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Abstract. Despite their remarkable success in medical image segmen-
tation, the life cycle of deep neural networks remains a challenge in
clinical applications. These models must be regularly updated to in-
tegrate new medical data and customized to meet evolving diagnostic
standards, regulatory requirements, commercial needs, and privacy con-
straints. Model merging offers a promising solution, as it allows working
with multiple specialized networks that can be created and combined
dynamically instead of relying on monolithic models. While extensively
studied in standard 2D classification, the potential of model merging
for 3D segmentation remains unexplored. This paper presents an effi-
cient framework that allows effective model merging in the domain of
3D image segmentation. Our approach builds upon theoretical analy-
sis and encourages wide minima during pre-training, which we demon-
strate to facilitate subsequent model merging. Using U-Net 3D, we eval-
uate the method on distinct anatomical structures with the ToothFairy2
and BTCV Abdomen datasets. To support further research, we release
the source code and all the model weights in a dedicated repository:
https://github.com/LucaLumetti/UNetTransplant
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1 Introduction

Although deep networks have achieved significant success in lesion segmenta-
tion and disease diagnosis [1,11], the segmentation of medical images still poses
distinct challenges in obtaining high-quality annotated data. The scarcity of
labeled data due to the time-intensive nature of manual annotations and the
variability in imaging protocols across institutions makes it difficult to build
robust models. As a result, fully annotated datasets are often unavailable at
the outset of a project, and new diseases or segmentation classes may emerge
later. In this respect, models deployed in real-world healthcare settings should
ideally learn continuously while preserving previously acquired knowledge. A
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Fig. 1: Overview of model merging for 3D medical segmentation models.

straightforward approach for integrating new knowledge involves retraining the
model from scratch on an aggregated dataset that includes both past and newly
available data. However, strict privacy and security regulations may prohibit the
long-term storage of patient records, and resources for full retraining may be un-
available, making this approach impractical or undesirable in medical contexts.

To support these scenarios, an ideal model should allow for fast and flexible
adaptation, enabling the integration of new data or classes. If the model can ac-
commodate novel anatomical structures without requiring re-training, it would
reduce storage and deployment costs and potentially reduce the need for labeled
data. From a medical perspective, removing the need for complete re-training
would minimize the long-term storage of sensitive training data, simplify com-
pliance with ethical committee requirements, and support a decentralized and
modular development paradigm. Commercially, the ability to combine model
capabilities without re-training would enable dynamic, client-specific software
customization, thereby accelerating deployment and offering greater flexibility.

Notably, model merging permits updating and customizing AI models, fa-
cilitating knowledge transfer without full retraining [10,19,24,27]. Our approach
builds on these foundations by utilizing task vectors [10,23], which represent
modifications to a pre-trained model introduced during fine-tuning for a specific
task. These vectors can be added to tune the model’s functionalities (Fig. 1).

Unfortunately, model merging is not always practical, as it relies on the avail-
ability of effective pre-trained models. While standard computer vision tasks
benefit from a wide selection of pre-trained base models, medical imaging—
particularly tasks involving 3D segmentation—does not share the same advan-
tage. In this respect, we aim to investigate the properties that a base pre-trained
model must possess to ensure more effective model merging operations. Through
both analytical and empirical assessments, we demonstrate why the base model
should attain wide minima [28,29] in the optimization landscape. While wide
minima have been investigated in continual learning [20,21] (i.e., tasks succeed
one after the other), their implications in the context of model merging—where
models are integrated simultaneously—remain unexplored until this study.
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Specifically, we present the first analysis of model merging for 3D image
segmentation. Considering two well-known medical datasets (ToothFairy2 [2,3]
and BTCV Abdomen [15]) and the standard 3D U-Net architecture, our study
shows how models specialized for segmenting different anatomical structures can
be successfully merged into a single model that can perform all the original tasks.
Contributions. We provide: i) an extensive analysis of model merging for 3D
segmentation based on well-known medical datasets, revealing that combining
task vectors is a flexible method for customizing models without re-training, ii)
we offer both theoretical and empirical validation showing how a base model
with a flat loss landscape enhances model merging, iii) alongside the source
code, model’s weights are publicly released to facilitate research.

2 Framework

We deal with a neural net f(·;θ) designed for 3D segmentation, like 3D U-Net.
The model has weights θ ∈ Rm and takes 3D images as input x ∈ RH×W×D.
The output is a 3D map of class distributions pθ(y|x), one for each voxel y in
Y ∈ RH×W×D×C . We study a multi-task learning framework comprising T
segmentation tasks, denoted as T . Each task t ∈ T is associated with a dataset
Dt of nt training samples, sampled from a task-specific distribution pt(x,y). De-
spite variations in these distributions (e.g., different anatomical parts segmented
in each task), all share a common loss function ℓ(θ|x,y) (e.g., the cross-entropy
loss), defined as the negative log-likelihood ℓ(θ|x,Y) = −

∑
y∈Y log pθ(y|x).

Model Merging. To learn multiple segmentation tasks, we consider training
a distinct set of weights for each task independently. We organize these models
within a pool P = {f(·;θt) | θt ≜ θ0 + τt}t∈T that can be expanded to ac-
commodate for new tasks. Importantly, each model f(·;θt) is initialized from
a shared set of pre-trained weights θ0 and fine-tuned for its respective task.
The displacement in weight space τt = θt − θ0 is called task vector [10] and,
intuitively, it represents a direction in which the loss decreases for the t-th task.

As we discuss further, the models in the pool P can be selected and combined
in arbitrary ways to construct a (personalized) multi-task model. The simplest
approach to achieve this is by simply averaging the weights within the pool:

fP ≜ f(·;θP) s.t. θP = θ0 +
∑T

t=1wtτt,
∑T

t=1wt = 1. (1)

By adjusting the coefficients wt, we can specialize the merged model toward
specific tasks, deprioritizing others. Conversely, for a model that maintains a
balance across all tasks, a uniform weighting scheme, wt = 1/T , can be used.

The goal is to design an approach that learns and combines multiple 3D
segmentation models, ensuring that the resulting merged model performs well
across a combined set of tasks. To assess multi-tasking, we define the empirical
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risk, i.e., the average loss ℓ̂(θ|D) over the union of all training tasks1:

ℓ̂(θ|D) = 1∑T
t=1 nt

∑
x,y∈

⋃T
t=1 Dt

ℓ(θ|x,y) (2)

Research Question. While 2D image classification tasks can benefit from a
variety of pre-trained models (e.g., CLIP and DINO), 3D medical segmentation
tasks face the absence of similar pre-trained models. In this respect, how can we
develop pre-trained models for 3D segmentation that facilitate model merging?

2.1 Model Merging from a Pre-training Perspective

Following [22], we analyze model merging through the lens of the Taylor approx-
imation of the loss function. Specifically, we indicate as ℓcur(θ) the second-order
approximation of the empirical risk, centered around the pre-trained weights θ0:

ℓ̂cur(θ) = ℓ̂(θ0) + (θ − θ0)
T∇ℓ̂(θ0) +

1

2
(θ − θ0)

THℓ̂(θ0)(θ − θ0), (3)

with ∇ℓ̂(θ0) ≜ ∇θ ℓ̂(θ0) and Hℓ̂(θ0) ≜ ∇2
θℓ(θ0) indicating the gradient and the

Hessian around θ0. Based on [22], assuming that θ = θ0 is a local minimum for
the empirical risk ℓ̂(θ) across all tasks, the Hessian is positive semi-definite. It
follows that the second-order approximation ℓ̂cur(θ) of the empirical risk is locally
convex. Utilizing Jensen’s inequality (valid for convex functions) we can establish
the following relationship between the merged model and the individuals:

ℓ̂cur(θP = θ0 +
∑T

t=1wtτt) ≤
∑T

t=1 wt ℓ̂cur(θt = θ0 + τt). (4)

This inequality is informative because the term on the right offers a kind of
worst-case upper limit for the performance of the merged model. In particular,
the empirical risk ℓ̂cur(θP) of the merged model is constrained by the convex
combination of the empirical risks associated with each individual model. This
implies that if each individual model θt performs accurately across all tasks,
there are certain assurances regarding the risk level of the merged model θP .

However, the issue with Eq. (4) is that, under a scenario with specialized
models trained on separate tasks, we cannot ensure that each individual model
θt performs well across all tasks. Indeed, as θt is trained exclusively on its specific
distribution pt(x,y), its empirical risk is likely high for other data distributions
pt′ ̸=t(x,y) (→ low out-of-distribution performance). For this reason, the
following augmented optimization problem was proposed [22] for the t-th learner:

minimize
θt

Ex,y∼pt(x,y) [ℓcur(θt|x,y)] +DKL(pθ0(y|x)||pθt(y|x)). (5)

In essence, the out-of-distribution performance of each model is preserved through
additional regularization provided by the term DKL(·), which acts explicitly on
1 To simplify the notation, we will no longer explicitly denote the dependence of the

loss on the data and write the individual loss and the empirical risk as ℓ(θ) and ℓ̂(θ).
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Table 1: Stable vs. plastic training regimes, met-
rics, and corresponding hyperparameters: Batch
size (BS), Dropout (DO), and Learning rate (LR).
λi correspond to the eigenvalues of Hℓ̂(θ0).

Regime Dataset BS DO LR Dice↑
∑∑∑

λi↓ λ1↓

Stable Cui 4 0.5 10−3 34.93 0.57 0.02
Plastic 8 0.0 10−4 42.68 40.71 6.00

Stable AMOS 4 0.5 10−3 43.76 2.30 0.03
Plastic 8 0.0 10−4 46.87 58.46 0.05

1 2 3 4 5 6 7 8 9 10

10 2

10 1

100

TF2 Plastic
TF2 Stable
BTCV Plastic
BTCV Stable

Fig. 2: Top 10 eigenvalues ↓.

out-of-distribution examples x,y ∼ pt′ ̸=t(x,y). The DKL(·) term aligns the
predictions pθt

(y|x) of the individual model f(·;θt) to those generated by the
pre-trained model θ0. By doing so, the individual model can achieve at least the
performance level of the pre-trained model on external distributions pt′ ̸=t(x,y),
effectively reducing the upper bound on the right side of Eq. (4).

2.2 The Role of the Training Regime of the Pre-trained Model

While the authors of [22] drew inspiration from Eq. (5) to design a data-free
regularization term, we take a different approach that avoids introducing explicit
regularization. Instead, we focus on analyzing the roles of the training regime of
the pre-trained model.
Thesis. We hypothesize that the tendency of the fine-tuned model θt to retain
pre-training knowledge is linked to the curvature of the pre-trained point θ0
within the landscape of the empirical risk ℓ̂(·). To show that, we approximate
the DKL(·) as in [5]: if θt − θ0 → 0, the DKL(·) term is close to the distance
between θt and the pre-training weights θ0:

DKL(pθ0(y|x) || pθt(y|x)) ≈ 1
2 (θt − θ0)

THℓ̂(θ0)(θt − θ0). (6)

The weight distance is not isotropic but instead influenced by the Hessian
of the empirical risk evaluated at θ0. Thanks to Eq. (6) and the positive semi-
definiteness of the Hessian around θ0, we can establish a bound on DKL(·):

DKL(. . . ) ≈
1

2
(θt − θ0)

THℓ̂(θ0)(θt − θ0) ≤
1

2
λ1 ∥θt − θ0∥2 =

1

2
λ1 ∥τt∥2 , (7)

where λ1 is the maximum eigenvalue of the Hessian Hℓ̂(θ0) around the pre-
training weights. The result is that the degradation in out-of-distribution per-
formance relative to the pre-trained model is controlled by: i) the norm of the
task vector, and ii) the maximum eigenvalue λ1 of the Hessian. Notably, the
entire spectrum of eigenvalues has been crucial in analyzing the geometry of the
loss landscape and its impact on generalization capabilities [7,13]. Moreover, the
maximum eigenvalue has been extensively used to characterize the width of a
local minima [9,13,21]. In particular, a larger maximum eigenvalue suggests that
the loss landscape is steeper along at least one dimension, which corresponds



6 L. Lumetti, G. Capitani, et al.

Table 2: Details of the datasets used in our experiments. Data is not resampled,
but it is preprocessed with z-score normalization and patch-based training.

Dataset Modality Volumes Structs Shape

AMOS [12] (pre-training) CT 240 15 148× 533× 560
BTCV Abdomen [15] 30 13 125× 512× 512

Cui [6] (pre-training) CBCT 151 42 322× 402× 402
ToothFairy2 [3] 480 42 169× 356× 375

to a sharper minimum. Conversely, smaller eigenvalues suggest wider minima
because the surface of the loss function changes less drastically in those direc-
tions. Hence, to sum up, for a fixed task vector τt, the wider the curvature of the
pre-trained model, the lower the loss in out-of-distribution performance during
fine-tuning, and the better fine-tuned individual models will merge.

2.3 Biasing the Base Pre-Trained Model Towards Wide Minima

Building on this analytical finding, we propose modifying the training regime of
the base pre-trained model to bias optimization toward wider minima. To do so,
the approach is simple: inspired by [21], we act on some key hyperparameters—
like batch size, dropout, and learning rate—that have been shown to affect gener-
alization and the geometry of the minimum [8,16,25]. Following the terminology
in [21], we define two distinct pre-training regimes, namely stable (wide minima)
vs. plastic (sharp minima). The stable pre-training regime employs a small batch
size, a higher learning rate, and increased dropout. In contrast, the plastic pre-
training follows conventional self-supervised learning best practices, including as
large as possible batch size, no dropout, and lower learning rates.

To analyze the effects of these hyperparameters, a preliminary result is re-
ported in Tab. 1. We pre-train two base models (the one within the stable regime
and the other in the plastic one) on two datasets for 3D medical image segmen-
tation, namely AMOS [12] and Cui [6]. We then evaluate the average Dice on the
corresponding test sets and compare the Hessian’s eigenvalues as a proxy for the
width of the pre-training optimum. Following [4], the Hessian’s eigenspectrum is
calculated with the trace of the empirical Fisher Information Matrix (FIM) [14],
as a (diagonal) approximation of the intractable Hessian. As observed, the per-
formance of the two base models (stable vs. plastic) is comparable across both
datasets; however, the stable model achieves a remarkably lower trace (Fig. 2).
This indicates that manipulating hyperparameters is a simple yet effective way
to influence the geometry of the solution attained by the pre-trained model.

3 Experiments and Results

Datasets and Task Splits. Considering four public datasets, we categorize
experiments into two settings based on the target anatomical regions: i) ab-
dominal datasets (AMOS [12] and BTCV Abdomen [15]) and ii) maxillofacial
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Fig. 3: The average Dice score for two classes when merging task vectors τ1 (x-
axis) and τ2 (y-axis) by varying w1 and w2. The star (
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) marks the maximum
Dice score, while the diamond (
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) denotes the default wi values. The first row
shows task vectors from plastic pre-training and the second row from flat pre-
training, both merged using average. All the plots have the same x and y scales.

datasets (Cui [6] and ToothFairy2 [3,18]). The summary characteristics are pro-
vided in Tab. 2. In the abdominal scenario, we use AMOS for pre-training and
four BTCV classes (Liver, Spleen, Kidney, and Stomach) to create four tasks.
In the maxillofacial scenario, we use Cui for pre-training and ToothFairy2 for
fine-tuning, with four tasks based on Mandible, Pharynx, Teeth, and Canals.
Training. We perform stable and plastic pre-training for both AMOS and Cui
according to the setup in Tab. 1. To perform fine-tuning, we replace the final
1 × 1 × 1 convolution with a new one; for the rest of the layers, we fine-tune
the corresponding parameters θ0 through a task vector τt (initialized at zero).
We optimize with AdamW [17] and a weight decay penalty of 0.1 to discourage
large task vector norms. Training runs for 10 epochs.

3.1 Impact of Pre-Training Regime on Model Merging

In each plot of Fig. 3, we consider a pair of tasks (e.g., Mandible + Canals) and
evaluate the Dice score of the merged model while varying merging coefficients
w1 and w2. By comparing plastic (first row) vs. stable (second row) pre-training,
we can say that stable pre-training allows for remarkably robust performance,
exhibiting lower sensitivity to the merging coefficients—a feature that, in real-
world applications, reduces the overhead associated with hyperparameter tuning.
As further proof, for the stable regime the uniform weighing scheme
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(found by hyperparameter tuning
on an held-out set).

After examining a scenario where pairs of tasks are merged, we extend our
analysis to a setting with four task vectors. We report in Fig. 4 the results (Dice
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Table 3: Performance scores obtained from pairwise task vector merging.
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Fig. 4: Task-wise performance after merging four distinct task vectors with
weight averaging and TIES. The Overall bars aggregate results across tasks.

score) on each task separately and also the average (Overall). Beyond compar-
ing stable vs. plastic pre-training, we also examine their impact on TIES
Merging [26], a well-established alternative to uniform averaging. The results in
Fig. 4 show that, in both settings, the performance of the merged model is pri-
marily influenced by the type of pre-training rather than the merging method.
This is evidenced by the significant performance gains achieved with stable pre-
training (e.g., with uniform averaging, yielding an improvement of +18.60 on
ToothFairy2 and +16.28 on BTCV).

Further Comparative Analysis. To assess the effectiveness of model merging
for 3D segmentation, we include a reference approach representing re-training
from scratch, where the pre-trained model is fine-tuned on both classes jointly. As
shown in Tab. 3, in BTCV Abdomen, Kidney+Stomach shows the largest drop
w.r.t. the joint training (∼ 18.60 Dice score), while other pairs achieve similar
performance, indicating effective merging. In contrast, the gap is significantly
larger in ToothFairy2, likely due to greater variation in the shape, size, and
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intensity values of maxillofacial structures. We conjecture that such an increased
variability leads to higher interference when merging the relative task vectors.

4 Conclusion

We pioneer model merging for 3D segmentation, showing the pivotal role of the
training regime of the base U-Net model. Based on our findings, the life cycle
of many existing models could be revised in favor of modular paradigms. Future
work will investigate scalability to larger task sets and novel merging strategies.
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