

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Filippo Rinaldi*, Giacomo Capitani*, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli Elisa Ficarra, Emanuele Rodolà, Simone Calderara and Angelo Porrello

MOTIVATION

BACKGROUND

Model Re-Basin: Exploits permutation symmetry to align different trained models into a shared optimization basin, enabling their interpolation. In our case, we need to align θ_A with θ_B to mount τ_A on θ_B .

Functional Equivalence: NNs exhibit permutation symmetry due to the exchangeability of units within layers. For an MLP layer with activation σ , applying permutation matrix *P* yields:

 $z_{\ell+1} = \sigma(W_{\ell}z_{\ell} + b_{\ell}) = z_{\ell+1} = P^{\top}\sigma(PW_{\ell}z_{\ell} + Pb_{\ell})$

Thus, preserving functional equivalence requires applying consistent permutations across the network: $W'_{\ell} = PW_{\ell}, \quad b'_{\ell} = Pb_{\ell}, \quad W'_{\ell+1} = W_{\ell+1}P^{\top}$

Limitations: Fail with multi-head attention structure.

A two-level permutation strategy that first finds optimal mappings between pairs of heads (Inter-Head matching), then refines permutations within those matched heads (Intra-Head matching).

 $\sigma(P_rh)$

RE-BASIN OF TASK VECTORS

WEIGHTS MATCHING

Inter-Head Matching: Find optimal pairing π between attention heads across models using a spectral metric based on singular values.

> $\operatorname{SVD}(W_h) = U_h \Sigma_h V_h^{\top}$ $d\left(h_{i}^{(A)},h_{j}^{(B)}\right) = \left\|\Sigma_{i}^{(A)} - \Sigma_{j}^{(B)}\right\|_{F}$

Proposition Let $h \in \mathbb{R}^{m \times n}$ and define $d_p(h_1, h_2) = \|\sigma(h_1) - \sigma(h_2)\|_p$, where $\sigma(h)$ is the vector of singular values. For permutation matrices P_r, P_c , we have:

$$d_p(h, P_r h P_c) = \sigma(h) \quad \Rightarrow \quad d_p(h, P_r h P_c) = 0.$$

Intra-Head Matching: Determine permutations π that maximize the inner products across projection weight partitions corresponding to each matched head pair.

Т	DTD		GTSRB		SVHN	
UPP.	TASK	SUPP.	TASK	SUPP.	TASK	SUPP.
8.73	47.50	68.73	43.42	68.73	45.97	68.73
6.15	-0.15	-0.10	-5.39	-0.70	-22.00	-16.45
5.28	-0.53	-1.18	-2.43	-1.30	-12.30	-2.70
0.48	-0.91	-0.02	+0.76	-0.05	+0.79	+0.30
0.06	+0.21	-0.08	+1.10	-0.40	+3.64	-0.48