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ABSTRACT

QR and Datamatrix codes are widely used in warehouse lo-
gistics and high-speed production pipelines. Still, distant or
small barcodes often yield low-pixel-density images that are
hard to read. Conventional solutions rely on costly hardware
or enhanced lighting, raising expenses and potentially reduc-
ing depth of field. We propose Mosaic-SR, a multi-step, adap-
tive super-resolution (SR) method that devotes more compu-
tation to barcode regions than uniform backgrounds. For each
patch, it predicts an uncertainty value to decide how many
refinement steps are required. Our experiments show that
Mosaic-SR surpasses state-of-the-art SR models on 2D bar-
code images, achieving higher PSNR and decoding rates in
less time. All code and trained models are publicly available
athttps://github.com/Henvezz95/mosaic—-sr
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1. INTRODUCTION

Two-dimensional barcodes, such as QR codes and Data-
matrix, are increasingly employed in warehouse inventory
management systems [1]] and component tracking in produc-
tion lines [2]. In warehouses, workers often scan packages
stacked on high shelves to track incoming and outgoing
stock. Achieving a longer scanning range would save time
and reduce the effort of manually retrieving items for closer
scanning. In component tracking pipelines, parts rush along
conveyor belts, each labeled with barcodes to identify their
location and status in real-time. However, capturing a clear
barcode under high-speed movement or from a significant dis-
tance can be challenging, leading to low-resolution or blurred
images. Historically, improving such images relied on ad-
vanced camera hardware or stronger lighting, which raises
costs and reduces the depth of field (DoF). Super-resolution
(SR) provides a software-based alternative to enhance read-
ability. In warehouses, SR can extend the functional scanning
range. In pipelines, SR compensates for low-resolution sen-
sors, which have larger pixels that collect more light, allowing
shorter exposures and reducing motion blur. In many indus-
trial applications, speed remains paramount: not only do
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some setups run on embedded hardware but also many re-
quire tens or hundreds of scans per second to ensure timely
decoding. The advantages of 2D barcode SR would extend to
other usages in retail and mobile applications.

Related Work in 2D Barcode SR. Early barcode-focused SR
approaches include Kato et al. [3], who combined multiple
low-res QR images via a binary constraint prior. More re-
cently, Shindo [4] proposed a convolutional architecture (QR-
CNN/QRGAN) for QR code enhancement.

Related Work in Real-Time SR. A broader body of litera-
ture addresses real-time SR for general images. FSRCNN [15]]
has been the first architecture targeting real-time perfor-
mance, followed by ESPCN [6], which popularized the use of
pixel-shuffle layers. IMDN [7] utilized cascaded blocks with
an information distillation mechanism, while ECBSR [8]
utilized over-parameterization [9] to enhance learning capa-
bilities. Michelini and Lu [10], proposed three SR architec-
tures for hardware-constrained devices (eSR-MAX, eSR-TM,
eSR-TR). Finally, in 2023, RT4KSR [11] and AsConvSR [12]]
enabled real-time 4K upscaling. RT4KSR uses a separate ar-
chitectural branch for high-frequency enhancement alongside
over-parameterization during training. AsConvSR leverages
assembled convolutions which can adapt convolution kernels
according to the input features.

Our Contributions. Unlike most SR tasks, barcode images
are typically grayscale with high-frequency edges and cor-
ners, and weak correlations between nearby regions—posing
unique challenges to general-purpose SR models. We propose
Mosaic-SR, a multi-step, adaptive super-resolution frame-
work dedicated to 2D barcodes. It selectively devotes more
computational time to likely barcode regions than uniform
backgrounds, deciding how many refinement steps each patch
requires based on an uncertainty estimate. Mosaic-SR out-
performs existing SR methods on barcode images, yielding
higher PSNR and decoding rates in less time. We provide
all source code, and trained models, and rely on open-source
libraries to ensure reproducible results.

2. PROPOSED METHOD

Multi-Step Super-Resolution. We address the problem
of 2x super-resolution, where each pixel I(z,y) in a low-
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Fig. 1. Our proposed architecture for Multi-step super resolu-
tion. Each module is a fully-connected network that upscales
a patch and generates an uncertainty value on the prediction.

resolution image I corresponds to a 2 x 2-pixel block in the
high-resolution image Iyp. To formalize this, we seek a
function fy that, given a local patch around I(z,y), predicts
the corresponding 2 x 2 block NiB(z,v) in Iyp. Since
a single pixel I(z,y) alone provides insufficient informa-
tion to reconstruct NiID(z, ), we instead provide fp with
Nixi(x,y), ak x k patch centered at (x,y). For simplicity,
we assume k is odd so that I(x,y) lies at the center. This
larger local context helps recover edges, corners, and other
high-frequency details lost in the low-resolution input.

Low-resolution 2D barcodes (e.g., QR, Datamatrix) are
demanding for SR due to sharp edges and corners, where
small positional shifts can cause large intensity changes.
Meanwhile, uniform backgrounds (e.g., paper) are simpler.
We thus develop a multi-step architecture that concentrates
more computation on complex, high-frequency areas while
reducing effort on uniform regions. To achieve this, we pro-
pose a multi-step architecture in which each step refines the
prediction of NI, (z,y) given the local patch Nyy (7, y).
Every step yields a usable output and an uncertainty estimate.
If that uncertainty is under a threshold, we stop; otherwise,
we proceed. By adapting the number of refinement steps to
local complexity, we ensure fidelity in key barcode regions
while optimizing for speed elsewhere.

In Fig. [I] we illustrate the overall design. For each pixel
I(x,y), we extract Ny« (z,y), flatten it into Xj, (z,y), and
feed this into a fully connected network M. This model gen-
erates three outputs: (i) ¥, a 4-element vector predicting the
intensities of the pixels in N2I2 (., 5); (ii) 02, a scalar uncer-
tainty estimate, used to decide whether to refine further; (iii)
L1, a latent representation from the penultimate layer of M.
If 02 < Thy, 3 is the final prediction for NiID(z, y). Oth-
erwise, we invoke the next model, M5>. Each subsequent net-
work M; is a fully connected network that refines the previous
prediction by taking as input X, (z,y), plus the previous la-
tent representation L;_;. Specifically, L;_; is concatenated
with the output of the first layer of M, rather than appending
it directly to Xj,. This setup enables the first layer to extract
new features from X;, more effectively and is usually faster
because it limits the size of the input of the first layer. For

n total steps, each intermediate M; (where ¢ < n) outputs
a prediction 9; of N}B (., y), an uncertainty value o2 and a
latent representation L;. Again, if O'i2 < Th;, we stop; other-
wise, we continue. The final model M,, outputs only a refined
prediction g,,. Thresholds {Thi,...,Th,_1} are set before
inference and affect image quality: higher thresholds yield
faster inference but lower overall quality, while lower thresh-
olds improve quality at the expense of more computation.

This architecture is loosely inspired by GrowNet [13], but
differs in three main ways: (i) each step outputs a standalone
prediction instead of combining intermediate results; (ii) each
step’s uncertainty estimate o indicates when to stop; and (iii)
latent representations are concatenated after the first layer, not
directly with Xj,.

Variance Prediction. So far, we have focused on predicting
NID(z,y) from Npxp(z,y). Next, we want to estimate
the probability distribution of the prediction error and use
it as a stopping criterion. Assuming a Gaussian error with
zero mean, fully characterizing this distribution amounts to
predicting its variance o2. In our proposed setup, each net-
work M; receives an input vector X;, (the flattened patch)
and outputs §; and o2 (X;,). Here, §; is the predicted mean
of the output distribution (i.e., the super-resolved intensi-
ties), and af (Xin) is the estimated error variance conditioned
on Xj,. Following the analysis of Nix and Weigend [14],
M; can be viewed as a maximum-likelihood estimator for
P(g; + e | Xin), where e is the prediction error. If e is
normally distributed with mean zero, minimizing its negative
log-likelihood reduces to optimizing the cost C', defined as:

_ (2)1 B ytrue)2
O o Uz(Xin)

K2

+ ln(Uf(Xin)), (1)

where e 18 the ground truth vector obtained by flattening
NID (x,y). Using C alone can cause large initial variances
to dominate training, hindering the ability to learn. Nix and
Weigend [14] address this by training the mean first (via MSE
loss) and fine-tuning with C'. We instead propose doing both
simultaneously via a combined loss:

L; = ((gi_ytrue)Q + OéC), 2

where o is a small scalar. If & < 1, the network is initially
driven to minimize (%; — Ytrue ), ensuring good mean predic-
tions before shifting emphasis toward variance estimation.

Training Strategy. During training, each patch is processed
by all n steps (i.e., M1, Ms, ..., M,). Notably, each model
M; can be reinterpreted as a convolutional network (CNN;),
where the first layer corresponds to an k x k kernel and sub-
sequent layers to 1 x 1 convolutions. The weights will be the
same but reshaped. This reshaping facilitates efficient GPU-
based training. The overall training loss, for each patch, is as
follows:

ACtotal = Z‘Cia (3)
=1
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Fig. 2. Over-parameterization strategies during training: (a)
ExpandNets, (b) Our Proposal. In (c) we see how architec-
tures (a) and (b) are converted in the inference model.

where £; is the combined loss, Eq. @) for network M;. Fi-
nally, we take the mean of each patch loss. However, optimiz-
ing all M; jointly can lead to conflicting gradients. Instead,
we adopt a sequential approach:

1. Train M, alone, learning g; and a% until convergence;

2. Freeze M and train M5 to refine predictions from Xj,
and Lq;

3. Repeat for Ms, ...
models;

, M, each time freezing previous

4. Finally, unfreeze all weights and train the architecture
end-to-end.

This procedure prevents instability from competing updates,
yet allows the entire network to benefit from end-to-end fine-
tuning at the last stage.

Model Over-Parameterization. To improve training stabil-
ity and performance, we employ model over-parameterization,
as proposed in recent works [9} [15} [16]. This technique trains
networks with additional linear layers (stacked or parallel),
which collapse into a single equivalent layer at inference
time. It ensures faster, more stable training while maintaining
a compact model for deployment, a strategy widely adopted
in real-time super-resolution [8} [11}[17]. In each network M,
we first targeted the large k x k kernel that extracts crucial in-
formation from the input patch. Inspired by ExpandNets [16]],
we replaced a single k£ x k layer with a cascade of % layers
with 3 x 3 kernels. We then modified the ExpandNets ap-
proach by adding a parallel k£ x k branch to the 3 x 3 cascade
for better feature extraction, as shown in Fig. m Based on
positive results with kernel expansion, we also applied the ex-
panding convolutional layer strategy from ExpandNets [[16]]
to all remaining layers. Each 1 x 1 layer was replaced by
three consecutive layers with kernel 1 x 1 and an expansion
factor of 2. This further stabilizes training and improves per-
formance, yet still collapses to a single layer for inference.

Inference. After training, we apply two structural re-
parameterization steps. First, the over-parameterized linear
blocks become single convolutional layers. Next, the re-
sulting CNNs are converted to fully connected models, as
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Fig. 3. Super resolution pipeline at inference time.

inference operates on flattened patches. Fig. [3 illustrates
our inference pipeline: we transform the input image into a
batch of flattened patches via an optimized im2co1l function,
process them with {Mj,..., M, }, and then use a col2im
function to reassemble the final upscaled image. During in-
ference, the pre-defined thresholds {Thy,...,Th,_1} guide
selective refinement: all patches go to M7, and for each patch,
if O'Z-Q > Thy, it proceeds to M; 1 for further enhancement.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

Dataset. In our tests, we used the publicly available BaIBeRIH
dataset [[18, [19} [20], which contains 8 748 barcode images,
including 1756 2D barcodes. From these, we selected only
QR, Datamatrix, and Aztec crops with a minimum density of
3.2 PPM, producing 1 366 valid crops. Each crop was resized
via bicubic interpolation to yield seven low-resolution (LR)
variants (1.0 PPM to 1.6 PPM, with a step of 0.1 PPM) and
seven corresponding high-resolution (HR) versions at double
each LR density (2.0 PPM to 3.2 PPM). This process gen-
erated 9562 LR/HR pairs. All images are 128x 128 pixels,
converted to grayscale, and contrast stretched to [0,1]. When
we decrease the pixel density, the background proportion in-
creases accordingly. We performed 4-fold cross-validation to
ensure a higher reliability of the results.

Hardware Setup. The primary goal of our method is to run
efficiently on CPUs, aligning with real-world barcode appli-
cations. To evaluate performance, we benchmarked on two
contrasting systems: a high-end PC (AMD Ryzen Threadrip-
per Pro 5965WX) and a Raspberry Pi 3B+ (1.4 GHz quad-
core ARM CPU).

Code Implementation. All training and testing routines are
written in Python. During tests, each model is converted to
TensorFlow Lite for optimization. To speed up the image
conversion to patches, we implemented a SIMD-optimized
im2col kernel in C++, reducing runtime to a mean of 75us
on the PC. Then, we integrated it using a Ctypes interface.
Additional preprocessing steps were accelerated with Numba,
ensuring an efficient overall pipeline.

3.2. Comparison with State-of-the-arts

Model Parameters. We train three upscaling networks
{My, M3, M5} with a7 x 7 input patch. M has 3 layers and
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Table 1. PSNR, SSIM, and decoded barcode count for base-
line models compared to our method, with processing times

on PC and Raspberry Pi.
PSNR #Deco- Time  Time Rasp-
Method @B, 1) ™MD ginog (1) PC (ms, 1) berry (ms, |)
Bicubic (openCV) 15.35 0.705 2336 0.046 1.13
eSR-MAX K5C8 [10] 15.62 0.772 2657  0.887 26.60
Ours (0.25%,0.25%) 15.77 0.782 3330 0.883 23.29
ECBSR MA4CS [8] 15.81 0.788 3502 2.195 62.83
RT4KSR XXS [T1] 1564 0.775 2900  2.182 55.73
RT4KSR S [11] 15.64 0.776 2901 3.413 86.70
Ours (0.132,0.13%) 15.83 0.785 3517 1.688 44.29
AsConvSR [12] 15.59 0.772 2815  8.778 200.2
ESPCN [6] 15.84 0.784 3596  7.121 198.2
eSR-TM K7C16 [10] 15.65 0.777 2940  9.458 238.7
eSR-TR K7C16 [10] 15.74 0.781 3208  9.938 318.6
FSRCNN [5] 15.85 0.787 3602 13.45 442.9
IMDN RTC [7] 15.83 0.790 3695 10.97 356.6
RT4KSR XL [11] 15.64 0.776 2893  6.586 178.9
QRCNN [4] 15.77 0.780 3488 172.1 3162
Ours (0.05%,0.07%) 15.90 0.788 3714 4.221 109.9

1154 parameters, M> has 4 layers and 3 778 parameters, and
M3 has 4 layers and 14 274 parameters. We use Leaky ReLU
(av = 0.1) for each hidden layer, while the output layer uses
a sigmoid activation. Each network is trained for 100 epochs
(batch size of 16, Adam optimizer, learning rate 1 x 1079),
halving the learning rate whenever the training loss stagnates
for 15 epochs. Then, we unfreeze all weights and train further
with a learning rate of 1 x 10~%, again halving under the same
stagnation condition until it falls below 1 x 1076,

Reference Models. We compare our model against repre-
sentative state-of-the-art models in real-time super-resolution:
AsConvSR [12]], RT4KSR (XXS, S, XL) [L1], eSR-MAX
(k =5,c=28),eSR-TM (k = 7, ¢ = 16), eSR-TR (k =
7, ¢ = 16) [10], ECBSR (M = 4, C = 8) [8], IMDN
RTC [[7], ESPCN [6] and FSRCNN [5]. We also included QR-
CNN [4], specifically proposed for QR code SR. All models
were trained on the BarBeR dataset following original strate-
gies but using a single input channel.

Comparison Results. We measure the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), and the
number of successfully decoded barcodes by pyzbar, a Python
wrapper of zbar. For each image, the detection is run five
times and the lowest timing value is taken. This is done to
remove the effect of external factors. All measures are taken
using a single thread. PSNR and SSIM are calculated only
on the pixels of the 2D barcodes since this is the main fo-
cus.  Fig.[d shows that, for a given mean processing time,
our method decodes more barcodes than any other approach
when appropriate thresholds are selected. We tested multiple
combinations of thresholds T'h; and T ho, selecting values be-
tween 0 and 0.252 under the condition Th; < Thy. Thresh-
olds are expressed as squares to better represent them in terms
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Fig. 4. Number of decoded barcodes by different types of
upscaling methods. The x-axis shows the computational time
on the test PC.

s RS BT WO

GT Ours (0.252, 0.252) Ours (0.132,0.13%) Ours (0.052, 0.072)

Fig. 5. Comparison of different upscaling methods on a crop
of a 1.3PPM QR Code. The numbers in parenthesis indicate
the values of Thy and T'hs.

of standard deviation. In Tab. [T} we group baselines by their
processing times on a PC: (i) below 1 ms, (ii) between 1 ms
and 4 ms, and (iii) above 4 ms. We select appropriate thresh-
olds (T'hy and T hs) for our method to satisfy each time con-
straint. Across all groups, our method is the fastest (on both
PC and Raspberry Pi), ensures the highest number of decod-
ings, and achieves the highest PSNR. For instance, we decode
42.5 % more than the nearest competitor with slightly lower
latency. In the mid-speed group, it matches the top decoding
rate (ECBSR) but uses only 76.9 % of the time on PC and
70.5 % on Raspberry Pi. In the slowest group, it exceeds the
best competitor IMDN RTC) by a small margin in decoding,
finishing in 38.5 % of the time on PC and 30.8 % of the time
on Raspberry Pi. Our consistently high PSNR reflects how
devoting extra computation to challenging regions effectively
reduces outliers. Conversely, our method is not the highest
scoring in terms of SSIM. We believe this is due to our loss
function and the interleaving of outputs from different mod-
els, which may reduce smoothness but does not seem to hurt
decoding accuracy (Tab. [T). Fig.[5] compares visual results,
while Fig. [6] shows decoding rates across various pixels-per-
module (PPM) values. We compare our method using the
previously selected thresholds against the next-best method



Table 2. Results in terms of PSNR, SSIM and number of
decodings of the models M;, My and M3 with and without
applying over-parameterization (op) during training.

Upscaled output PSNR (dB, 1) SSIM (1) # Decodings (1)
M, - wth op 15.77 0.782 3330
M; -w/oop 15.68 0.777 3212
M - wth op 15.85 0.786 3511
My - w/o op 15.78 0.782 3360
M3 - wth op 15.91 0.788 3689
M; -w/o op 15.85 0.786 3587

for each time group. For reference, we also include bicubic
upscaling. Without upscaling, none of the LR patches are de-
coded, showing the necessity of super-resolution for this task.

Efficacy of Variance Prediction. We evaluated whether the
model accurately predicts error variance at each step by ex-
tracting 2.24 x 107 patches from the dataset. For each patch,
we calculated the actual error and compared it to the predicted
variance from M; and Ms. For each patch, we used models
that had never seen the patch during training. The predicted
standard deviation (square root of variance) was binned into
100 intervals between 0 and 0.25, and the root mean squared
error of the patches in each bin was recorded. Ideally, these
values should match the bin’s central predicted standard devi-
ation if the model is well-calibrated. As shown in Fig.|/} the
empirical curve closely follows the ideal line up to 0.15. Be-
yond that, predictions diverge slightly but remain monotonic.
This is sufficient for our method to work since it still ranks
patches by error standard deviation.

3.3. Ablation Studies

Utility of Model Over-Parameterization. We trained three
models identical to {Mj, Ms, M3} but without over-para-
meterization during training. Tab. [2] shows that over-para-
meterization consistently improves PSNR and SSIM while
increasing the number of decoded barcodes for each M;.

Input Patch Size. The input patch size plays a crucial role:
larger patches provide more context but increase computa-
tional cost. In our experiments, 7 x 7 delivered the best results
in terms of speed and performance. Fig.[§]compares 5 x 5 and
9 x 9 against 7 x 7, using multiple thresholds. While 5 x 5
can be slightly faster under certain thresholds, it significantly
reduces image quality. Surprisingly, 9 x 9 is slower and less
accurate, likely due to additional context not translating into
useful features, which destabilizes training.

4. CONCLUSIONS

In this paper, we introduced Mosaic-SR, a multi-step, adap-
tive super-resolution algorithm tailored for 2D barcodes.
Mosaic-SR devotes more computational effort to patches
likely containing barcodes than to uniform backgrounds. It
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Fig. 8. Decodings vs time depending on the input patch size.

achieves this by estimating each patch’s error variance and re-
fining high-variance patches through additional steps. Since
barcodes feature numerous edges and corners, they exhibit
higher variance and benefit most from extra refinements. Our
experiments demonstrate that Mosaic-SR surpasses state-
of-the-art SR methods on barcode images, achieving higher
PSNR and decoding rates in less time. While our focus
was on 2D barcodes, Mosaic-SR’s principles could extend
to applications like enhancing text in scanned documents,
refining satellite and medical images, and highlighting small
manufacturing defects. These examples, which could involve
high-frequency regions and uniform backgrounds, align well
with Mosaic-SR’s adaptive strategy. Finally, we have open-
sourced our code and trained models, ensuring reproducibility
and paving the way for future research.
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