Mosaic-SR: An Adaptive Multi-step Super-Resolution Method for Low-Resolution 2D Barcodes

ICIP 2025, ANCHORAGE

Enrico Vezzali, L. Vorabbi, C. Grana, F. Bolelli

2D Barcodes

- 2D barcodes store data both horizontally and vertically using patterns like squares or dots
- The widely known QR Code was invented in 1994 by Denso Wave in Japan
- The main advantage is **Higher Data Capacity** compared to linear barcodes

Aztec Code

QR Code

Datamatrix

Han Xin Code

2D Barcodes – Range Issues

- In many applications, it is necessary to read 2D barcodes from a distance
- For example, in component tracking in industrial pipelines, depending on the size of the objects
- In warehouses, where there could be parcels on very high shelves

2D Barcodes – Range Issues

- This often results in images with very low pixel density, making them difficult to read
- If the resolution is too low, the critical distinction between black and white modules is lost

Defining the Super-Resolution Task for 2D Barcodes

- We address the problem of $2 \times$ super-resolution,
- Each pixel I(x,y) in a low-resolution image I corresponds to a 2×2 -block in the high-resolution image I_{HD} .

We seek a function f_{θ} that, given a local patch around I(x,y), of size $k \times k$, approximates the corresponding 2×2 block in I_{HD}

$$f_{\theta}: \mathbb{R}^{k \times k} \to \mathbb{R}^{2 \times 2}$$

We define f_{θ} as space-invariant

Defining the Super-Resolution Task for 2D Barcodes

- We address the problem of $2 \times$ super-resolution,
- Each pixel I(x,y) in a low-resolution image I corresponds to a 2×2 -block in the high-resolution image I_{HD} .

We seek a function f_{θ} that, given a local patch around I(x,y), of size $k \times k$, best approximates the corresponding 2×2 block in I_{HD}

$$f_{\boldsymbol{\theta}}: \mathbb{R}^{k \times k} \to \mathbb{R}^{2 \times 2}$$

We define f_{θ} as space-invariant

- Not all areas of the image are equally difficult to upscale
- Upscaling background or uniform areas is straightforward
- Upscaling **sharp edges and intricate corners** critical for barcode readability is the most challenging part
- It would be great to limit the number of computations in the areas that do not require it

- Not all areas of the image are equally difficult to upscale
- Upscaling background or uniform areas is straightforward
- Upscaling **sharp edges and intricate corners** critical for barcode readability is the most challenging part
- It would be great to limit the number of computations in the areas that do not require it

- Not all areas of the image are equally difficult to upscale
- Upscaling background or uniform areas is straightforward
- Upscaling **sharp edges and intricate corners** critical for barcode readability is the most challenging part
- It would be great to limit the number of computations in the areas that do not require it

- The idea of Mosaic-SR is to upscale the image iteratively
- At each step, just the areas that need further refinement are processed

A fast-to-compute function f_1 is used to upscale all patches

Datalogic PUBLIC

Copyright Datalogic 2025 - Confidential Proprietary Information

- The idea of Mosaic-SR is to upscale the image iteratively
- At each step, just the areas that need further refinement are processed

A fast-to-compute function f_1 is used to upscale all patches

The areas that need further improvements are enhanced with function f_2

- The idea of Mosaic-SR is to upscale the image iteratively
- At each step, just the areas that need further refinement are processed

compute function f_1 is upscale all patches

The areas that need further improvements are enhanced with function f_2

The areas that need further improvements are enhanced with function f_3

- The idea of Mosaic-SR is to upscale the image iteratively
- At each step, just the areas that need further refinement are processed

Mosaic-SR Architecture

- Function f_i is performed by the neural network M_i , i=1,...n
- We want M_i to be faster than M_{i+1}
- Each function takes as input $X_{in}[i]$ and an internal result (L) from the previous network

Mosaic-SR Architecture – Detailed

Mosaic-SR Architecture – Detailed

Mosaic-SR Architecture – Detailed

Predicting the distribution of a Random Variable

- **Super-Resolution is Ill-Posed**: A single low-resolution (LR) patch can correspond to multiple high-resolution (HR) outputs. A deterministic prediction isn't enough.
- **Probabilistic Solution**: We model the output as a probability distribution. We assume the prediction error follows a Gaussian distribution: $\mathcal{N}(0, \sigma^2)$
- Our Goal : For each input patch, the network must predict two things:
 - 1. The Mean (\hat{y}) : The super-resolved pixel values.
 - 2. The Variance (σ^2): An "uncertainty value" to decide if the prediction needs more refinement.

Likelihood Maximization: Assuming Gaussian Errors

By maximizing the log-likelihood of our Gaussian assumption, we get the following cost function, for each input pixel:

$$C_i(\theta) = \frac{\|d_i - \widehat{y}_i\|_2^2}{\widehat{\sigma}_i^2} + 4 \ln \widehat{\sigma}_i^2$$

Resulting in the following loss function to train the models:

$$\mathcal{L}(\theta) = \sum_{i=0}^{N} C_i(\theta) = \sum_{i=0}^{N} \frac{\|d_i - \hat{y}_i\|_2^2}{\hat{\sigma}_i^2} + 4 \ln \hat{\sigma}_i^2$$

Finally, a linear combination of this proposed loss and MSE loss makes the training more stable

Copyright Datalogic 2025 - Confidential Proprietary Information

Datalogic PUBLIC

Mosaic SR: Training Strategy

Initial Training

Training all n network modules $(M_1, M_2, ... M_n)$ simultaneously from scratch can be problematic due to **competing gradients**, potentially leading to instability

The architecture is trained one model M_k at a time, with the others frozen

Mosaic SR: Training Strategy

Initial Training

Training all n network modules $(M_1, M_2, ... M_n)$ simultaneously from scratch can be problematic due to **competing gradients**, potentially leading to instability

The architecture is trained one model M_k at a time, with the others frozen

Mosaic SR: Training Strategy

Initial Training

Training all n network modules $(M_1, M_2, ... M_n)$ simultaneously from scratch can be problematic due to **competing gradients**, potentially leading to instability

The architecture is trained one model M_k at a time, with the others frozen

BarBeR Dataset

- For training we used the public dataset BarBeR, containing 8,748 barcode images (1,756 2D barcodes), captured under various conditions, such as varying lighting, noise, and obstructions
- The dataset is now publicly available
- Includes 3 types of 2D barcodes: QR Codes, Datamatrix and Aztec Codes

BarBeR Dataset

- From the dataset, we selected only 2D barcode crops with a minimum density of 3.2 PPM, producing 1,366 valid crops.
- Each crop was resized via bicubic interpolation to yield 7 low-resolution (LR) variants (1.0 PPM to 1.6 PPM, with a step of 0.1 PPM) and 7 corresponding high-resolution (HR) versions at double each LR density (2.0 PPM to 3.2 PPM)
- This process generated 9,562 LR/HR pairs
- All images are 128×128 pixels and converted to grayscale

Tested Architecture

For our tests we used an architecture with **three** distinct upscaling network modules: **M1,M2**, and **M3**

Module Specifications:

 M_1 : 3 layers, 1,154 parameters

 M_2 : 4 layers, 3,778 parameters

 M_3 : 4 layers, 14,274 parameters

All modules have an input size of 7x7

Visual Results – BarBeR

- Example of a crop of a 1.3 PPM QR Code
- MosaicSR allows for correct classification between white and black modules in challenging images like this one

Decoding Rate VS PPM

Mosaic-SR reaches 60% Decoding rate at 1.4 PPM

THANK YOU

LikedIn Contact

Mosaic-SR GitHub

Mail: enrico.vezzali3@gmail.com

