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ABSTRACT Recently, the field of 3D medical segmentation has been dominated by deep learning
models employing Convolutional Neural Networks (CNNs) and Transformer-based architectures,
each with its distinctive strengths and limitations. CNNs are constrained by a local receptive
field, whereas Transformers are hindered by their substantial memory requirements as well as
their data hunger, making them not ideal for processing 3D medical volumes at a fine-grained
level. For these reasons, fully convolutional neural networks, as nnU-Net, still dominate the scene
when segmenting medical structures in large 3D medical volumes. Despite numerous advancements
toward developing Transformer variants with subquadratic time and memory complexity, these
models still fall short in content-based reasoning. A recent breakthrough is Mamba, a Recurrent
Neural Network (RNN) based on State-Space Models (SSMs), outperforming Transformers in
many long-context tasks (million-length sequences) on famous natural language processing and
genomic benchmarks while keeping a linear complexity. In this paper, we evaluate the effectiveness
of Mamba-based architectures in comparison to state-of-the-art convolutional and Transformer-
based models for 3D medical image segmentation across three well-established datasets: Synapse
Abdomen, MSD BrainTumor, and ACDC. Additionally, we address the primary limitations of
existing Mamba-based architectures by proposing alternative architectural designs, hence improving
segmentation performances. The source code is publicly available to ensure reproducibility and
facilitate further research: https://github.com/LucaLumetti/TamingMambas.

INDEX TERMS Medical Imaging, 3D Segmentation, Mamba, U-Net, Transformers, RNNs

I. INTRODUCTION

IMAGE segmentation is crucial in the analysis of
medical images, typically serving as the preliminary

step for examining anatomical structures and surgical
planning [1]–[4]. During recent years, Convolutional
Neural Networks (CNN) [5] and, in particular, U-
shaped Fully Convolutional Neural Networks (FCNN)
have garnered widespread acceptance within the re-
search community [6]. Their success can be attributed to
their local receptive field, which allows them to capture
substantial contextual information while maintaining
relatively low GPU memory consumption. Additionally,
their ability to achieve competitive performance with

limited training data has contributed to their widespread
adoption. Despite their effectiveness, after the outbreak
of Vision Transformer [7], FCNN has been replaced by
hybrid architectures, made up of both Convolutional
and Multi-Head Attention layers [8]. This architectural
modification is designed to alleviate the limitations im-
posed by the local receptive field of FCNN by leveraging
the Multi-Head Attention mechanism of Transformers,
which, in contrast, offers remarkable capabilities for
modeling long-range contextual information. Several
attempts have been made in the literature to inte-
grate transformer-based architectures into the classic U-
Net [9]–[15]. Even if these methods led to improvement
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in performance, they came at the cost of the quadratic
memory footprint of the attention mechanism, which,
alongside their data hungriness, makes these approaches
not ideal when applied to 3D volumes. Under conditions
of data scarcity, it is common for transformer-based
architectures to underperform FCNN.

In this regard, the latest research put a lot of effort
into the reduction of the computational cost of the trans-
former architecture, proposing subquadratic attention
mechanism [16], [17], linear attention mechanism [18]–
[20], and gating [21]. However, most of them fall short
when it comes to context modeling, in particular when
the context length is considerably high. Recently, the
field of sequence modeling has been greatly influenced
by an innovative architecture based on the State-Space
Model (SSM) [22] known as Mamba [23]. Notably, as
opposed to previous SSMs, Mamba incorporates an
innovative selection mechanism that dynamically filters
input data in an input-dependent manner, thereby ex-
cluding irrelevant information while retaining relevant
information indefinitely. Moreover, Mamba mitigates a
common challenge in SSM—the exponential scaling of
gradients—by leveraging the principles of the HiPPO
theory [24]. As a consequence, Mamba has shown state-
of-the-art capabilities in several Natural Language Pro-
cessing (NLP) and genomic tasks outperforming Trans-
former, improving the modeling of big context up to the
order of a million tokens, making it a suitable candidate
to efficiently process also 3D volumes, where the number
of tokens reaches the same order of magnitude.

Thus, Mamba provides a potential solution to the
challenges posed by FCNNs and Vision Transformers,
offering an architecture that models a larger receptive
field than FCNNs while maintaining linear complexity.
This results in a more resource-efficient design rela-
tive to transformer-based models, particularly in long-
context reasoning tasks, in which Mamba-based archi-
tectures consistently outperform Transformers. Conse-
quently, Mamba represents a practical compromise that
combines extensive contextual modeling with efficient
resource utilization, making it well-suited for advancing
3D medical image segmentation.

In summary, this paper aims to investigate the ef-
fectiveness of Mamba for 3D image segmentation by
comparing state-of-the-art Mamba-based architectures
with convolutional and Transformer-based segmenta-
tion models. Additionally, we seek to address the pri-
mary limitations of current Mamba-based architectures
by proposing various strategies for integrating Mamba
within a U-Net-based architecture. Specifically, we ex-
amine the impact of modeling directionality on one or
more axes and explore the use of Mamba as a selective
copying mechanism in skip connections. To perform our
experimental evaluation, we employ three different well-
known datasets, MSD BrainTumor [25], Synapse Multi-
organ [4], and ACDC [26].

II. RELATED WORK
Convolutional Neural Networks (CNNs) [5] have been
the dominant solution for both 2D and 3D medical image
segmentation for years. Among these, U-Net [6], char-
acterized by its U-shaped symmetric encoder-decoder
structure with skip connections, represents an effective
architecture that subsequent models have continued
to adopt until the present day. Following U-Net, sev-
eral variants have been introduced, including Res-U-
Net [27], Dense-U-Net [28], V-Net [29], 3D U-Net and
its state-of-the-art ecosystem nnU-Net [30], each propos-
ing enhancements to the original framework. Despite
their advancements, CNNs inherently face limitations
in capturing global patterns due to the locality of the
convolutional operator. In response, significant research
efforts have been directed towards integrating the atten-
tion mechanisms of Transformers [8] with U-Net-based
architectures. This integration aims to leverage both
local and global dependencies, as evidenced by models
such as MedFormer [9], TransUNet [10], Swin-UNet [11],
UNETR [12], and Swin-UNETR [13]. However, the
attention mechanism’s quadratic complexity forces the
imposition of constraints, such as window-based or axial-
based attention, to mitigate computational demands.
While various studies have attempted to reduce this
complexity [18]–[20], [31], none have matched the per-
formance of traditional attention mechanisms in long-
context modeling.

Recent developments have introduced a novel archi-
tecture, Mamba [23], predicated on state-space mod-
eling [22], [32], which promises capabilities for long-
context content-based reasoning with linear-time com-
plexity. Mamba has demonstrated superior performance
over state-of-the-art transformer models, such as Pythia-
6.9B [33], GPT-J-6B [34], OPT-6.7B [35], Hyena [36],
in tasks requiring long-context content-based reasoning,
such as natural language processing and genomic analy-
ses, with inputs of up to a million-length scales.

Due to their effectiveness and versatility, Mamba-
based architectures have been rapidly adapted to various
domains, including Computer Vision [37]. In addition,
given that segmenting 3D volumes can be seen as
processing sequences composed of millions of voxels,
several researchers have devoted significant efforts to
adapting the Mamba architecture for both 2D and
3D segmentation, yielding promising results [38]–[43].
Among the various contributions, UMamba remains one
of the most significant in the field, given the model’s
ability to adapt effectively to new datasets without the
need for extensive hyperparameter tuning. In particular,
in [44], the authors propose two architectures, namely
UMambaEnc and UMambaBot, both inheriting their
core structure from U-Net and harnessing Mamba-based
layers. The former integrates the Mamba layers in the
encoder part of the architecture, while the latter inte-
grates a single Mamba layer in the bottleneck. Despite
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their effectiveness, the authors did not focus on the
directionality problem that derives from employing a
recurrent network to extract patterns from data that
has more than one spatial dimension. Indeed, once a
3D volume is flattened into a sequence, each voxel is
assigned a position within the sequence. This results in
the model being able to analyze the latter elements of the
sequence by leveraging information from the preceding
part. However, it lacks contextual information when
processing the initial part of the sequence.

The aforementioned advancements in the field moti-
vated us to devise Mamba architectures for 3D image
segmentation, paying attention to the directionality.

III. METHOD
In this section, all the theoretical concepts related to
the vanilla Mamba architecture (a set of stacked Mamba
blocks) are introduced. Then, we thoroughly explain how
Mamba blocks can be employed to extract patterns from
3D volumes and illustrate approaches to integrate such
blocks into a U-Net architecture for 3D medical imaging
segmentation.

A. PRELIMINARIES
A State-Space Model (SSM) is a mathematical repre-
sentation of a dynamic system that maps a 1D input
x(t) ∈ R to a ND latent state h(t) ∈ RN before
projecting it to a 1D output signal y(t) ∈ R. This system
uses A ∈ RN×N as the evolution parameter, B ∈ RN×1,
and C ∈ R1×N as the projection parameters:

h′(t) = Ah(t) + Bx(t) (1)
y(t) = Ch(t) (2)

Together, the previous equations aim to predict the
state of a system from observed data. Since the input
is expected to be continuous, the main representation of
the SSM is a continuous-time representation.

To employ previous equations in a real-world scenario,
and more specifically into a neural network, a discretiza-
tion of the variable t is required and can be achieved by
introducing a step-size parameter ∆ and a discretization
rule, which in this case is the zero-order hold:

A = exp(∆A) (3)
B = (∆A)−1(exp(∆A)− I)∆B (4)

This leads to the following discrete state-space model
that can be computed in a recurrent fashion:

ht+1 = Aht + Bxt (5)
yt = Cht (6)

This basic SSM performs very poorly in practice due to
gradients scaling exponentially in the sequence length.
To address this issue, Mamba proposes two key elements:
imposing a structure to the matrix A, using the HiPPO
theory [24], and including a selection mechanism, i.e.,

(a) (b)

FIGURE 1. From left to right: (a) The unidirectional Mamba layer, which
processes input sequences only in the forward direction. The layers
within the gray square collectively form the Mamba Block. (b) The
bidirectional Mamba layer, consisting of two unidirectional Mamba
layers: the left branch processes the forward sequences, while the right
branch processes the reversed sequences.

making the parameters B, C, and ∆ input-dependent
through a linear projection:

B = LinearN(x)
C = LinearN(x) (7)
∆ = SoftPlus(Parameter + BroadcastD(Linear1(x))

Such a formulation, together with an efficient imple-
mentation of the process by means of a selective scan
algorithm that allows the model to filter out irrelevant
information, constitutes the so-called S6 model [23].

The original Mamba publication [23] introduces a
Mamba block, which is depicted in gray in Fig. 1a. This
block comprises an initial residual connection, followed
by a layer normalization step in the main flow. Subse-
quently, the information is split into two branches, each
incorporating a linear layer. The left branch includes a
one-dimensional convolutional layer followed by a SiLU
activation and an S6 model, whereas the tensors flowing
on the right branch are processed solely with a SiLU
activation. The outputs from these branches are then
multiplied element-wise, after which a final linear layer
is applied. The output of this linear layer is subsequently
summed with the initial residual connection to yield the
final block output.

B. VISION MAMBA
Mamba is a sequence-to-sequence model; thus, it is only
able to handle 1D sequences. In order to apply it to 2D
images and 3D volumes, a 1D sequence flattening of pix-
els (or voxels) is required. Different from the approach
adopted in Vision Transformer, where the quadratic cost
of self-attention with respect to the number of pixels pre-
vents their scaling to “realistic” input size and requires
extracting patches to reduce the input spatial dimension,
Mamba allows us a linear-time sequence modeling of the
input, preventing any sampling. Patch down-sampling is
a major issue in medical image segmentation, due to the
need for voxel-wise details, which is usually enforced by
the large medical input data.
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FIGURE 2. U-Net architecture integrating our proposed Mamba Layers. By properly selecting the Mamba Layers (turquoise arrows), SegMamba,
BiSegMamba, and MultiSegMamba are obtained. To obtain SegMambaSkip, the currently displayed Mamba Layers (turquoise arrows) must be replaced by
the standard U-Net convolution (blue arrow), and corresponding Mamba Layers must be placed within the skip connections (gray arrows).

One downside of Mamba is that it is not permutation-
invariant. In contrast to the transformer self-attention
mechanism, where each token can gather information
from every other token in the sequence, Mamba restricts
each token to infer only information from the current
state, resulting in an approximation of the past tokens
only. This means that when Mamba is employed for im-
age segmentation tasks, the very first pixels (or voxels)
in the sequence do not have any context awareness. To
mitigate the issue, we devised Mamba layers capable of
processing tensors along different spatial directions.

Our Mamba Layer. Instead of directly including the
Mamba Block into our U-Net architecture, by taking
inspiration from the ViT architecture [7], we developed
a wrapper. The wrapping, consisting of an additional
LayerNorm and an MLP head followed by a skip con-
nection, allows us to improve Mamba stability. We
denote this module as the Mamba Layer, illustrated in
Fig. 1a. Subsequently, we integrated two instances of
the Mamba Layer into a unified module. This module,
named Bidirectional 3D Mamba Layer, takes as input a
3D volume with dimensions (B, H, W, D, C). It flat-
tens the spatial dimensions and manages the sequence
bidirectionally by feeding one of the two layers with the
sequence in the backward direction. Subsequently, the
output from this layer is reversed to its original order
and then summed token by token with the output of
the “straight” layer. Finally, the sum is normalized and
reshaped back into a 3D volume (Fig. 1b).

The strategies we introduce to integrate the Mamba

Layer into nnU-Net are detailed in the following and
depicted in Fig. 2.

SegMamba. Our initially proposed integration involves
the inclusion of a singular (unidirectional) Mamba Layer
preceding each pooling convolution and the bottleneck of
U-Net. This strategic placement is designed to enhance
the overall contextual understanding, addressing the
inherent limitations in the global context that convo-
lutions often encounter while limiting the number of
additional parameters.

SegMambaSkip. One of the universally recognized
strength points of the U-Net architecture lies in its
skip connections [6], which allow the decoding part
of the network to access fine-grained details coming
from the encoder. Indeed, as the network compresses
the image to extract high-level features, it loses some
fine-grained details. Skip connections help by copying
the detailed feature maps from earlier layers (before
compression) and combining them with the layers that
are reconstructing the image. This way, the network
gets both the detailed, low-level information and the
high-level understanding, which helps produce more
accurate and sharper segmentation results. Meanwhile,
Mamba has been devised to efficiently select data in an
input-dependent manner, thus being capable of filter-
ing out irrelevant information. Hence, we augment the
skip connections in the U-Net architecture by inserting
an additional Bidirectional 3D Mamba Layer before
concatenating the activation map to the corresponding
decoder output. The Mamba layer introduced in the skip
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FIGURE 3. To achieve multi-directionality, four Bidirectional 3D Mamba
Layers are employed, corresponding to four out of the six possible
permutations of the triplet (H, W, D). The outputs of each layer is
stacked, and the mean per token is computed.

connection is intended to enrich the information flowing
from the encoder to the decoder in the skip branches.
What is noteworthy here is that Mamba processing does
not degrade spatial information but instead enriches
it with contextual awareness. Indeed, the design of
the Mamba layer includes a residual connection (right
branch of Fig. 1a), meaning that it preserves spatial
information while learning to enhance feature quality.
The residual connection ensures the original encoder
features, i.e., the fine-grained details, remain intact by
providing a direct pathway alongside the Mamba layer.
As said, rather than replacing features, the Mamba
layer placed on the skip connection is meant to enrich
the features passed through the skip connections with
long-range dependencies or contextual patterns without
disrupting spatial fidelity.
BiSegMamba. It includes our Bidirectional 3D Mamba
Layer before each downsampling step as well as in the U-
Net bottleneck. BiSegMamba processes data in both for-
ward and backward directions, ensuring that each voxel
receives context from all other voxels in at least one of
the two directions. This means that voxels at the start of
a sequence in the forward direction (which initially have
limited context) are processed with extensive context in
the backward direction, and vice versa. By leveraging
both directions of a single sequential arrangement, in
BiSegMamba we strike a balance between computational
efficiency and model effectiveness. The Bidirectional 3D
Mamba Layer enables the model to effectively weigh the
importance of tokens across various spatial dimensions,
without the need to consider all possible permutations.
This approach is particularly beneficial when dealing
with distant dependencies and selective information pro-
cessing, enhancing the ability to discern relevant features
during downsampling and in bottleneck layers.
MultiSegMamba. With this variation, we propose to
process all conceivable sequential arrangements of the
volume, resulting in a total of six possible permutations
for the three spatial dimensions (H, W, D) of a 3D
volume. This yields a total of 12 distinct sequences,
accounting for both the forward and backward directions
of the six permutations. The rationale behind seeking
multiple directions stems from the necessity for each
voxel to exploit spatial information in all conceivable
orientations. If we were to consider only a single se-

TABLE 1. Configuration of the proposed models when trained on the
selected datasets.

BrainTumour Synapse ACDC

Spacing [1, 1, 1] [3, 0.76, 0.76] [6.35, 1.52, 1.52]
Median shape 138× 170× 138 148× 512× 512 13× 246× 213
Crop size 128× 128× 128 48× 192× 192 14× 256× 224
Batch size 2 2 4

quence, such as (H, W, D).flatten(), the distance
between the first token at index (0, 0, 0) and the
token at index (0, 0, 1) would be H ∗ W instead of
1. Typically, the values of H and W are in the order of
102, resulting in a total distance of 104. Due to memory
constraints, we only encompass 4 out of 6 possible di-
rections,1 chosen specifically to ensure that each spatial
dimension is similarly represented, with each direction
appearing at least once at the beginning of the flattened
representation and at least once at the end. This design
is intended to explore different spatial relationships,
mitigating potential biases introduced by fixed direc-
tional ordering. While alternative order combinations
are available, preliminary experiments showed negligible
differences. By incorporating multiple directions, we
maintain linear complexity while affording each token
superior spatial awareness. This approach ensures that
neighboring tokens are indeed proximate in the obtained
representation, enhancing the overall spatial awareness
of the model. To aggregate the output sequences of all
the modules involved, we stack each sequence on a new
axis and compute the mean value across it (Fig. 3). This
module substitutes the Bidirectional 3D Mamba Layer
in BiSegMamba.

C. IMPLEMENTATION DETAILS
Details regarding patch shape, batch size, and other
pipeline settings are reported in Tab. 1. All of our models
have been trained for 300 epochs using RAdam, a learn-
ing rate of 0.0003, and a linear learning rate scheduler.
For the parameters initialization of the Mamba layers,
we scale the weights of residual layers at initialization
by a factor of 1/

√
N, where N is the number of resid-

ual layers. This is the same as in the GPT-2 paper
and employed in the Mamba source code. SegMamba,
BiSegMamba, and MultiSegMamba variants include 5
Mamba layers, matching the encoder depth, while Seg-
MambaSkip uses 4 layers, aligned with the number of
skip connections. The inner dimension of the State-
Space Model (i.e., the size of the evolution parameter
A, Sec. III-A) is defined as min(C, 256), where C is the
number of tokens’ channels in the input sequence, which
can be seen in Fig. 2, i.e., 32, 64, 128, 256. Training has
been performed on an A100 Nvidia GPU using CUDA
11.8 and PyTorch 2.1.2.

1In our experiments we employ the following directions: (H, W,
D), (H, D, W), (W, D, H), and (D, W, H).
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IV. EXPERIMENTS AND RESULTS
A. DATASETS
We conducted experiments using three different well-
known datasets: MSD BrainTumor [25], Synapse Multi-
organ [4], and ACDC [26]. The selected experimental
setting aligns with the existing literature on medical
image segmentation [11], [12], [45]–[48].
MSD BrainTumor. The first one is the BrainTumor
segmentation dataset from the Medical Segmentation
Decathlon (MSD BrainTumor) [25]. It consists of 484
MRI images, each containing four channels: FLAIR,
T1w, T1gd, and T2w. The images were annotated with
three tumor sub-regions: edema (ED), enhancing tumor
(ET), and non-enhancing tumor (NET). To be coherent
with the results reported by [12], the segmentation
metrics were computed on the classes ET, tumor core
(TC, which is the union of ET and NET), and whole
tumor (WT, which is the union of ED, ET, and NET).
Following the split provided by [12], we employed 95% of
the dataset as a training/validation set with 5-fold cross-
validation, and 5% for testing purposes. This task is
difficult due to the complex, irregular tumor morphology
and the need to fuse information from multiple MRI
sequences.
Synapse Multi-organ. The second dataset is the Synapse
Multi-organ segmentation dataset [4], published within
the MICCAI 2015 Multi-Atlas Abdomen Labeling
Challenge. This dataset includes 3 779 axial contrast-
enhanced abdominal CT images from 30 abdominal CT
scans, with each volume consisting of 85 to 198 slices.
We adopted the same split as in [10], with 18 cases
for training and 12 cases for testing. In line with our
competitors, the evaluation metrics for this dataset were
calculated for eight out of thirteen annotated abdominal
organs: aorta, gallbladder, left kidney, right kidney, liver,
pancreas, spleen, and stomach. This segmentation task
tests a model’s ability to handle widely varying organ
sizes and low-contrast boundaries between organs—for
example, smaller organs can be hard to discern because
of their tiny volume and the ambiguous, noisy CT
contrast with surrounding tissues.
ACDC. Lastly, the third dataset employed is the ACDC
dataset [26]. It comprises 100 cine MRI scans of patients
across five pathology groups, each labeled for the left
ventricle (LV), right ventricle (RV), and myocardium
(Myo). We divided this dataset into 80 samples for
training and validation, and 20 test samples, following
the split described in [10]. Here, the challenges include
poor contrast between blood and myocardium, motion
artifacts, and substantial anatomical variability due to
different cardiac diseases.
The aforementioned datasets—which spans diverse
anatomies (brain, abdomen, heart), imaging modalities
(multi-sequence MRI, CT, cine MRI), and class struc-
tures (pathological tumor subregions, normal organs,

dynamic heart anatomy)—serve as a robust benchmark
for evaluating our methods against the state-of-the-art,
thereby demonstrating their strong performance and
wide generalizability in 3D medical image segmentation.

B. PRE-PROCESSING AND AUGMENTATIONS
Data have been pre-processed leveraging the nnU-Net
framework [30]. Such a pre-processing protocol includes
Z normalization, foreground cropping, and resampling
to a common spacing for all the images. The protocol
is tuned based on the dataset fingerprint during the
planning phase. Similarly, we employed the data aug-
mentation techniques included in the nnU-Net frame-
work, which include random rotations, scaling, intensity
modifications, elastic deformations, and mirroring.

By following these well-established procedures, we
align our work with state-of-the-art methodologies and
facilitate direct comparisons with other studies in the
literature.

C. EVALUATION METRICS
We employ Dice Similarity Coefficient (DSC in %)
and the 95th percentile Hausdorff Distance (HD95 in
mm), two widely accepted metrics for the segmentation
task [52].

The DSC has practically the same meaning as the
IoU (Intersection over Union), but the first one is better
suited when the region of interest is much smaller than
the background. In such a scenario, DSC can be more
robust and informative than IoU since more weight is
given to the correctly identified region. The DSC metric
and its relationship with the IoU are expressed by the
following formula:

DSC(P,GT) =
2× |P ∩ GT|
|P|+ |GT|

=
2× IoU
1 + IoU

(8)

where P is the model prediction and GT is the ground
truth.

On the other hand, the HD95 computes the maximum
distance between two sets of points, considering the
95th percentile of these distances. In general, the 95th
percentile of the distances between boundary points in
A and B is defined as follows:

d95(A,B) = x95
a∈A

{
min
b∈B

d(a, b)
}

(9)

where x95
a∈A{} denotes the 95th percentile of the elements

in the set enclosed within the brackets. Given the set
formed by the pixels in the predicted mask (P) and the
set of pixels belonging to the ground truth (GT), the
Hausdorff distance is determined as the maximum value
of the two distances between P and GT and GT and P
at the 95th percentile:

HD95(P,GT) = max

{
d95(P,GT),d95(GT,P)

}
(10)
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TABLE 2. 5-fold cross-validation results on the BrainTumor dataset. Our proposals are marked with †. Standard deviations for the average scores over the
5 folds are reported. Best results are in bold while the second best are underlined. Methods subjected to a one-sided paired samples t-test comparing our
best method against the best of the alternatives are highlighted in blue. If the p-value associated with the test is less than 0.05, the result is indicated as
statistically significant by ⋆. Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC) scores are reported, alongside the average.

Model
Average WT ET TC

HD95↓ DSC↑ HD95↓ DSC↑ HD95↓ DSC↑ HD95↓ DSC↑

C
N

N
s nnU-Net [30] 4.53±0.17 85.74±0.93 4.21 91.15 3.89 80.76 5.47 85.29

nnU-NetResEnc [30] 4.12±0.16 85.60±0.70 3.71 89.93 3.72 80.86 4.93 86.01
MedNeXt-M-K3 [49] 6.35±0.21 85.27±0.45 4.59 90.84 6.57 80.88 7.89 84.10
MedNeXt-M-K5 [49] 6.67±0.30 84.79±0.81 4.93 88.93 6.75 79.97 8.33 85.47

T
ra

ns
fo

rm
er

s

TransU-Net [10] 13.18±0.83 64.14±0.84 14.42 70.16 10.80 54.31 14.31 67.94
TransBTS [50] 9.83±0.22 69.72±0.56 10.32 78.22 10.20 57.26 8.97 73.68
CoTr [48] 9.96±0.19 68.21±0.42 9.25 74.81 9.58 55.14 11.04 74.67
UNETR [12] 9.04±0.41 70.92±1.02 8.03 78.85 9.83 58.06 9.25 75.85
SwinU-Net [11] 9.98±0.33 67.95±0.57 8.85 76.43 10.31 57.21 10.77 70.20
Swin-UNETR [13] 6.77±0.25 84.07±0.67 7.13 88.92 7.54 79.93 5.63 83.34
LeViT-UNet-384s [47] 8.56±0.30 70.06±0.87 8.20 77.06 8.60 58.10 8.89 75.03
MISSFormer [51] 9.21±0.19 83.08±0.39 8.40 88.21 9.57 79.71 9.64 81.33
nnFormer [45] 4.05±0.25 86.34±0.51 3.47 91.28 4.24 81.76 4.46 85.97

M
am

ba

UMambaBot [44] 3.80±0.22 86.35±0.21 3.49 92.10 3.80 80.04 4.10 86.90
UMambaEnc [44] 4.17±0.18 86.16±0.53 3.63 92.30 4.44 79.72 4.43 86.46

SegMambaSkip† 4.53±0.20 85.25±0.81 3.61 92.11 5.43 78.85 4.54 84.79
SegMamba† 3.82±0.11 86.66±0.45 3.66 92.26 3.83 80.77 3.96 86.96
BiSegMamba† 3.85±0.16 85.75±0.60 3.38 92.43 3.46 79.60 4.70 85.21
MultiSegMamba† 3.84±0.24 86.70±0.17⋆ 3.72 92.09 3.88 80.84 3.93 87.18

By using the 95th percentile, this metric provides a
robust evaluation that is less sensitive to outliers or
extreme differences between the sets of points.

D. COMPARED METHODS

Performance comparison has been performed on recently
proposed methods for medical image segmentation.
Specifically, considered competitors can be classified into
three main groups: CNN-, Transformer-, and Mamba-
based architectures.

In the former group, we include the original nnU-
Net [30] configuration making use of the vanilla U-
Net architecture (nnU-Net), and its variations based
on the U-Net with residual connections in the en-
coder (nnU-NetResEnc). Furthermore, the transformer-
inspired-CNN-modification based on ConvNeXt blocks,
MedNeXt [49], has been considered in its two vari-
ations K3, and K5. For what concerns Tranformer-
based architectures, we compare our proposals with
TransU-Net [10], TransBTS [50], CoTr [48], an hy-
brid architecture combining convolutional and trans-
former modules, UNETR [12], SwinU-Net [11] and
its UNETR-based variation Swin-UNETR [13], LeViT-
UNet-384s [47], MISSFormer [51], and the recently pub-
lished nnFormer [45]. Finally, we include UMamba [44]
in its two variations UMambaBot and UMambaEnc.

In our experiments, a standardized scheme for hy-
perparameter configuration has been adopted. When-
ever available, the capabilities of the self-configuration
method are employed. Otherwise, we opted for the
default configuration (if any) or the one closest to the

respective dataset, reducing the learning rate until con-
vergence. Models are trained from scratch without any
pre-training data. The nnU-Net five-fold cross-validation
schema has always been employed.

E. RESULTS

The experimental results for the BrainTumor, Synapse
Abdomen, and Automatic Cardiac Diagnosis (ACDC)
datasets are presented in Tab. 2, Tab. 3, and Tab. 4,
respectively. Furthermore, to enhance the robustness
and reliability of our findings, we conducted a one-sided
paired samples t-test comparing our best-performing
method (MultiSegMamba in most instances) with the
most competitive alternative available in the literature.
Experiments subjected to statistical testing in the av-
erage DSC and average HD95 columns are highlighted
in blue. When the test yields a p-value below 0.05,
the method demonstrating statistically superior perfor-
mance—i.e., higher DSC or lower HD95—is marked with
a star symbol (⋆).

Overall, our methods are statistically superior to
the state-of-the-art, with the exception of one HD95
comparison in the BrainTumor dataset (Tab. 2). In
that instance, the statistical analysis does not provide
significant evidence to suggest that UMambaBot out-
performs SegMamba or vice versa, indicating that their
performance is equivalent.

In general, BiSegMamba and MultiSegMamba consis-
tently outperform SegMambaSkip, even if the latter is
always competitive with state-of-the-art models and, on
some specific classes, proves to be superior to them.
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TABLE 3. 5-fold cross-validation results on the Synapse Abdomen dataset. Our proposals are marked with †. For space constraints, single class results
only report the Dice score. Standard deviations for the average scores over the 5 folds are reported. Best results are in bold while the second best are
underlined. Methods subjected to a one-sided paired samples t-test comparing our best method against the best of the alternatives are highlighted in
blue. If the p-value associated with the test is less than 0.05, the result is indicated as statistically significant by ⋆.

Model
Average

HD95↓ DSC↑ A
or

ta

G
al

lb
.

L
.K

id
n.

R
.K

id
n.

L
iv

er

P
an

cr
.

Sp
le

en

St
om

.

C
N

N
s nnU-Net [30] 10.91±0.69 86.21±1.19 91.65 70.01 86.67 85.75 96.11 83.22 90.69 85.55

nnU-NetResEnc [30] 7.70±0.42 86.61±1.07 89.94 64.20 90.79 91.18 97.36 79.48 92.03 87.93
MedNeXt-M-K3 [49] 18.99±0.53 85.70±0.77 92.44 72.75 87.62 86.21 97.15 81.17 90.30 77.93
MedNeXt-M-K5 [49] 17.30±0.60 86.00±0.86 92.15 71.66 87.89 87.43 96.91 80.26 90.95 80.78

T
ra

ns
fo

rm
er

s

TransU-Net [10] 32.27±1.01 77.24±0.91 86.88 62.59 81.35 76.98 94.45 55.57 84.97 75.12
TransBTS [50] 11.98±0.67 83.27±1.06 91.95 62.24 86.91 87.15 96.67 71.91 91.62 77.70
CoTr [48] 9.35±0.39 84.67±0.75 92.77 63.07 87.98 86.84 92.75 78.63 94.54 80.76
UNETR [12] 19.15±0.84 78.10±1.12 89.75 55.81 85.71 84.71 94.00 60.23 84.47 70.14
SwinU-Net [11] 22.02±0.70 79.06±0.73 85.65 66.46 83.03 79.37 94.02 56.57 90.67 76.72
Swin-UNETR [13] 11.02±0.72 83.64±1.31 91.22 66.48 87.09 86.62 95.99 68.79 95.72 77.19
LeViT-UNet-384s [47] 16.80±0.81 78.38±0.99 87.52 61.77 84.04 79.87 92.80 59.20 88.84 73.03
MISSFormer [51] 18.50±0.59 81.87±0.85 86.48 68.92 85.56 81.60 94.24 65.44 91.70 80.99
nnFormer [45] 11.14±0.48 86.56±0.64 91.63 69.85 86.61 86.55 96.97 83.68 90.72 86.44

M
am

ba

UMambaBot [44] 7.35±0.42 86.88±0.80 89.88 60.14 89.99 94.37 96.81 82.33 95.66 85.88
UMambaEnc [44] 7.83±0.50 87.82±0.75 89.57 65.20 89.46 94.84 96.97 83.35 96.80 86.40

SegMambaSkip† 6.29±0.47 88.26±0.89 89.64 69.04 93.40 94.91 96.80 79.61 96.45 86.19
SegMamba† 7.91±0.38 87.48±0.77 89.59 62.21 93.65 94.81 96.82 80.72 95.22 86.85
BiSegMamba† 5.99±0.53 88.29±0.90 91.02 70.12 92.98 94.32 96.94 79.08 96.26 85.58
MultiSegMamba† 5.98±0.36⋆ 88.93±0.21⋆ 91.36 71.78 94.00 94.88 95.76 80.65 96.22 86.77

TABLE 4. 5-fold cross-validation results on the Automatic Cardiac
Diagnosis (ACDC) dataset. Our proposals are marked with †. The
evaluation metric is the DSC (%). Best results are in bold while the second
best are underlined. Methods subjected to a one-sided paired samples
t-test comparing our best method against the best of the alternatives are
highlighted in blue. If the p-value associated with the test is less than
0.05, the result is indicated as statistically significant by ⋆.

Model Average RV Myo LV

C
N

N
s nnU-Net [30] 91.42 90.10 88.74 95.41

nnU-NetResEnc [30] 90.84 89.17 88.52 94.84
MedNeXt-M-K3 [49] 91.64 89.43 89.77 95.72
MedNeXt-M-K5 [49] 90.70 88.50 88.88 94.73

T
ra

ns
fo

rm
er

s

TransUNet [10] 89.75 88.88 84.66 95.70
TransBTS [50] 91.29 90.42 87.94 95.51
CoTr [48] 90.90 89.17 88.34 95.18
UNETR [12] 88.72 85.55 86.48 94.12
SwinU-Net [11] 89.97 88.29 85.61 96.01
Swin-UNETR [13] 91.36 90.48 87.84 95.75
LeViT-UNet-384s [47] 90.21 89.78 87.10 93.75
MISSFormer [51] 87.73 86.55 85.24 91.42
nnFormer [45] 91.87 90.78 89.37 95.46

M
am

ba

UMambaBot [44] 90.44 87.67 88.76 94.89
UMambaEnc [44] 90.07 87.34 88.23 94.65

SegMambaSkip† 91.49 89.58 89.51 95.39
SegMamba† 91.33 89.37 89.40 95.22
BiSegMamba† 91.50 89.46 89.66 95.37
MultiSegMamba† 92.04⋆ 90.39 90.29 95.44

As the results on the BrainTumor dataset show
(Tab. 2), SegMamba, BiSegMamba, and MultiSeg-
Mamba always outperform SegMambaSkip on average
metrics and on most individual classes taken separately.
Among the SegMamba models, MultiSegMamba, the
one that harnesses more directions, outperforms the
other configurations, demonstrating the importance of
modeling multiple directions. Excluding nnFormer, our

Mamba-based architectures gain more than 3 dice points
over best-performing transformer-based architectures
and up to 1 dice point over nnU-Net.

For what concerns the Synapse Abdomen dataset
(Tab. 3), characterized by a larger number of classes,
results show that our model showcases substantial im-
provements in kidney and spleen segmentation, as well
as on average HD95 and DSC, when compared to
state-of-the-art architectures. Remarkably, the inclusion
of four distinct directions yields a more pronounced
improvement in gallbladder segmentation, which is the
most difficult to segment. Indeed, the gallbladder is
significantly smaller and varies more in shape and posi-
tion compared to other organs, such as the liver, which
is larger and more consistently shaped. Moreover, the
close proximity of the gallbladder to other organs and
structures in the abdominal cavity increases the com-
plexity of distinguishing it in medical images. Results on
gallbladder segmentation show that SegMamba reaches
62.21 Dice points, while its multidirection versions, such
as BiSegMamba and MultiSegMamba, improve over it
by 8 and 10 points, respectively.

Finally, results on the ACDC dataset are presented in
Tab. 4. In such a scenario, MultiSegMamba outperforms
all its variants that model fewer directions, and Mul-
tiSegMamba and BiSegMamba consistently outperform
all the UMamba variations.

F. ABOUT MODEL SIZE
In Tab. 5, a comprehensive computational comparison
on the Synapse dataset is reported considering the
number of parameters (millions), GFLOPs, and GPU
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TABLE 5. Computational comparison on the Synapse dataset. Our
proposals are marked with †. The number of parameters is expressed in
millions [M] and VRAM in gigabyte [GB]. Training and inference times,
expressed in hours [h] and seconds [s], respectively, are obtained on an
Nvidia A100 with 80GB of memory. All competitor models were trained
for 1000 epochs, as recommended by most of their original papers, while
our method achieved convergence in only 300 epochs. Inference times is
the average across all test volumes.

Models Params GFLOPs VRAM Tr. Inf.

C
N

N
s nnU-Net [30] 30.64 410.11 7.65 9.20 21.80

nnU-NetResEnc [30] 57.50 502.49 10.00 10.00 22.20
MedNeXt-M-K3 [49] 32.65 248.03 15.32 67.60 153.60
MedNeXt-M-K5 [49] 34.75 308.01 18.85 218.30 416.90

T
ra

ns
f.

TransUNet [10] 96.07 88.91 16.25 26.50 73.90
CoTr [48] 50.12 369.22 8.10 18.60 41.40
UNETR [12] 92.49 75.76 15.29 15.40 39.50
Swin-UNETR [13] 62.83 384.20 13.91 22.00 38.70
nnFormer [45] 150.50 213.41 9.73 8.20 20.60

M
am

ba

UMambaBot [44] 41.95 156.32 13.55 22.00 54.20
UMambaEnc [44] 42.85 231.18 26.42 37.90 89.30

SegMambaSkip† 62.36 486.92 29.26 12.60 93.50
SegMamba† 61.49 480.90 25.61 12.70 99.60
BiSegMamba† 64.75 494.17 27.31 16.50 134.10
MultiSegMamba† 68.46 527.56 36.92 18.20 149.00

memory. Our proposed models have a higher number
of parameters compared to classical CNN approaches,
while they are comparable to or often have fewer param-
eters than transformer-based models. More specifically,
the number of parameters of our models (∼60M) are, on
average, the double with respect to nnU-Net (∼31M),
comparable to those of nnU-NetResEnc (∼57M), and
much lower than those of transformer-based models
(from ∼95M of TransU-Net and UNETR, up to 150M
of nnFormer). On the ACDC and BrainTumor datasets,
the metrics reported in Tab. 5 follow the same trends:
parameter counts remain stable across datasets (aside
from minor variations due to differing input/output
channels), and GFLOPs and VRAM scale with batch
and patch sizes.

As an additional visualization, Fig. 4 and Fig. 5 are
provided. The former compares the average Dice score,
model size, and computational complexity between our
largest proposed model, MultiSegMamba, and several
state-of-the-art methods on the Synapse dataset. No-
tably, MultiSegMamba surpasses the performance of all
competitors while maintaining a comparable number
of parameters and similar computational cost. Fig. 5,
instead, provides a similar comparison between the
proposed Mamba-based variants, highlighting the pro-
portionality between computational cost, number of
targeted directions, and segmentation performance.

G. CLINICAL METRICS
In datasets such as ACDC, the integration of additional
clinical metrics can substantially enhance the evaluation
of our predictions. In particular, accurate segmentation
of the left ventricle is of paramount importance, as
it underpins the calculation of the ejection fraction, a

FIGURE 4. Deployment model size and average DSCs across our best
model and competitors on Synapse. Circle size indicates GFLOPS.

FIGURE 5. Deployment model size and average DSCs across our models
on Synapse. Circle size indicates GFLOPS.

parameter that quantifies, as a percentage, the volume
of blood pumped out by the left ventricle with each
contraction and is a crucial indicator of cardiac function.

For each patient in the ACDC dataset, two MRI scans
are provided: one corresponding to the end-diastolic
phase and one to the end-systolic phase, with the former
preceding the latter. Accordingly, the volume of the
left ventricle is measured in these two distinct phases,
denoted as Dd (end-diastolic volume) and Ds (end-
systolic volume). The ejection fraction (EF) is then
computed as follows:

EF =
Dd − Ds

Dd
× 100% (11)

Subsequently, we compared the end-diastolic volumes
(Dd) and the derived ejection fractions (EF) from both
ground truth and AI predictions using statistical met-
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FIGURE 6. Visualization of segmentation results for four sample cases from the Synapse Abdomen evaluation set. Annotation errors are marked with
magenta-dashed boxes. The figure is best viewed in color and zoomed in. From left to right: Input, Ground Truth (GT), nnU-NetResEnc, SegMamba,
BiSegMamba, SegMambaSkip, and MultiSegMamba.

TABLE 6. Clinical Metrics of the Left Ventricle for the test set of the ACDC
Dataset. Our proposals are marked with †. This table presents a
comparative evaluation of the end-diastolic volumes (Dd) and the derived
ejection fractions (EF) between the ground truth measurements and the
AI predictions. The metrics include the Pearson correlation (ρ), mean
absolute error (MAE), and the mean difference with standard deviation
(reported as bias ± σ).

Model
Left Ventricle Dd Left Ventricle EF

bias ± σ MAE bias ± σ MAEρ
ml ml

ρ
% %

nnU-NetResEnc [30] 0.996 -3.5±8.6 6.415 0.990 -1.7±2.8 2.392
nnFormer [45] 0.996 -2.6±8.0 5.576 0.990 -1.6±2.7 2.461

SegMambaSkip† 0.996 -1.8±7.6 5.133 0.990 -1.8±2.8 2.602
SegMamba† 0.995 -3.9±8.9 6.771 0.979 -1.0±4.0 3.058
BiSegMamba† 0.995 -4.3±8.9 7.451 0.976 1.5±4.3 3.226
MultiSegMamba† 0.996 -2.9±8.0 5.936 0.991 -1.9±2.7 2.496

rics, including Pearson correlation (ρ), mean absolute
error (MAE), and the mean difference with standard
deviation (reported as bias ± σ). The results of these
analyses are presented in Tab. 6.

An examination of the aforementioned table reveals
that all methods demonstrate exceptional precision in
predicting both the left ventricular end-diastolic volume
(Dd) and the corresponding ejection fraction (EF). For
the Dd measurements, the Pearson correlation coeffi-
cient exceeds 0.995 for all models, and the mean absolute
error (MAE) is minimal, with a worst-case value of 7.5
ml. Given that the average ground truth Dd is 196 ml,

this corresponds to a relative error of 3.8%. Similarly,
for the ejection fraction, the Pearson correlation coef-
ficient is above 0.976 for all models, and the MAE is
comparably low, with a worst-case error of 3.2%.

H. QUALITATIVE EVALUATION
Fig. 6 depicts a qualitative comparison of the four vari-
ations of the proposed architecture. The comparison is
performed on samples taken from the Synapse Abdomen
evaluation set. As can be seen, all of our Mamba-based
variations perform qualitatively similarly, but the ones
leveraging multiple directions are less prone to errors
when dealing with fine-grained details. This confirms the
quantitative results previously discussed.

V. CONCLUSION
This paper aims to assess the efficacy of the Mamba
State-Space Model for 3D medical image segmenta-
tion, comparing it with advanced convolutional and
transformer-based architectures. Additionally, we pro-
pose alternative designs for Mamba architectures to
address their key limitations. Specifically, we inte-
grate Mamba at various stages within the standard
U-Net framework, either in skip connections or prior
to pooling operations, utilizing both single-directional,
bi-directional, and multi-directional implementations.
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The overall framework blends Convolutions and State-
Space Models, leveraging the former for encoding precise
spatial information, while addressing the latter to model
long-range voxel-level interactions. Mamba provides a
global context alongside voxel-wise precision, the former
missing in traditional convolutional layers due to limited
receptive fields and the latter absent in transformers due
to computational complexity.

Our experimental results highlight the substantial
improvement in HD95 and DSC metrics on three well-
known datasets compared to nnU-Net and different
transformer-based networks. We showcase Mamba ver-
satility by adapting it from its original use in text
generation and large language models to achieve state-
of-the-art results in a completely different task. This
adaptability highlights Mamba potential beyond its ini-
tial design, demonstrating its efficacy in image encoding
and segmentation.
Limitations and Future Works. Despite the advancements
made with the Mamba model, two key limitations can
be identified and should be addressed in future research.

First, as Mamba is inherently a causal model, its
application to non-causal visual data requires modifi-
cation. Specifically, we tried to solve this problem by
processing each sequence both forward and backward.
However, this introduces redundancy, increasing the risk
of overfitting. We believe that more efficient approaches
could be developed to address this issue.

Second, to capture spatial relationships, we unfold im-
age patches from multiple directions, but more effective
methods, such as identifying optimal scanning paths or
partitioning larger volumes into smaller neighborhoods,
may exist. Furthermore, employing too many directions
can significantly increase computational demands and
redundancy, as mentioned before.
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