

IM-Fuse: A Mamba-based Fusion Block for Brain Tumor Segmentation with Incomplete Modalities

Vittorio Pipoli*^{1,2}, Alessia Saporita*^{1,3}, Kevin Marchesini*¹, Costantino Grana¹, Elisa Ficarra^{†1}, and Federico Bolelli^{†1}

¹University of Modena and Reggio Emilia, Italy; ²University of Pisa, Italy *Equal Contribution; [†] Equal Supervision ³University of Bologna, Italy

Brain Tumor Segmentation and Missing Modalities

- Glioblastoma is one of the most common malignant primary brain tumors.
- **MP-MRI** (T1, T1Gd, FLAIR, and T2) is the gold standard for brain tumor imaging, but in real-life scenarios, **one or more modalities may be missing**.
- Recent literature focused on methods for compensating for one or more missing modalities.

Our Proposal: IM-Fuse

The proposed architecture includes:

- Four modality-specific encoders.
- Intra-modal Transformer to model long-range dependencies within each modality.
- Our **Mamba Fusion Block (MFB** integrates features across modalities and handles missing tokens thanks to Mamba's selective mechanism.
- Final Multimodal Transformer + shared Decoder.

First Benchmark on BraTS2023

- Previous works conducted the experiments on BraTS2018.
- We built a new benchmark on the 4-times larger BraTS2023.

	BraTS20	18		BraTS2023		
Model	Enhancing Tumor	Tumor Core	Whole Tumor	Enhancing Tumor	Tumor Core	Whole Tumor
U-HVED	50.0	64.0	80.1	59.8	73.7	83.5
RobustSeg	51.0	69.8	84.4	68.8	81.5	87.3
mmFormer	59.9	73.0	82.9	<u>73.6</u>	84.7	90.0
SFusion	53.6	75.0	84.4	70.6	82.6	88.0
ShaSpec	<u>61.6</u>	<u>77.5</u>	85.9	69.2	82.8	88.8
M^3AE	59.9	77.4	85.8	73.2	<u>85.1</u>	89.6
M ³ FeCon	63.8	78.3	86.3	71.8	84.4	88.8
IM-Fuse	55.9	76.3	86.3	74.3	85.5	90.2

Deployment **model size** and **DSCs** across all the missing modalities and tumor classes on BraTS2023.

Larger circles → higher GFLOPS

Ablation IM-Fuse (BraTS2023) Fusion Enhancing Tumor Whole Tumor Tumor Tumor

rusion	Tumor	Core	Tumor
MFB	53.4	72.6	76.1
I-MFB	74.3	85.5	90.2
MFB ♣	73.1	84.1	88.2
I-MFB 🕏	73.2	84.3	89.1

denotes that the fusion block is applied to the bottleneck and skip connections simply concatenating the different modalities.

Data Visualization: IM-Fuse Segmentation Results Under Missing Modality Scenarios

0101010101

Mamba Block

Interleaved Tokenization

00000111111

Mamba Block

