Bits2Bites ## Intra-oral Scans Occlusal Classification Lorenzo Borghi^{1*}, <u>Luca Lumetti^{1*}</u>, Francesca Cremonini², Federico Rizzo², Costantino Grana¹, Luca Lombardo², Federico Bolelli¹ ¹ Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Italy ² Postgraduate School of Orthodontics, University of Ferrara, Italy *equal contribution, _ presenting the poster #### 1. Introduction and Motivations - Clinical relevance: Occlusion classification is key for orthodontic diagnosis and treatment planning. - Gap: Existing datasets focus on segmentation or landmarks, but none of them addresses occlusal classification in 3D intra-oral scans. • Impact: Provides a public resource to foster Aldriven orthodontic tools. Malocclusion Class III / Malocclusion ### 2. Dataset - **200 paired intra-oral scans** (upper + lower arches) in STL format. All scans are aligned in a standardized coordinate system (RAS). - Labels across 5 occlusal traits: Sagittal (left/right), Vertical bite, Transverse bite, and Midline alignment. - Acquired with two scanners: Carestream & 3Shape TRIOS. #### 3. Intra-oral Scans IOS samples randomly chosen from the dataset. #### 4. Teeth Landmarks For every intra-oral scan, we predicted different landmarks for each tooth using the winner of MICCAI2024 3DTeethLand Challenge. Both model and weights are available at: https://github.com/nnistelrooij/3dteethland #### 5. Methods We built our baselines on the **Pointcept** framework, using PointTransformer V3 and SPUNet. To assess the best input type, we compared mesh vertices only, predicted landmarks only, and their combination. We also contrasted two learning strategies: a shared backbone with five task-specific heads (multi-task) versus separate models for each task (single-task). Evaluation followed a **5-fold cross-validation** scheme, with results reported as mean and standard deviation across folds. #### 6. Results Study about different input features. All classification metrics are macro-averaged across the five occlusal tasks and reported as mean ± std (%) over the 5 cross-validation folds. Inference time is the average time in seconds to process a single scan. | Input Features | \mathbf{Model} | Accuracy | Precision | Recall | F1-Score | Time (s) | |--|------------------|-----------------|-----------------|-----------------|-----------------|----------| | Mesh | | 0.69 ± 0.03 | 0.62 ± 0.02 | 0.61 ± 0.04 | 0.60 ± 0.03 | 0.11 | | Landmarks | PointTr.V3 | 0.70 ± 0.04 | 0.62 ± 0.04 | 0.63 ± 0.05 | 0.61 ± 0.04 | 0.04 | | Mesh + Landmarks | | 0.71 ± 0.03 | 0.64 ± 0.03 | 0.64 ± 0.02 | 0.63 ± 0.03 | 0.11 | | Mesh | | 0.64 ± 0.01 | 0.56 ± 0.03 | 0.58 ± 0.03 | 0.56 ± 0.04 | 0.05 | | Landmarks | SPUNet | 0.60 ± 0.02 | 0.56 ± 0.06 | 0.56 ± 0.06 | 0.58 ± 0.05 | 0.02 | | $\operatorname{Mesh} + \operatorname{Landmarks}$ | | 0.65 ± 0.01 | 0.59 ± 0.05 | 0.61 ± 0.04 | 0.58 ± 0.05 | 0.05 | Multi-Task Learning (MTL) vs. Single-Task Learning (STL). All classification metrics are macro-averaged across the five occlusal tasks and reported as mean ± std over the 5 cross-validation folds. Inference time is the average time in seconds to process a scan. | Model | Learning Strategy | Accuracy | Precision | Recall | F1-Score | Time (s) | |------------|---------------------------------------|----------|------------------------------------|--------|----------|----------| | PointTr.V3 | Single-Task (STL)
Multi-Task (MTL) | | 0.66 ± 0.14
0.64 ± 0.03 | | | | | SPUNet | Single-Task (STL) Multi-Task (MTL) | | 0.61 ± 0.13
0.59 ± 0.05 | | | | Per-task F1-score (%) across occlusal classification tasks. Results are macro-averaged over 5-fold cross-validation and reported as mean ± std (%). | \mathbf{Model} | Strategy | Right Occl. | Left Occl. | Anter. Bite | Tran. Bite | Midline | Avg. | |------------------|---|-------------|------------|------------------------------------|------------|---------|------| | PointTr.V3 | $\begin{array}{c} \mathrm{STL} \\ \mathrm{MTL} \end{array}$ | | | 0.77 ± 0.14
0.74 ± 0.14 | | | | | SPUNet | STL
MTL | | | 0.78 ± 0.13
0.68 ± 0.15 | | | |