Mosaic-SR: An Adaptive Multi-step Super-Resolution
Method for Low-Resolution 2D Barcodes
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2D Barcodes

* 2D barcodes store data both horizontally and vertically using patterns like squares or dots

* The widely known QR Code was invented in 1994 by Denso Wave in Japan

* The main advantage is Higher Data Capacity compared to linear barcodes
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2D Barcodes - Range Issues

* In many applications, it is necessary to read 2D barcodes
from a distance

* For example, in component tracking in industrial pipelines,
depending on the size of the objects

* In warehouses, where there could be parcels on very high
shelves
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2D Barcodes — Range Issues

* This often results in images with very low pixel
density, making them difficult to read

e |f the resolution is too low, the critical distinction
between black and white modules is lost
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Defining the Super-Resolution Task for 2D Barcodes

* We address the problem of 2 X super-resolution,

* Each pixel I(x,y) in a low-resolution image I corresponds to a 2 X 2-block in the high-
resolution image Iyp.

We seek a function fy that, given a
local patch around I(x, v), of size
k X k, approximates the
corresponding 2 x 2 block in Iy
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We define fy as space-invariant
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Defining the Super-Resolution Task for 2D Barcodes

* We address the problem of 2 X super-resolution,

* Each pixel I(x,y) in a low-resolution image I corresponds to a 2 X 2-block in the high-
resolution image Iyp.

We seek a function fy that, given a
local patch around I(x, v), of size
k X k, best approximates the
corresponding 2 x 2 block in Iyp
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Our Proposal — Mosaic-SR Intuition

* Not all areas of the image are equally difficult to upscale

* Upscaling background or uniform areas is straightforward

e Upscaling sharp edges and intricate corners — critical for barcode readability — is the most challenging part
* |t would be great to limit the number of computations in the areas that do not require it

Easy !
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Our Proposal — Mosaic-SR Intuition

* Not all areas of the image are equally difficult to upscale

* Upscaling background or uniform areas is straightforward
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Our Proposal — Mosaic-SR Intuition

* The idea of Mosaic-SR is to upscale the image iteratively
* At each step, just the areas that need further refinement are processed

A fast-to-compute function f; is
used to upscale all patches
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Our Proposal — Mosaic-SR Intuition

* The idea of Mosaic-SR is to upscale the image iteratively
* At each step, just the areas that need further refinement are processed

The areas that need further
improvements are enhanced with
function f,

A fast-to-compute function f; is
used to upscale all patches
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Mosaic-SR Architecture

Xinli]
* Function f; is performed by the
neural network M;,i =1,..n e v I a v I 2 v I
M, M, M,
* We want M;to be faster than
Ml+1 [N}
] —
e Each function takes as input " 2
X;n[i] and an internal result (L) N
from the previous network %Q
K fl(xin[i]) / KfZ(Xin[i]'Ll)/ Kfn(xin[i]'l‘n_lj/
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Mosaic-SR Architecture — Detailed

Input Patch (X, [i])
Xin[i]

M,

(- a

" Dense Laye * At each step j, a prediction y,[i] is generated, an approximation of the i-th
row of Y,,,¢, corresponding to 4-pixels
* Plus an uncertainty value o2,[i]. We confront it with a threshold Th,

* CASE 1: ¢%,[i] £ Th; = The approximation is good enough, we stop here
* CASE 2: ¢%,[i] > Th; = The uncertainty is too high! We need to refine our

estimate further
Last Dense

Layer

Predicted Uncertainty
Pixels Value
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Mosaic-SR Architecture — Detailed

Input Patch (X, [i])

— 9 0 0
—
[

Last Dense

Last Dense
Layer

Layer

Predicted Uncertainty Predicted Uncertainty If 02,[i] is lower than the threshold Th, we stop.
Pixels Value Pixels Value Otherwise, we continue with the next steps
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Mosaic-SR Architecture — Detailed

Input Patch (X, [i])

Last Dense
Layer

Predicted Uncertainty
Pixels Value

Predicted

1° Dense Layer

2° Dense Layer

Last Dense
Layer

Uncertainty

Pixels Value

1° Dense Layer

2° Dense Layer

Dense Layer

Predicted
Pixels
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Predicting the distribution of a Random Variable

e Super-Resolution is lll-Posed: A single low-resolution (LR)
patch can correspond to multiple high-resolution (HR)
outputs. A deterministic prediction isn't enough.

* Probabilistic Solution: We model the output as a probability - :
distribution. We assume the prediction error follows a - - i
Gaussian distribution: M°(0, 0%) € - @
e Y, o
« Our Goal @ : For each input patch, the network must predict . . - ’
two things: ‘
1. The Mean (y): The super-resolved pixel values. \ L Y ”’
2. The Variance (62): An "uncertainty value" to decide if \ ’

the prediction needs more refinement.
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Likelihood Maximization: Assuming Gaussian Errors

By maximizing the log-likelihood of our Gaussian assumption, we get the following
cost function, for each input pixel:

Id; = 3ill3
~ 2

o]

C;(0) = + 41ng;°

Resulting in the following loss function to train the models:

- = lld; — 5112
L(@):ZQ(@):Z L2 4 41n 6
i=0 im0 Ui

Finally, a linear combination of this proposed loss and MSE loss makes the training
more stable
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Mosaic SR: Training Strategy

Xin[i]

Inlt-la-l Training ~ 1 ~ -~ T N - i o\
Training all n network modules M V] * M *
(M{,M,,..M,)) simultaneously from 1 2 n

scratch can be problematic due to
competing gradients, potentially leading L, L

to instability T |7'>
Ln

The architecture is trained one model
M;, at a time, with the others frozen

\ AG0D ) (L) ) \JnXinlil,Ly, _ 3
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Mosaic SR: Training Strategy

Xin[i]

Inlt-la-l Training ~ 1 ~ -~ T N - i >
Training all n network modules M * V] * M
(M{,M,,..M,)) simultaneously from 1 2

scratch can be problematic due to
competing gradients, potentially leading L, L

to instability T |7'>
Ln

The architecture is trained one model
M;, at a time, with the others frozen

\ AG0D ) (L) ) \JnXinlil,Ly, _ 3
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BarBeR Dataset

* For training we used the public dataset BarBeR, containing 8,748 barcode images (1,756 2D
barcodes), captured under various conditions, such as varying lighting, noise, and obstructions

* The dataset is now publicly available

* Includes 3 types of 2D barcodes: QR Codes, Datamatrix and Aztec Codes
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BarBeR Dataset

From the dataset, we selected only 2D barcode crops with a minimum density of 3.2 PPM, producing 1,366 valid crops.

* Each crop was resized via bicubic interpolation to yield 7 low-resolution (LR) variants (1.0 PPM to 1.6 PPM, with a step of 0.1 PPM) and 7
corresponding high-resolution (HR) versions at double each LR density (2.0 PPM to 3.2 PPM)

* This process generated 9,562 LR/HR pairs

 Allimages are 128x128 pixels and converted to grayscale

TR p A

1.4 PPM LD 2.8 PPM HD 1.1 PPM LD 2.2 PPM HD

T"Ii“"ﬂ
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Tested Architecture

Xioli]
For our tests we used an architecture
with three distinct upscaling network R N ™\ Ve ¥ ™\
modules: M1,M2, and M3 |\/|1 |\/|2 |\/|3
Module Specifications:
L, L

M: 3 layers, 1,154 parameters T I e ¢
M,: 4 layers, 3,778 parameters

M;: 4 layers, 14,274 parameters

All modules have an input size of 7x7

page 25 SOATALOGIC

Copyright Datalogic 2025 — Confidential Proprietary Information DatalogicPUBLIC R OWER YOUR Vision



Test Results - BarBeR Dataset

Time vs Num Decodings - Raspberry Pl 3B+
@ Ours @ AsConvSR RT4KSR ® ECBSR IMDN_RTC FSRCNN @ESPCN @eSR-MAX @eSR-TM @ eSR-TR

3900

3700 0.~
’ _.e-—" °
T 3500 L= ®
o Q. .-—""
© )
j'g 3300 o Higher
()]
.8 3100 Is Better
O
a 2900 ®

(o]
2700 )
2500
20 40 80 160 320 640
T Lower
Ime ms Is Better
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Test Results - BarBeR Dataset

Time vs Num Decodings - Raspberry Pl 3B+
@ Ours @ AsConvSR RT4KSR ® ECBSR IMDN_RTC FSRCNN @ESPCN @eSR-MAX @eSR-TM @ eSR-TR

Under 40ms

3900

3700 Py ()
0 o (c]
S 3500 © @
g O’ 24,16ms
s 3300 3396 Decodings 22% more decodings o Higher
§ 3100 In a bit less time Is Better
(® ]
A 2900 ®

(o)
2700 P 26,60ms
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2500
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Test Results - BarBeR Dataset

Time vs Num Decodings - Raspberry Pl 3B+
@ Ours @ AsConvSR RT4KSR ® ECBSR IMDN_RTC FSRCNN @ESPCN @eSR-MAX @eSR-TM @ eSR-TR

Under 80ms
3900 44,29ms
3700 3517 Decodings I o °
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Q
S 3300 e . , \ 62,83ms |
s A bit more decodings 3502 Decodings o Higher
§ 3100 In 30% less time Is Better
(® ]
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(o]
2700 °
2500
20 40 80 160 320 640
. Lower
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Test Results - BarBeR Dataset

Time vs Num Decodings - Raspberry Pl 3B+
@ Ours @ AsConvSR RT4KSR ® ECBSR IMDN_RTC FSRCNN @ESPCN @eSR-MAX @eSR-TM @ eSR-TR

3900 110,0ms 356,7ms
3714 Decodings \ 3695 Decodings

3700 Py o
0 o ©
S 3500 ° (o] : : :
O o Higher Decodings than the best competitor
8 3300 © At 3.5x the speed High
T o igher
-8 3100 Is Better
o
8 2900 ®
©
2700 Py
2500
20 40 80 160 320 640
. Lower
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Test Results - BarBeR Dataset

PSNR [dB] - Raspberry PI

@ Ours @ AsConvSR RTAKSR @ ECBSR IMDN_RTC FSRCNN @ESPCN @eSR-MAX @eSR-TM @ eSR-TR
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Visual Results — BarBeR

Low Definition

 Example of a crop of a 1.3 PPM QR Code
* MosaicSR allows for correct classification between white and black modules in challenging images like this one

O

Ours — High Setting

HD Target
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Decoding Rate VS PPM

70
= == No Upscale
601 == Bicubic
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Mosaic-SR reaches 60%

Decoding Rate VS PPM Decoding rate at 1.4 PPM
70 -
= == No Upscale = _
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'U T mm—— 2 2 o‘ /
S 30 Ours (0.13%, 0.13%) 4' // /7 Bicubic upscaling reaches 60%
8 20 4 ==+=  Qurs (0.25%, 0.25?) (o’ // /// Decoding rate at 1.6 PPM
7’
This is a range extension of 14,2%
Compared to bicubic upscaling
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THANK YOU

LikedIin Contact Mosaic-SR GitHub

Mail: enrico.vezzali3@gmail.com
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