
dada

Update Your Transformer to the Latest Release:
Re-Basin of Task Vectors

Filippo Rinaldi*, Giacomo Capitani*, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli
Elisa Ficarra, Emanuele Rodolà, Simone Calderara and Angelo Porrello

WEIGHTS MATCHING

EXPERIMENTS

RE-BASIN OF TASK VECTORS

BACKGROUND
Inter-Head Matching: Find optimal pairing 𝜋
between attention heads across models using
a spectral metric based on singular values.

FUNCTIONAL EQUIVALENCEMOTIVATION

TransFusion permutes Transformer weights while preserving attention and residual structures,
enabling transfer of task-specific updates across different pretrained model versions.

The output of MHA is equivariant to TransFusion permutations:

Permutation Intra-Head:

Permutation Inter-Head:

MHA Block Permutation:

Our Goal

𝜃𝐵

𝐻1

𝐻0

𝐻2

Ʃ0
𝑆𝑉𝐷 𝑆𝑉𝐷

𝜃𝐴

𝐻1

𝐻0

𝜃𝐴′

𝐻1

𝐻0𝐻2

𝐻2

𝜋Ʃ1

Ʃ2

Ʃ0

Ʃ1

Ʃ2

𝜋 𝐻2

𝜃𝐴′

𝐻2

𝜃𝐴
𝐻0

𝜃𝐵

𝜃𝐴
𝑓𝑡

𝜃𝐴 + 𝜏

𝜃𝐵

𝜃𝐵
𝑓𝑡

𝜃𝐵 + 𝜋 𝜏

𝜋 𝜃𝐴
𝑙𝑜𝑤ℎ𝑖𝑔ℎ

𝑙𝑜𝑠𝑠

𝑓𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑖𝑛𝑔

𝑖𝑑𝑒𝑎𝑙

𝜋 ∙ 𝑟𝑒 − 𝑏𝑎𝑠𝑖𝑛

𝜏

𝜋 𝜏
𝜃𝐴

1

𝜃! 𝜃" 𝜃! 𝜃"

Functional Equivalence: NNs exhibit permutation
symmetry due to the exchangeability of units within
layers. For an MLP layer with activation 𝜎, applying
permutation matrix 𝑃 yields:

Hybrid Weight Permutation Approach

Task-Vector Transport

Limitations: Fail with multi-head attention structure.

𝜏$→$!"

𝜏&→&!"

1

2

ne
w

 m
od

el
 re

le
as

e

Model Re-Basin: Exploits permutation symmetry to
align different trained models into a shared
optimization basin, enabling their interpolation. In our
case, we need to align 𝜽𝑨 with 𝜽𝑩 to mount 𝝉𝑨 on 𝜽𝑩.

MHA layers: Custom spectral alignment
𝑃!"

𝑃#!
𝑃!"𝑀𝐻𝐴

+

𝑥

After computing best permutations 𝜋 ,
such that 𝜋(𝜃#) ≈ 𝜃$, we transport the
task vector on the new backbone 𝜃$:

𝜃$
%& = 𝜃$ + 𝜋(𝜏#)

Multi-Head Attention

Given a fine-tuned Transformer 𝜃#
%&, we aim to transfer

the knowledge of task vector 𝜏# (computed in)
into a new release 𝜃$.

VI
SI
O
N

N
LP

Zero-shot gain/drop relative to
𝜃" of naive 𝜃" + 𝜏 and our
strategy 𝜃" + 𝜋(𝜏) varying α.

2

1

Data-Free Procedure

Applicable to any 𝝉

Intra-Head Matching: Determine permutations
𝜋 that maximize the inner products across
projection weight partitions corresponding to
each matched head pair.

𝜃𝐵

𝐻1

𝐻0

𝐻2

Ʃ0
𝑆𝑉𝐷 𝑆𝑉𝐷

𝜃𝐴

𝐻1

𝐻0

𝜃𝐴′

𝐻1

𝐻0𝐻2

𝐻2

𝜋Ʃ1

Ʃ2

Ʃ0

Ʃ1

Ʃ2

𝜋 𝐻2

𝜃𝐴′

𝐻2

𝜃𝐴
𝐻0

𝜃𝐵

≈

For all experiments we consider CLIP ViT-
B/16. We use CommonPool pre-training for 𝜃!
and Datacomp for 𝜃" . Our method boosts
𝜃" zero-shot performance and preserves
generalization in the updated model.

𝜏$→$!"

𝜃/0
𝜃&

𝜃$
𝜃/0

𝜃&
𝜃/0

DATA

DATA

Pre-trained CLIP
(OpenAI) fine-tuned on

a downstream task

New pre-trained CLIP
(Laion, Meta, etc..)

Other layers: Git Re-Basin alignment

old fine-tuning is
obsolete and re-training

is needed

A two-level permutation strategy that first finds optimal mappings between pairs of heads (Inter-
Head matching), then refines permutations within those matched heads (Intra-Head matching).

Residual Connection
Ensure consistency by aligning identity paths with
attention permutations:

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Table 2: Comparison of permutation-based methods on NLP
tasks, in terms of task accuracy [→].

Method QQP SST2 RTE COLA
ωB 55.00 50.69 54.51 40.94
ωB + ε -8.29 +0.23 -2.53 -0.77
ωB + ε (OT) -8.31 +5.39 -1.08 -1.25
ωB + ε (GiT Re-Basin) +3.58 +5.73 +2.17 +1.44

TRANSFUSION (OURS) +6.50 +5.96 +3.61 +2.49

2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp
et al., 2011), and SVHN (Netzer et al., 2011) and obtain
multiple, independent fine-tuned models like ωft

A
= ωA + ε .

Afterwards, we empirically assess the transportation of ε to
the new weights ωB . In this respect, we adopt two metrics to
characterize the quality of the transported model ωB +ϑ(ε):
i) the zero-shot performance on the original task (special-
ized knowledge), and ii) the zero-shot performance on a
support, unseen set to evaluate the preservation of broader
capabilities. In our experiments, ImageNet-R (Hendrycks
et al., 2021) serves as a support dataset.

We report the results in Tab. 1 as drops (-) or gains (+)
in accuracy relative to the zero-shot performance of ωB .
As baselines, we provide the results of vanilla transporta-
tion (no permutations applied on ε) and those of Git Re-
Basin (Ainsworth et al., 2023) and Optimal Transport
(OT) (Imfeld et al., 2024), two existing methods for model
re-basin. Specifically, the comparison with OT is notewor-
thy since this approach is designed for Transformer models
(like ours).

As can be seen, our method enhances zero-shot performance
on the downstream tasks and preserves generalization on
the support dataset, outperforming existing permutation-
based methods. Considering the results of our approach, it
is particularly noteworthy that we enhance performance on
the downstream task while maintaining generalization, all
achieved without the use of any data.

In the experiments shown in Tab. 1, we consistently set the
scaling coefficient for the (permuted) task vector as ϖ = 1

(see Sec. 3.2). To investigate sensitivity and performance
changes while varying ϖ, we kindly refer the reader to Fig. 4
(more datasets are in Appendix A.4). This illustrates the
drop/gain in accuracy for ωB+ϖε (blue) and our ωB+ϖϑ(ε)
(red). This drop/gain is measured w.r.t. the zero-shot accu-
racy of ωB , and ϖ varies within the range [0.01, 2.0]. The
outcome is that applying the permuted ϑ(ε) to ωB leads to
tangible improvements in the downstream task (top row),
especially ϖ ↑ 1. Moreover, when ϖ ↓ 0.5, the permuted
task vector is considerably more reliable in terms of gener-
alization (higher accuracy on the support set).

Figure 4: Zero-shot gain/drop relative to ωB of naive ωB +

ϖε (blue) and our strategy ωB + ϖϑ(ε) (red) varying ϖ.

NLP Classification Tasks. Herein, we investigate a
different setting that involves closed-vocabulary text clas-
sification — specifically, a set of tasks from the GLUE
benchmark (Wang et al., 2019). We consider a model
ω = {ϱ,ς} composed of a pre-trained Transformer en-
coder ϱ and a classification head ς. We then evaluate
the transport of the learned task vector εω = ϱft

A
↔ ϱA

on a new feature extractor ϱB . As access to data of the
downstream task is restricted, we are unable to train a new
classifier for ωB: consequently, we re-use the originally
fine-tuned classifier, denoted as ςft. The goal is to evaluate
whether transporting the task vector εω aligns the repre-
sentation yielded by ϱB + ϑ(εω) with the original, fine-
tuned classifier ςft. In our experiments, we employed
two variants of the ViT-B-16 text encoder, pretrained re-
spectively on the commonpool-l-s1b-b8k (ωA) and
datacomp-l-s1b-b8k (ωB) (Gadre et al., 2024).

Tab. 2 presents the evaluation for the GLUE benchmark.
Unexpectedly, simply applying the classification head from
the original feature extractor ϱA yields poor performance
(see first line of Tab. 2, ωB). On the other hand, transporting
εω with Git Re-Basin and Optimal Transport performs rea-
sonably, with good gains on QQP and SST2. Moreover, our
approach leads to the highest and more consistent perfor-
mance gains, highlighting the potential of our framework.

4.2. TransFusion Improves Alignment and Preserves
Functional Equivalence

While the previous analyses focus on transferring task vec-
tors, we now delve into the effectiveness of our approach
in terms of weight alignment. In detail, we consider two
ViT-B/16 models (Dosovitskiy et al., 2021) A and B trained

7

Update Your Transformer to the Latest Release: Re-Basin of Task Vectors

Table 1: Comparison of permutation-based methods on visual tasks, in terms of task accuracy [→] and support accuracy [→].

Method EUROSAT DTD GTSRB SVHN
TASK SUPP. TASK SUPP. TASK SUPP. TASK SUPP.

ωB zero-shot 49.02 68.73 47.50 68.73 43.42 68.73 45.97 68.73
ωB + ε -7.62 -16.15 -0.15 -0.10 -5.39 -0.70 -22.00 -16.45
ωB + ϑ(ε) (Optimal Transport) -14.05 -5.28 -0.53 -1.18 -2.43 -1.30 -12.30 -2.70
ωB + ϑ(ε) (GiT Re-Basin) +0.95 -0.48 -0.91 -0.02 +0.76 -0.05 +0.79 +0.30

TRANSFUSION (OURS) +4.95 -0.06 +0.21 -0.08 +1.10 -0.40 +3.64 -0.48

issue II) the projection W0 adds its own permutation PW0

of which the residual branch has no information about.

To maintain coherence between the two addends, they must
be transformed under identical permutations. To enforce
this consistency, we redefine the identity mapping made by
the residual connection. We replace it with a composition,
Ii = PW0P

→
in , consisting of two permutations — one to

address issue I and another for issue II — as follows:

zi = PW0zattn + IiPinx = PW0zattn + PW0x, (12)

which highlights how the two addends now share the same
permutation. An analogous process applies to the second
residual connection yielding zout (see Appendix A.3 for the
full procedure). As a final technical note, we remark that the
permutation matrix PW2 associated to the second residual
block in Eq. (10) has to be considered as input permutation
for the subsequent layer.

3.2. Transporting Task Vectors from ωA to ωB

By applying ε to model ωA, we would have a functionally
equivalent model ω↑

A
= ε(ωA) with stronger linear-mode

connectivity with ωB compared to the original ωA. How-
ever, to allow knowledge transfer from the fine-tuned model
ωft
A

= ωA + ϑ to ωB , we do not apply the permutations
directly on ωA, but rather on the task vector ϑ , as follows:

task vector : ϑ = ωft
A

↑ ωA, (13)

transport : ω̃ft
B

= ωB + ϖε(ϑ), (14)

where ϖ is a non-negative scaling factor (Wortsman et al.,
2022b) modulating the influence of ε(ϑ) on ωB .

By leveraging the concept of transporting task vectors, we
have several notable advantages, especially in a scenario
with multiple models fine-tuned on distinct tasks from the
same base model ωA. In this scenario, the weight matching
process between ωA and ωB needs to be conducted only
once. Indeed, a permutation set ε can be established and
reused to transfer any number of task vectors. This ap-
proach avoids the additional computational costs associated
with learning separate transport functions for each transfer.
Moreover, transporting multiple task vectors using the same

reference model ωA allows their combination at destina-
tion ωB , which basically means we could still apply model
merging (Wortsman et al., 2022a) after re-basin.

3.3. Complexity Analysis

In this subsection, we assess the computational complexity
of the proposed weight matching procedure. The key insight
is that the method is highly efficient compared to full re-
training, and scales polynomially with model size.

Proposition 3.2. Let L be the number of layers and dm the
embedding dimension of each transformer block. The over-
all computational complexity of our weight matching pro-
cedure is dominated by O(Ld3

m
). This complexity matches

that of Git Re-Basin, making our approach comparably
efficient in terms of computational cost.

The proof is provided in Appendix A.5 and illustrates the
per-layer contribution of both MLP and attention blocks.

4. Experiments
This section is structured into three main parts. Initially, we
empirically assess the transportation of task vectors, involv-
ing extensive experiments across both visual and natural
language processing (NLP) tasks (Sec. 4.1). Subsequently,
we examine the capability of our methodology to align the
weights of two Transformer models while maintaining func-
tional equivalence (Sec. 4.2). Finally, several ablative stud-
ies show the impact of our techniques on addressing multi-
head attention layers and residual connections (Sec. 4.3).

4.1. TransFusion of Task Vectors

Visual Classification Tasks. As reference architecture, we
consider the CLIP ViT-B/16 Vision Transformer (Radford
et al., 2021) from Open-CLIP (Cherti et al., 2023). We refer
to ωA as the original pre-training weights and ωB as those
used for the re-basin. We use CommonPool pre-training for
ωA and Datacomp for ωB , both cited in (Gadre et al., 2024).

Considering the base model ωA, we fine-tune the correspond-
ing model on several computer vision tasks (Radford et al.,
2021; Ilharco et al., 2023). We employ DTD (Cimpoi et al.,

6

=

Thus, preserving functional equivalence requires
applying consistent permutations across the network:

