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Rehearsal methods is largely used in Continual Learning 
(CL) to manage the insertion of new samples in the buffer 
memory and to overcome forgetting.

Increasing the magnitude of spurious correlations (p_corr). As 
spurious correlations increases, standard methods (even the 
Joint training) drop in average and worst-case accuracy while 
our approach remain stable.

As the buffer serves as the sole source of information on 
past tasks, a buffer filled with spurious correlations may 
amplify existing biases, creating a compounding effect.
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Fixing 𝒘𝒄 = 𝟏 (left) worsened model performance. LwS using 
Resevoir vs Loss-based (right). Adopting the loss-based 
approach consistently increased robustness, in terms of 
worst-group and average accuracy.

Biases can significantly impair the efficacy of CL 
models by inducing reliance on suboptimal 
shortcuts during data stream and memory re-
tention, exacerbating catastrophic forgetting.

Sample Re-weighting. For each cluster 
we compute 𝑤!, which is proportional 
to its average classification error (Eq. 3).

Buffer Insertion. Our loss-based 
insertion mechanism aims to ensure 
fair representation inside the memory

LwS boosts average and worst-group accuracy 
out-performing standard rehearsal methods.

Learning Trend. Comparative analysis across 
tasks, showcasing worst-group and avg accuracy. 
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Figure 5. The figure displays AUC curves (left), which show the correlation between the loss value and alignment with spurious signals
varying levels of pcorr . The shaded regions on the curves show the warm-up phase, followed by target loss computation for all training
samples of each task. Loss values are utilized by the buffer insertion strategy, explained in Sec. 4. The right side of the figure presents a
comparative accuracy analysis under different pcorr values for joint training, DER++, and LwS methods.

Table 4. LwS with adaptive weights wc and fixed wc = 1.

Dataset wc Accworst Accavg

B-CelebA1 adaptive 58.84 ± 2.42 71.43 ± 1.67

fixed 52.83 ± 1.59 70.90 ± 0.99

B-CelebA2 adaptive 50.91 ± 3.52 70.73 ± 0.65
fixed 47.29 ± 1.43 70.74 ± 0.68

B-Camelyon adaptive 80.40 ± 1.74 92.47 ± 0.21

fixed 78.20 ± 1.60 91.85 ± 0.37

DER++ are more susceptible to spurious correlations. As
pcorr increases, both methods suffer a drop in average and
worst-case accuracy while our approach performs robustly
across different pcorr values.
On the Number of Bins. We investigate the effect of
varying the number of bins for the buffer population. As
the number of bins increases, we observe a slight decline
in worst-case accuracy, as shown in Tab. 3. This trend can
be attributed to the fixed buffer size; a greater number of
bins entails a reduced allocation budget per bin, potentially
leading to an under-representation of elements that diverge
from the bias within each bin. Despite this, our strategy
maintains competitive performance, even with a higher bin
count, as shown for B-Camelyon.
Knowledge Distillation using Cluster Logits. We ana-
lyzed the impact of the KDbuf term introduced in Eq. (6).
Our findings demonstrate that knowledge distillation offers
significant advantages in smoothing the feature landscape
and facilitating knowledge transfer across future tasks. In
particular, Tab. 3 shows that utilizing cluster prediction log-
its improves the worst-case accuracy performance without
negatively affecting the average accuracy.
On the Effect of w. Fixing wc = 1 in Eq. (3) wors-
ened model performance as shown in Tab. 4, demonstrating
the effectiveness of our adaptive weighting strategy. As ex-
pected, the decrease with wc = 1 was not severe thanks to
the buffer population, which serves as a regularization term.

Table 5. LwS results on B-CelebA1 using difference values of ω.

Metric ω = .0 ω = .2 ω = .5 ω = .8 ω = 1

Accworst 47.61 51.92 55.62 54.85 58.25

Accavg 69.46 70.16 70.91 70.83 72.12

Sensitivity of ω. Tab. 5 shows how increasing the value of
ω in Eq. (3) leads to better results. The scalar ω multiplies
Lcluster term, which indicates heterogeneity within a clus-
ter c, where individuals share the same target label y (e.g.,
blond hair) but differ in attribute z (e.g., gender). There-
fore, we assign a higher weight wc to a cluster with a high
expected error for Ltarget or Lcluster.

7. Conclusion

The challenge of shortcut learning in neural networks
is a complex and relatively unexplored area. This issue is
further exacerbated in Continual Learning, particularly in
methods based on rehearsal. Our approach, Learning with-
out Shortcuts (LwS), tackles this by integrating a debiasing
strategy within the data-stream and a sampling mechanism
designed to mitigate spurious correlations. Our study lays a
solid groundwork for promoting worst-case generalization
and algorithmic fairness in online settings.
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Figure 4. Comparative analysis across tasks, showcasing worst-
group accuracy and average accuracy for each dataset.

realistic. Indeed, to identify the group labels, one must i)
discover the variable z that determines the spurious correla-
tion; ii) annotate the training set accordingly. This process
is expensive and requires a thorough analysis of the dataset.
Furthermore, it becomes even more challenging in contin-
ual learning where tasks arrive continuously. While anno-
tating attributes like gender may be easy, it becomes unprac-
tical when the attribute z is hard to inspect (e.g. metadata
protected by privacy laws or hidden artifacts in images). In
such cases, a framework like ours, which avoids relying on
group labels, is advantageous.

6. Ablation Studies

Reservoir Sampling Fails with Spurious Correlations.

Tab. 2 illustrates the impact of memory buffer size (M) and
buffer handling strategies on LwS. The results reveal that
the loss-based approach consistently outperforms the reser-
voir method in terms of worst-group and average accuracy
across all datasets and buffer sizes (256, 512, 1024). This
outcome supports our hypothesis that random strategies like
reservoir may unintentionally amplify spurious correlations
in scenarios with minimal buffer capacity due to the limited

Table 2. LwS performance in terms of worst [→] and average accu-
racy [→] across different buffer sizes and management strategies.

M Strategy Accworst[%] Accavg[%]

B
-C

e
le

b
A

1 256
reservoir 14.14 58.21
loss-based 36.29 66.73

512
reservoir 18.50 61.08
loss-based 52.12 71.17

1024
reservoir 17.87 62.16
loss-based 56.98 72.57

B
-C

e
le

b
A

2 256
reservoir 18.71 61.10
loss-based 51.62 72.06

512
reservoir 19.37 62.43
loss-based 48.50 69.46

1024
reservoir 20.50 63.06
loss-based 53.37 71.40

B
-C
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m

e
ly

o
n 256

reservoir 41.40 81.92
loss-based 79.40 91.84

512
reservoir 36.80 81.92
loss-based 79.60 92.42

1024
reservoir 55.80 86.50
loss-based 80.40 92.84

Table 3. LwS performance comparison varying number of bins
and usage of knowledge distillation (KD).

B-CelebA1 B-CelebA2 B-Camelyon

# bins Accw Accavg Accw Accavg Accw Accavg
2 58.23 72.71 55.12 75.40 76.40 90.88
4 61.55 73.24 53.37 71.40 81.20 92.72
8 53.12 70.79 51.25 70.68 81.40 92.40
16 55.61 71.83 52.00 71.72 80.40 92.84
32 50.37 70.82 51.00 71.34 79.60 93.04

no KD 58.80 73.40 50.50 70.18 80.40 92.84

w. KD 61.55 73.24 53.37 71.40 81.20 92.72

representation of non-aligned elements.

Varying the Correlation Factor pcorr. We analyze how
the model learns as the correlation factor changes and eval-
uate the effectiveness of different strategies. On the left
side of Fig. 5, the relationship between the loss value and
alignment with spurious signals (AUC) is shown as pcorr
varies. After the warm-up phase, we compute the loss for
all training elements of task t, which is then used in the
buffer update described in Sec. 4. We observe a gradual
decrease in AUC after buffer insertion, which is the de-
sired outcome. As depicted on the right, joint training and
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Figure 4. Comparative analysis across tasks, showcasing worst-
group accuracy and average accuracy for each dataset.
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is expensive and requires a thorough analysis of the dataset.
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representation of non-aligned elements.

Varying the Correlation Factor pcorr. We analyze how
the model learns as the correlation factor changes and eval-
uate the effectiveness of different strategies. On the left
side of Fig. 5, the relationship between the loss value and
alignment with spurious signals (AUC) is shown as pcorr
varies. After the warm-up phase, we compute the loss for
all training elements of task t, which is then used in the
buffer update described in Sec. 4. We observe a gradual
decrease in AUC after buffer insertion, which is the de-
sired outcome. As depicted on the right, joint training and
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Figure 4. Comparative analysis across tasks, showcasing worst-
group accuracy and average accuracy for each dataset.
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discover the variable z that determines the spurious correla-
tion; ii) annotate the training set accordingly. This process
is expensive and requires a thorough analysis of the dataset.
Furthermore, it becomes even more challenging in contin-
ual learning where tasks arrive continuously. While anno-
tating attributes like gender may be easy, it becomes unprac-
tical when the attribute z is hard to inspect (e.g. metadata
protected by privacy laws or hidden artifacts in images). In
such cases, a framework like ours, which avoids relying on
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group accuracy and average accuracy for each dataset.
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tion; ii) annotate the training set accordingly. This process
is expensive and requires a thorough analysis of the dataset.
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such cases, a framework like ours, which avoids relying on
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B-CelebA1 B-CelebA2

Table 1. Comparison between unbiasing and CL methods, in terms of worst-group accuracy [→] and average accuracy [→]. The symbol †

recalls that BGS uses auxiliary data during training, i.e. the label groups annotations.

B-CelebA1 B-CelebA2 B-Camelyon

Method Accworst[%] Accavg[%] Accworst[%] Accavg[%] Accworst[%] Accavg[%]

Random 50.00 50.00 50.00 50.00 50.00 50.00
SGD 14.87 ± 1.56 60.12 ± 0.68 8.12 ± 0.57 56.06 ± 0.09 48.53 ± 6.47 85.8 ± 1.51

Debiasing
BPA 15.08 ± 1.56 61.69 ± 0.47 9.16 ± 0.47 56.33 ± 0.53 62.13 ± 2.73 88.06 ± 1.11
CFIX 18.00 ± 2.04 64.00 ± 1.25 17.65 ± 1.97 61.26 ± 0.96 59.56 ± 0.83 87.88 ± 0.57

Replay (1024)
BGS† 55.68 ± 2.92 74.64 ± 0.34 56.56 ± 2.74 76.45 ± 0.51 77.55 ± 0.07 91.89 ± 0.41
ER-ACE 16.37 ± 1.76 60.75 ± 0.77 13.12 ± 1.10 59.03 ± 0.59 56.80 ± 1.70 88.48 ± 0.08
DER++ 21.79 ± 1.06 61.34 ± 0.54 18.03 ± 1.37 60.87 ± 0.36 53.40 ± 1 41 82.56 ± 0.57
BPA + replay 16.04 ± 0.90 60.92 ± 0.51 11.37 ± 0.43 58.19 ± 0.66 65.33 ± 1 02 88.88 ± 0.52
CFIX + replay 17.80 ± 0.04 61.57 ± 0.39 19.79 ± 0.75 62.62 ± 0.58 55.93 ± 0.34 86.48 ± 0.58
LwP 19.40 ± 0.91 62.33 ± 1.31 13.44 ± 3.94 57.47 ± 1.47 54.40 ± 9.54 86.39 ± 4.24
LwS (ours) 58.84 ± 2.42 71.43 ± 1.67 50.91 ± 3.52 70.73 ± 0.65 80.40 ± 1.74 92.47 ± 0.21

tains 4,096 images, and the test sets are balanced for tumor
presence and hospital origin, with 500 images per hospital.

5.2. Baseline and Competing Methods

Rehearsal Methods. While SGD does not incorporate
measures against forgetting, ER-ACE [10] enhances tra-
ditional Experience Replay (ER) by applying distinct loss
functions for the stream (considering the logits of incoming
data) and the buffer. DER++ [8] adopts self-distillation by
encouraging consistency in the model’s output, minimizing
the L2 norm between the logits of current and past itera-
tions. However, they do not consider the potential contam-
ination of the buffer by spurious correlations, which could
affect future knowledge retention and subsequent tasks.

Continual Debiasing Methods. To mitigate spurious cor-
relations in both the stream and buffer, several methods
have been proposed. LwP [24] aims to prevent spurious
correlations by using self-supervised learning with feature-
level augmentation. BGS

† [28] constructs the buffer to store
group-class balanced examples across all encountered tasks.
In this context, BGS acts as an oracle by leveraging latent
variable z supervision to structure the buffer.

Offline Debiasing Methods. We also assessed standard
debiasing algorithms such as BPA [53], which employs a
per-sample re-weighting strategy. CFIX [12] optimizes a
dual objective to re-weight sample importance, using clus-
ter classification as an additional regularization to smooth
the latent space. Since these methods do not natively sup-
port the arrival of new tasks, we also introduce BPA + re-

play and CFIX + replay, which refer to our adaptations
that incorporate buffer reservoir sampling.

5.3. Experimental Results

Tab. 1 summarize the key findings of our work. LwS
boosts average and worst-group accuracy metrics, outper-
forming rehearsal methods across various scenarios. A no-
table feature is the gain in worst-group accuracy, highlight-
ing its effectiveness against spurious correlations. Also, the
results prove how our mechanism to update the memory
buffer allows the retention of unbiased past knowledge.
Baselines. Regarding debiasing methods, CFIX [12] and
BPA [53] have effectively improved worst-case accuracy
with respect to fine-tuning on the new task (SGD). How-
ever, their gains are relatively small compared to LwS, in-
dicating the need for a buffer strategy to avoid forgetting.
In this context, offline debiasing algorithms serve as more
reliable baselines than naive fine-tuning (SGD).
Rehearsal Methods. Their results are reported in Tab. 1;
we refer the reader to Fig. 4 for a in-depth comparison
with DER++ [8], one of the most simple yet effective ap-
proaches. As can be observed, replay methods surpass their
baselines, highlighting the advantage of memory replay.
However, the table reveals a crucial issue. If the buffer con-
tains mostly biased elements, it can amplify the bias within
new tasks when samples are retained from the buffer. This
underscores the limitation of traditional rehearsal methods,
which can easily fall into the trap of shortcut learning.
Continual Debiasing Methods. From our results, LwS
outperforms a continual debiasing model like LwP [24] and
pairs the performance of BGS [28], which presents our up-
per bound. Indeed, it constructs the buffer using the latent

attribute z supervision to balance the number of elements
for each group in the memory, which is preferable but less
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across all datasets and buffer sizes (256, 512, 1024). This
outcome supports our hypothesis that random strategies like
reservoir may unintentionally amplify spurious correlations
in scenarios with minimal buffer capacity due to the limited

Table 2. LwS performance in terms of worst [→] and average accu-
racy [→] across different buffer sizes and management strategies.

M Strategy Accworst[%] Accavg[%]

B
-C

e
le

b
A

1 256
reservoir 14.14 58.21
loss-based 36.29 66.73

512
reservoir 18.50 61.08
loss-based 52.12 71.17

1024
reservoir 17.87 62.16
loss-based 56.98 72.57

B
-C

e
le

b
A

2 256
reservoir 18.71 61.10
loss-based 51.62 72.06

512
reservoir 19.37 62.43
loss-based 48.50 69.46

1024
reservoir 20.50 63.06
loss-based 53.37 71.40

B
-C

a
m

e
ly

o
n 256

reservoir 41.40 81.92
loss-based 79.40 91.84

512
reservoir 36.80 81.92
loss-based 79.60 92.42

1024
reservoir 55.80 86.50
loss-based 80.40 92.84

Table 3. LwS performance comparison varying number of bins
and usage of knowledge distillation (KD).

B-CelebA1 B-CelebA2 B-Camelyon

# bins Accw Accavg Accw Accavg Accw Accavg
2 58.23 72.71 55.12 75.40 76.40 90.88
4 61.55 73.24 53.37 71.40 81.20 92.72
8 53.12 70.79 51.25 70.68 81.40 92.40
16 55.61 71.83 52.00 71.72 80.40 92.84
32 50.37 70.82 51.00 71.34 79.60 93.04

no KD 58.80 73.40 50.50 70.18 80.40 92.84

w. KD 61.55 73.24 53.37 71.40 81.20 92.72

representation of non-aligned elements.

Varying the Correlation Factor pcorr. We analyze how
the model learns as the correlation factor changes and eval-
uate the effectiveness of different strategies. On the left
side of Fig. 5, the relationship between the loss value and
alignment with spurious signals (AUC) is shown as pcorr
varies. After the warm-up phase, we compute the loss for
all training elements of task t, which is then used in the
buffer update described in Sec. 4. We observe a gradual
decrease in AUC after buffer insertion, which is the de-
sired outcome. As depicted on the right, joint training and


