
adapts CLIP-like models for image recognition, while
Frozen [30] trains visual encoders to generate pre-
fix prompts for guiding pre-trained language models.
MaPLe [12] applies prompts across visual and text encoders
to improve cross-domain representation. These studies in-
spired us to integrate prompt learning into our solution.

3. Proposed Method
Our method addresses the challenge of missing modali-

ties in the field of multimodal learning. Consistently with
the current state-of-the-art benchmarks and previous litera-
ture [16], our model is evaluated on two different modali-
ties: text and image. In this setting, three missing modal-
ity scenarios are possible: “missing image”, “missing text”,
and “complete” (i.e., when both modalities are available).
Our experimental setting also considers the case where the
missing modality issue may occur both in the training and
testing phases, mirroring a realistic scenario.

Within this scope, our main contribution consists of a
novel prompting methodology, called SCP, that supports a
multimodal Transformer in mitigating the missing modality
problem. As opposed to the state-of-the-art, SCP is indepen-
dent of the number of missing modality scenarios and aims
at generating input prompts by conditioning them with re-
spect to the semantics of the input samples rather than solely
relying on the missing modality case. Thanks to this seman-
tic conditioning, SCP exploits a vast spectrum of possible
prompts, which are more consistent with the available input
modalities, alongside a limited number of learnable param-
eters, enhancing flexibility and robustness.

3.1. Preliminaries

Problem Statement. We consider a multimodal dataset
comprising M = 2 modalities, m1 and m2, exemplified
by images and text, recalling that the number of missing
modality scenarios for a generic dataset D is 2M − 1.
Hence, for a bimodal dataset we have three scenarios,
defined as: Dc = {(xm1

i , xm2
i , yi)}i for “complete” data

pairs, Dm1 = {
(
xm1
i , yi

)
}
i

and Dm2 = {(xm2
i , yi)}i for

modality-incomplete data, where yi represents ground-truth
labels. The training data is a mixture of these subsets and is
defined as D = Dc ∪Dm1 ∪Dm2. To maintain input con-
sistency, dummy inputs x̃m1, x̃m2 (such as empty strings or
black images) are used to represent the absence of modal-
ities, creating reformed subsets D̃m1 and D̃m2, defined as
D̃m1 = {

(
xm1
i , x̃m2, yi

)
}
i

and D̃m2 = {
(
x̃m1, xm2

i , yi
)
}
i
,

respectively. Therefore, the final dataset can be formulated
as D̃ = Dc ∪ D̃m1 ∪ D̃m2. In our case, we will refer to
D̃m1 and D̃m2 as image-only (or “missing text”) and text-
only (or “missing image”) scenarios.

Furthermore, it is worth mentioning that in the remain-
der of the paper, we will use the term missing modality sce-
nario to describe the state of a specific data sample. To
define the set of all the possible missing modality scenarios
eligible in our experiments, we use the term missing modal-
ity cases2. Specifically, three missing modality cases can
arise in our context: “missing text”, “missing image”, and
“missing both”, respectively defined as ˜Dmt = Dc ∪ D̃m1,
D̃mi = Dc ∪ D̃m2, and ˜Dmb = Dc ∪ D̃m1 ∪ D̃m2.

Backbone. Considering its widespread application in var-
ious multimodal learning tasks, we employ a pre-trained
multimodal Transformer ViLT [14] as reference backbone.
ViLT is a Vision Transformer (ViT) [8], which can take
as input the concatenation of textual and visual tokens and
which has shown proficient capabilities alongside faster in-
ference times with respect to its competitors.

As ViLT inherits its structure from ViT, it makes use of
a [CLS] token and a pooler layer. [CLS] is a learnable
token prepended to each input sequence, and is designed to
summarize the information of the whole sequence at each
layer of the Transformer. This learnable token integrates the
information from all the other tokens thanks to the Multi-
head Self-Attention (MSA) operator that allows informa-
tion exchange between all the possible couples of tokens
and creates a hidden state representation of the entire se-
quence. We will refer to the hidden state of the [CLS]
token at the i-th layer as [CLS]i.

The pooler layer, instead, extracts the hidden state of the
[CLS] token from the last layer and takes a linear projec-
tion of it, followed by a tanh activation. For the sake of
solving our multimodal tasks, the output of the pooler is fed

2We refer to the supplementary material for a graphic representation of
the considered scenarios.



(a) (b)

Figure 2. (a) Prompt-based multimodal framework. Different types of missing modality scenarios characterizing the input data stream
are depicted at the bottom-left. On the bottom-right corner, text and image are preprocessed before being fed into the Transformer-based
architecture. Next, the hidden states of the [CLS] for each selected layer (not the [CLS] itself), defined as [CLS]i, are fed into the
semantically conditioned prompt generator. The generated prompts are prepended to the rest of the sequence, and the entire sequence is
fed into a ViLT encoder layer. The last [CLS]i of the ViLT output sequence is extracted and fed into the Pooler. The pooled output is
finally fed into fully-connected layers to predict the final output. (b) Internal architecture of our semantically conditioned prompt generator.

into a task-specific layer composed of a fully connected net-
work, mapping the pooled representation into a space that
matches the number of task classes. Considering that our
methodology employs prompt learning, we will keep the
parameters of ViLT frozen and update only the weights of
the prompts, the pooling layer, and task-specific layers.

Prompt Integration. Given a pre-trained multimodal
Transformer fθ with N consecutive MSA layers, we repre-
sent the input features for the i-th MSA layer as hi ∈ RL×d;
i = 1, 2, . . . , N , where L is the input length and d is the em-
bedding dimension. Specifically, h1 is the concatenation of
the text and visual tokens, obtained using the text tokenizer
and visual embedder from the raw inputs. Moreover, addi-
tional prompts pi ∈ RLp×d can be concatenated to the in-
put before every i-th encoder layer of the ViLT architecture,
where Lp is the length of added prompts. These prompts
are concatenated along the sequence-length dimension with
the input to generate augmented features hi

p, as

hi
p = [pi;hi]. (1)

Training Objective. As anticipated, we keep all the Trans-
former parameters θ frozen except for the task-specific lay-
ers θt. We identify as θp the parameters of the additional
prompts. Hence, the overall objective can be defined as:

L = Ltask(x
m1
i , xm2

i , θt, θp), (2)

where (xm1
i , xm2

i ) ∈ D̃ represents the multimodal input
pair subject to missing modality issues, and Ltask symbol-
izes the task-specific multimodal objective.

3.2. Semantically Conditioned Prompts

Our proposed module, termed SCP, consists in a
novel prompting methodology that assists a multimodal

Transformer in mitigating the missing modality problem
(Fig. 2a). SCP generates tailored prompts for each data
sample employing a novel semantically conditioned prompt
generator (see Fig. 2b), with the objective of providing
prompts that are more consistent with the available input
modalities. To achieve this, SCP needs to capture the se-
mantics of the available input modalities.

Considering that we are operating inside a multimodal
Transformer that makes use of the [CLS] token, we ex-
ploit its hidden states [CLS]i ∈ R1×d at each layer
as a representation of the semantics of the input sample.
In particular, SCP leverages the information contained in
[CLS]i to query a “memory bank” composed of learnable
key-value pairs, exploiting a conventional attention mecha-
nism, thus effectively generating semantically-conditioned
prompts. Remarkably, the various [CLS]i are the only in-
formation that is always present in this experimental set-
ting, regardless of the number of input tokens or modalities,
and the only requirement of our methodology. Overall, this
makes SCP independent of the number of available tokens
or modalities and enhances its flexibility and robustness.

The first step of the prompt generation process for a
generic input hi requires the creation of query vectors from
the hidden states [CLS]i, exploiting the pre-trained query
projection matrix W i

Q ∈ Rd×d from the i-th MSA layer
of the architecture. The W i

Q matrix is a component of
the i-th MSA layer of ViLT used for creating a number of
query vectors equal to the number of Transformer heads nh

for each input token. Specifically, given a generic token
t ∈ R1×d, q = tWQ ∈ R1×d is a vector that contains nh

queries of size d/nh. To extract such queries, q must be
splitted in nh subvectors that can be concatenated obtaining
Q ∈ Rnh× d

nh . We refer to this combination of splitting
and concatenation as the reshape operator. Accordingly,
we make the same operations by projecting each [CLS]i



through W i
Q, obtaining our queries:

Qi = reshape
(
[CLS]iW i

Q

)
∈ Rnh× d

nh . (3)

In the second step, these queries are employed in a clas-
sic attention mechanism, where they are allowed to pay at-
tention to a pool of learnable keys K ∈ RP× d

nh , with
P being the pool size. The attention scores, defined as
scores = softmax(QK⊺

√
d
) are used to retrieve learnable val-

ues V , defined as V ∈ RP×d through matrix multipli-
cation. Finally, the semantically conditioned prompts are
computed as

si = softmax
(
Qi(Ki)⊺√

d

)
V i ∈ Rnh×d. (4)

Hence, each prompt is formed as a linear combination of
values, contingent upon their alignment with the keys. Con-
sequently, each data sample receives customized prompts
that depend on the semantics captured by [CLS]i.

Furthermore, to ensure model stability and offer a path-
way for potential fine-tuning, we concatenate a few agnos-
tic prompts ai ∈ RLa×d, where La is the length of agnos-
tic prompts, alongside with those generated by our mod-
ule. These additional prompts are just learnable vectors but
can be crucial to improve the model stability since they are
data-independent, while the generator module alone might
lead to fluctuations during training. Finally, the prompts
pi = [ai; si] are concatenated to the main input sequence.
Agnostic Prompts. The agnostic prompts have been de-
signed to question whether having a specialized prompt for
each case of missing modality scenario is worth it [16], or
if a generic pool of prompts can adapt itself to different sce-
narios. From a practical point of view, the agnostic prompt-
ing is trivial, consisting of prepending a pool of learnable
prompts to the input sequence regardless of the missing
modality scenario for a predetermined subset of ViLT layers
as shown in Eq. (1).

4. Experimental Results
We follow the experimental protocol defined by Lee et

al. [16] and report experiments across a range of mul-
timodal datasets, namely MM-IMDb [2], UPMC Food-
101 [32], and Hateful Memes [13].
MM-IMDb [2] serves for movie genre classification, incor-
porating both image and text modalities. Given the multi-
genre nature of movies, this dataset poses a multi-label clas-
sification challenge. The task involves predicting the set of
genres a movie belongs to, utilizing either the image (movie
poster), the text (movie plot), or a combination of both.
UPMC Food-101 [32] is constructed for the task of food
classification, including both image and text modalities. It
includes noisy image-text pairs retrieved from Google Im-
age Search and aligns with the category structure of the
ETHZ Food-101 dataset [5].

Hateful Memes [13] requires the identification of hate
speech within memes using both image and text modalities.
It is deliberately structured to foil unimodal models by in-
troducing “benign confounders” thus necessitating effective
multimodal analysis to achieve accurate classification.

Metrics. To assess the performance on these diverse tasks,
we employ task-appropriate metrics for each dataset. For
the multi-label classification on MM-IMDb, the F1-Macro
score is used, providing a balanced measure of the model
performance across multiple genres. In the case of UPMC
Food-101, we utilize classification accuracy as the metric.
For Hateful Memes, the evaluation score is the Area Under
the Receiver Operating Characteristic Curve (AUROC).

4.1. Implementation Details

Input. Following [14], we resize images such that the
shorter side is 384 pixels, and the longer side does not
exceed 640 pixels, maintaining the original aspect ratio.
Consistent with [8], images are divided into patches of
size 32 × 32. If the image modality is missing, we use a
dummy image composed of pixels with values set to one,
indicated as x̃m1. For the text modality, we employ the
bert-base-uncased tokenizer to process the textual
input. In the absence of text, an empty string is used as
a dummy input, denoted as x̃m2. The maximum length for
text inputs is set to 1, 024 for MM-IMDb, 512 for UPMC
Food-101, and 128 for Hateful Memes.

Multimodal Backbone. In our experiments, we adopt
the ViLT version pre-trained with image text matching and
masked language modeling objectives on MSCOCO [21],
Visual Genome [15], CC3M [28], and SBU [25].

Model Training. As mentioned, in our model configura-
tion the ViLT backbone parameters are kept frozen, while
the training is confined to the learnable prompts and pa-
rameters related to the downstream tasks, specifically the
pooler and the task-specific classifiers. In particular, our
ViLT counts 12 layers and 12 heads per layer. Hence, the
number of semantically conditioned prompts generated is
12, and we set the number of SCP agnostic prompts to 4
so that the length Lp of learnable prompts is equal to 16.
Moreover, we set the number of learnable keys and values
of SCP equal to 32. We use agnostic prompts only from the
1st to 6th layer and our SCP module from the 7th to the 12th
layer, configured as discussed above. We use the AdamW
optimizer [22] with a base learning rate of 1 × 10−2 and a
weight decay of 2 × 10−2. The learning rate undergoes a
warm-up period for the initial 10% of the training steps and
subsequently decays linearly to zero.

Setting of Missing Modality. Our work addresses a gen-
eralized missing modality scenario applicable to both the
training and testing phases. Hence, each data sample within
a modality can be subject to leakages, defining the miss-
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Figure 3. Robustness to different train/test missing rates of SCP, MAP, and Baseline on Food101, MM-IMDb, and Hateful Memes.

ing rate η% as the proportion of incomplete data within the
entire dataset. In the missing-text (or missing-image) case
with a missing rate η%, the dataset consists of η% image-
only (or text-only) data and (1− η)% of complete data. For
the missing-both case, the data is partitioned into η

2% text-
only, η

2% image-only, and (1−η)% complete data. This par-
titioning scheme extends to tasks with M modalities, result-
ing in ( η

2M−2
)% incomplete data for each missing modality

scenario and (1− η)% complete data.

4.2. Main Results
In our experiments, we compare our SCP module with

the Missing-Aware Prompts (MAP) proposed in [16], which
employs the same backbone and experimental settings of
our approach. Additionally, we include the results of a base-
line model, which does not employ any prompts and relies
solely on fine-tuning the pooler and fully-connected layers
to establish a reference for performance gains.

Robustness to Different Missing Rates. Well-designed
multimodal architectures should be robust to any combi-
nation of missing modality rates, both in training and test-
ing phases, as in real-world scenarios such rates may vary
over time due to several causes. For this reason, we de-
sign an experiment to evaluate the robustness of our pro-
posal with respect to our main competitor MAP [16] and
the baseline model. Specifically, we train the models with
three different train missing rates (i.e., 10%, 70%, and 90%)
under the missing-both case. Then, we test the models at

different missing rates, varying them in a range from 0%
to 100% with a step of 10% again under the missing-both
case. We chose these values because they represent three
extreme cases in our experimental setting. In particular,
with a train missing rate of 10%, the models have few oc-
casions to learn how to mitigate the missing modality prob-
lem, thus we expect the models to gain performances in the
cases where few data are missing while suffering significant
losses with severe missing rates. The opposite case is the
train with a missing rate of 90%, where the models should
have learned well how to mitigate the missing modality
problem but are showing lower performances than usual in
modality-complete scenarios. Finally, the 70% missing rate
case is the most ideal. Hence, in this case, the modality
complete scenario occurs in 30% of time, while missing-
text and missing-image occur in the remaining 70% of the
time evenly, each for 35%. Indeed, we should expect the
models to be more robust in general. In addition, these pat-
terns may vary due to the difficulty of the task and inherent
dataset characteristics.

Results are shown in Fig. 3 for SCP, MAP, and the
baseline on the Food101, MM-IMDb, and Hateful Memes
datasets. To ensure a quantitative comparison of such
curves, the subplots on the rightmost column depict the area
under the curve of the respective performance curves on the
left. As the graph shows, SCP gains on average 1.5 AUC
points against MAP on both Food101 and MM-IMDb in
every experimental setting. Moreover, it is worth mention-



(a) (b) (c)
Figure 4. t-SNE visualizations of: (a) [CLS]i hidden states at the output of each layer of the pre-trained ViLT architecture. (b) attention
paid by each [CLS]i to SCP’s agnostic prompts. (c) attention weights of the semantically conditioned prompt generator module of SCP

for 10 random classes of the Food101 test set, the remaining labels have been aggregated into ’Other’ to enhance visual clarity.

ing that with the Hateful Memes dataset, MAP is incapable
of surpassing the baseline model, while our SCP is more
than 3 AUC points above. As expected, with the balanced
case (i.e., with a train missing rate of 70%) the gap with
the competitor becomes narrower. Overall, these results
clearly show the benefits of using semantically conditioned
prompts to effectively handle different missing modality
scenarios and rates, demonstrating consistent improvements
compared to the competitor and baseline.

Attention Visualizations with t-SNE. To understand the
effectiveness of the agnostic and semantically conditioned
prompts, we leverage the t-SNE method [31]. In this case,
all experiments are conducted on the test set of Food101
to demonstrate the generalizability of our considerations on
unseen data. A preliminary analysis aims to understand
whether the pre-trained ViLT is able to identify missing
modality scenarios without requiring external information
and exploiting only the hidden states [CLS]i. For this
purpose, Fig. 4a provides a representation of the [CLS]i

drawn from the output of each layer constituting the pre-
trained ViLT architecture for each test sample. In the ear-
lier stages, the modality-complete (blue) almost overlaps
with missing-image (green), while missing-text (orange) is
clearly distinguishable from the others. This is an expected
behavior since text carries most of the semantics at earlier
stages of ViLT. Instead, as we consider deeper encoder lay-
ers, the visual features gain importance and, when facing a
modality-complete scenario, ViLT can exploit them to cap-
ture different semantics with respect to text-only inputs.

Fig. 4b showcases that a pool of agnostic prompts can
automatically adjust itself to tackle different modality cases
without any manual adjustment. In this case, t-SNE is used
to represent the attention paid by the [CLS] token and sub-
sequent hidden states [CLS]i to the agnostic prompts of
the ViLT architecture trained using our SCP prompting strat-

egy for each test sample. The chart shows that modality-
complete (blue), missing-image (green), and missing-text
(orange) lie in three different clusters, confirming that no
external information about the missing modality scenario is
required. Also, it is impossible to spot patterns in the first
layer because the [CLS], before interacting with the avail-
able tokens, is the same for all the data samples.

Finally, to demonstrate that SCP is capable of generating
tailored prompts conditioned on the semantics of each sam-
ple, Fig. 4c is also provided. For the sake of ensuring an eas-
ier visualization, we decided to randomly sample 10 classes
from the Food101 dataset, while retaining the visualization
efficacy without loss of generalization. In this case, t-SNE
is used to represent the attention weights of the semantically
conditioned prompt generator of SCP of each test sample.
As the chart shows, a big cluster corresponding to missing-
text (squares, on the right) is clearly distinguishable from
smaller clusters corresponding to modality-complete (cir-
cles) and missing-image (crosses), specialized on the input
semantic. Within the big missing-text cluster, is it possible
to spot some semantic sub-clusters, even if they are fuzzier
with respect to their missing-image or modality-complete
counterparts. We expect such a phenomenon because SCP
relies on the efficacy of the [CLS]i representations to prop-
erly work. As shown in Fig. 4a, ViLT overrelies on text se-
mantics for multimodal tasks, indicating it carries the most
predictive information. Thus, in the missing-text scenario,
the [CLS]i token exhibits weaker semantics, adversely af-
fecting the attention mechanism of SCP.

4.3. Ablation Studies

The ablation studies conducted in our research serve as a
rigorous examination of the discussed prompting strategies.

Agnostic Prompt Effectiveness. To determine if agnostic
prompts can adapt to different missing modality scenarios



Table 1. Average performance over three runs by changing the ran-
dom seed. All the experiments have missing rate η equal to 70%.
The percentage of availability for each modality can be found in
the second column. Best results in bold.

Train/Test

Dataset Text Image Baseline MAP [16] AP (Ours) SCP (Ours)

MM-IMDb
(F1-Macro)

30% 100% 33.97 37.05 37.04 37.19
100% 30% 37.81 46.26 47.58 48.16
65% 65% 36.22 41.37 41.46 41.67

Food101
(Accuracy)

30% 100% 66.19 73.21 73.52 73.97
100% 30% 76.66 86.44 86.33 86.56
65% 65% 69.14 78.51 78.34 78.99

Hateful
Memes

(AUROC)

30% 100% 59.26 59.50 58.86 60.07
100% 30% 63.02 62.74 64.13 64.26
65% 65% 62.35 61.82 62.36 62.90

quantitatively, we train a model that solely harnesses ag-
nostic prompts to mitigate the missing modality problem.
We compare it with MAP [16], the baseline model, and our
SCP. Results are presented in Tab. 1, covering each dataset,
missing rate, and modality case. Each value in this table
represents the average metric obtained by repeating each
experiment three times, varying only the random seed gen-
erator to get a better performance evaluation, as opposed to
MAP, which reports single-run experiments. Tab. 1 shows
that our proposed method outperforms MAP on all consid-
ered datasets and missing modality cases and, intriguingly,
agnostic prompts mirror the performance of our competitor.
This further confirms the need to use semantically condi-
tioned prompts to improve the final performance.
Missing Modality Aware Prompt Effectiveness. To un-
derstand whether missing modality aware prompt pools
have some similarities between each other or if they are
even interchangeable, we train the missing modality aware
prompts accordingly to [16], reproducing the experiment
on the Food101 [32] dataset with the missing rate η equal
to 70% (35% for both text and image modalities). Then,
during inference, we force the model to always take the
prompts learned for a specific missing modality scenario,
and we do it for all the cases: modality-complete, missing-
text, and missing-image. Results are reported in Tab. 2. As
we can see, when the model is forced to always use the
prompts learned in the modality-complete scenario, the per-
formances drop from 78.51% to 75.95%. Anyway, the per-
formances are far above the baseline, which scores 69.14%.
Hence, we can conclude that these prompts can learn pat-
terns that can be useful regardless of the missing modal-
ity case, highlighting the fact that agnostic prompting can
be a valuable solution. For the other two cases, perfor-
mance drops significantly under the baseline, but this can
be acceptable because prompts tailored for specific missing
modality cases are unlikely to be useful for other cases.
Balance Between Agnostic and SCP Prompts. We con-
duct experiments to determine the optimal balance between
agnostic and semantically conditioned prompts. As dis-

Table 2. Ablation study on modality-complete (C), missing-image
(MI), and missing-text (MT) prompts. “Available Prompts” indi-
cates whether the model can choose between none, all the prompts
(i.e., C, MI, MT), or always the same single prompt pool to be
prepended to the input sequence.

Training

Dataset Text Image Available Prompts Accuracy

Food101 65% 65%

- 69.25
MT 42.21
MI 61.31
C 75.95

C, MI, MT 78.51

Table 3. Ablation study on the balance between agnostic and se-
mantically conditioned prompts. Best results in bold.

Training # Pools

Dataset Text Image Agnostic SCP #AP Accuracy

Food101 65% 65% 6 6 0 78.28
6 6 4 78.99

Food101 65% 65%
1 11 4 78.79
6 6 4 78.99
9 3 4 78.92

cussed, SCP performs better with agnostic prompts. Since
[CLS] tokens are identical at the first layer, condition-
ing on them is ineffective, and relying solely on generated
prompts may cause instability during fine-tuning. To ad-
dress this, SCP uses only a pool of agnostic prompts in the
first layer and combines agnostic and generated prompts in
subsequent layers. We test SCP with and without concate-
nating agnostic prompts and evaluate the balance between
the two types. Results in Tab. 3 show that a correct balance
of agnostic prompts and SCP prompts improve performance.
While agnostic prompts are more effective in early layers,
SCP becomes essential in deeper layers.

5. Conclusion
In this work, we propose a novel prompting methodol-

ogy, called SCP, that aims to mitigate the missing modal-
ity problem in large-scale multimodal Transformers such as
ViLT. The proposed method generates semantic conditioned
prompts leveraging the available input modalities informa-
tion, creating ad-hoc prompts for each sample and miss-
ing modality scenario. SCP achieves the best performances
compared to the previous state of the art on three datasets
for visual recognition. Moreover, through t-SNE visualiza-
tion, we show the capability of the proposed approach to
generate prompts tailored for each semantic level.
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Additional Details on Missing Modality Scenarios. In
Fig. 5, we aim to provide a visual representation of the
missing modality scenarios considered in our experiments
to enhance the clarity of mathematical notations used in the
main paper. The diagram is divided into three primary sec-
tors: input modality state, missing modality scenarios, and
missing modality cases, which describe the problem from
the finest to the coarsest granularity.

The input modality state outlines the potential availabil-
ity of each modality for each sample, indicating whether a
modality may be present or absent. The missing modality
scenarios describe the state of an individual input sample,
which can be complete (if all modalities are present), or
have missing text or missing image modalities.

The missing modality cases, by contrast, outline the

Figure 5. Visual diagram illustrating the potential input modality
states (impacting each sample modality), missing modality sce-
narios (affecting each input sample), and missing modality case
(impacting each experiment).

Table 4. AUC scores of the rightmost column of Fig. 6. TMMC
stands for Train Missing Modality Case, which in this case can be
missing-text or missing-image. The Train Missing Rate η is fixed
at 70% for all the experiments.

Dataset Metric TMMC Baseline MAP SCP

Food AUC
(Accuracy)

text 69.50 77.56 78.54
image 77.65 87.22 87.49

MM-IMDb AUC
(F1-Macro)

text 36.80 39.71 40.73
image 39.93 46.89 49.31

Hateful Memes AUC
(AUROC)

text 60.99 61.14 61.43
image 64.56 60.18 67.09

Table 5. AUC scores of the rightmost column of Fig. 2 of the main
paper. TMR stands for Train Missing Rate, which in this case can
be 10%, 70%, or 90%. The Train Missing Modality Case is fixed
to missing-both for the both train and test phases.

Dataset Metric TMR η Baseline MAP SCP

Food AUC
(Accuracy)

10% 71.08 80.01 81.27
70% 71.74 80.87 81.57
90% 71.15 81.07 82.16

MM-IMDb AUC
(F1-Macro)

10% 38.41 42.40 44.18
70% 38.24 43.57 44.80
90% 36.25 39.72 42.82

Hateful Memes AUC
(AUROC)

10% 62.93 61.54 65.67
70% 62.01 60.69 64.00
90% 62.10 52.21 63.44

whole experimental setting. The specific case for each ex-
periment must be defined at the outset. Once a case is se-
lected, each sample in the data loader is assigned to one of
its admissible missing modality scenarios, with the prob-
abilities for each scenario predetermined. For example, if
the selected missing modality case is missing text, then dur-
ing training and inference, the samples provided by the dat-
aloader may either be complete or missing text, but cannot
be missing images.
Robustness to Different Missing Rates. We extend the
experiment of robustness to different missing rates to the

1
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Figure 6. Robustness to different Train Missing Modality Cases and Test Missing Rates of SCP, MAP, and Baseline on Food101, MM-
IMDb, and Hateful Memes. The Train Missing Rate is fixed at 70% for all the experiments.

other two missing modality cases, namely missing-text and
missing-image. With that in aim, we evaluate the robust-
ness of our proposal SCP with respect to our main competi-
tor MAP [3] and Baseline. Specifically, we train the models
with train missing rate 70% and then we test them at differ-
ent missing rates varying them in a range from 0% to 100%
with a step of 10% for both the missing-text and missing-
image missing modality cases. The missing modality case
in the testing phase is equal to the corresponding training
phase for consistency. Results are presented in Fig. 6 for the
Food101 [4], MM-IMDb [1], and the Hateful Memes [2]
datasets. As the plots show, our SCP is the most robust
model under all missing modality cases. Predictably, un-
der the missing-text case, the performance of the models
dropped significantly. This is to be expected as the text
seems to be the dominant modality for these tasks. As re-
ported in Fig. 3 of the main paper, to ensure a quantitative
comparison of such curves, the subplots on the rightmost
column depict the area under the curve of the respective
performance curves on the left. A tabular version of the
aforementioned AUC scores can be found in Tab. 4. The
tabular version of the AUC scores of the results reported in
the main paper (Fig. 3) are presented in Tab. 5.

Figure 7. t-SNE visualization of the attention that the [CLS] and
subsequent hidden states [CLS]i pay to the agnostic prompts for
the first 6 layers of the ViLT architecture. Such ViLT architecture
only harnesses agnostic prompts without SCP. In this way, the
contribution of agnostic prompts is isolated from the semantically
conditioned ones.

Visualization of Attention Patterns with t-SNE. We re-
peat the t-SNE experiment for agnostic prompts employ-
ing a model that only harnesses agnostic prompts with-
out SCP. In this way, we further isolate the contribution
of the agnostic prompts. With that said, we collect the
attention weights corresponding to the attention that the
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Figure 8. Attention weights of the semantically conditioned prompt generator module of SCP for the Food101 [4] test set. We provide only
the annotation of the first 10 classes to reduce confusion in the plot.

[CLS] token and subsequent hidden states [CLS]i pay
to the agnostic prompts across the first six layers of the
ViLT architecture. The t-SNE visualization of such atten-
tion weights is presented in Fig. 7. The aforementioned fig-
ure showcases that a pool of agnostic prompts can automat-
ically adjust itself to tackle different modality cases, with-
out any manual adjustment. The chart shows that modality-
complete (blue), missing-image (green), and missing-text
(orange) lie in three different clusters, confirming that no
external information about the missing modality scenario is
required. Finally, it is impossible to spot patterns in the first
layer because the [CLS], before interacting with the avail-
able tokens, is the same for all the data samples, hence its
attention patterns are always the same independently from
the other tokens and or prompts, making the t-SNE repre-
sentation collapse.

We offer an enhanced visualization of the SCP t-SNE
analysis (Fig. 4c of the main paper) in Fig. 8. Notably,
t-SNE is used to represent the attention weights of the se-
mantically conditioned prompt generator of SCP of each test
sample of Food101 [4]. As the chart shows, a big clus-
ter corresponding to missing-text (squares, on the right) is
clearly distinguishable from smaller clusters corresponding
to modality-complete (circles) and missing-image (crosses),
specialized on the input semantic. Within the big missing-
text cluster, is it possible to spot some semantic subclusters,
even if they are fuzzier with respect to their missing-image
or modality-complete counterparts. We expect such a phe-

nomenon because SCP relies on the efficacy of the [CLS]i

representations to properly work. Indeed, the missing-text
scenario leads to [CLS]i with weaker semantics, thus neg-
atively affecting the attention mechanism of SCP.

For the sake of avoiding confusion both in the plot and
in the legend, we provide a detailed annotation only for the
first 10 classes of the dataset and we aggregate the remain-
ing 90 classes in the dummy class Other.
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