
MOSAIC-SR: AN ADAPTIVE MULTI-STEP SUPER-RESOLUTION
METHOD FOR LOW-RESOLUTION 2D BARCODES

Enrico Vezzali⋆,†, Lorenzo Vorabbi†, Costantino Grana⋆, Federico Bolelli⋆ B
⋆University of Modena and Reggio Emilia, Italy

†Datalogic, S.p.A, Bologna, Italy

ABSTRACT

QR and Datamatrix codes are widely used in warehouse lo-
gistics and high-speed production pipelines. Still, distant or
small barcodes often yield low-pixel-density images that are
hard to read. Conventional solutions rely on costly hardware
or enhanced lighting, raising expenses and potentially reduc-
ing depth of field. We propose Mosaic-SR, a multi-step, adap-
tive super-resolution (SR) method that devotes more compu-
tation to barcode regions than uniform backgrounds. For each
patch, it predicts an uncertainty value to decide how many
refinement steps are required. Our experiments show that
Mosaic-SR surpasses state-of-the-art SR models on 2D bar-
code images, achieving higher PSNR and decoding rates in
less time. All code and trained models are publicly available
at https://github.com/Henvezz95/mosaic-sr

Index Terms— Barcodes, QR Codes, Super Resolution

1. INTRODUCTION

Two-dimensional barcodes, such as QR codes and Data-
matrix, are increasingly employed in warehouse inventory
management systems [1] and component tracking in produc-
tion lines [2]. In warehouses, workers often scan packages
stacked on high shelves to track incoming and outgoing
stock. Achieving a longer scanning range would save time
and reduce the effort of manually retrieving items for closer
scanning. In component tracking pipelines, parts rush along
conveyor belts, each labeled with barcodes to identify their
location and status in real-time. However, capturing a clear
barcode under high-speed movement or from a significant dis-
tance can be challenging, leading to low-resolution or blurred
images. Historically, improving such images relied on ad-
vanced camera hardware or stronger lighting, which raises
costs and reduces the depth of field (DoF). Super-resolution
(SR) provides a software-based alternative to enhance read-
ability. In warehouses, SR can extend the functional scanning
range. In pipelines, SR compensates for low-resolution sen-
sors, which have larger pixels that collect more light, allowing
shorter exposures and reducing motion blur. In many indus-
trial applications, speed remains paramount: not only do

B Corresponding author: federico.bolelli@unimore.it

some setups run on embedded hardware but also many re-
quire tens or hundreds of scans per second to ensure timely
decoding. The advantages of 2D barcode SR would extend to
other usages in retail and mobile applications.
Related Work in 2D Barcode SR. Early barcode-focused SR
approaches include Kato et al. [3], who combined multiple
low-res QR images via a binary constraint prior. More re-
cently, Shindo [4] proposed a convolutional architecture (QR-
CNN/QRGAN) for QR code enhancement.
Related Work in Real-Time SR. A broader body of litera-
ture addresses real-time SR for general images. FSRCNN [5]
has been the first architecture targeting real-time perfor-
mance, followed by ESPCN [6], which popularized the use of
pixel-shuffle layers. IMDN [7] utilized cascaded blocks with
an information distillation mechanism, while ECBSR [8]
utilized over-parameterization [9] to enhance learning capa-
bilities. Michelini and Lu [10], proposed three SR architec-
tures for hardware-constrained devices (eSR-MAX, eSR-TM,
eSR-TR). Finally, in 2023, RT4KSR [11] and AsConvSR [12]
enabled real-time 4K upscaling. RT4KSR uses a separate ar-
chitectural branch for high-frequency enhancement alongside
over-parameterization during training. AsConvSR leverages
assembled convolutions which can adapt convolution kernels
according to the input features.
Our Contributions. Unlike most SR tasks, barcode images
are typically grayscale with high-frequency edges and cor-
ners, and weak correlations between nearby regions—posing
unique challenges to general-purpose SR models. We propose
Mosaic-SR, a multi-step, adaptive super-resolution frame-
work dedicated to 2D barcodes. It selectively devotes more
computational time to likely barcode regions than uniform
backgrounds, deciding how many refinement steps each patch
requires based on an uncertainty estimate. Mosaic-SR out-
performs existing SR methods on barcode images, yielding
higher PSNR and decoding rates in less time. We provide
all source code, and trained models, and rely on open-source
libraries to ensure reproducible results.

2. PROPOSED METHOD

Multi-Step Super-Resolution. We address the problem
of 2× super-resolution, where each pixel I(x, y) in a low-

https://github.com/Henvezz95/mosaic-sr


Datalogic PUBLIC

…

…

Xin

L1

L2
Ln

σ2
2σ2

1

M1 M2 Mn

�𝑦𝑦1 �𝑦𝑦2 �𝑦𝑦𝑛𝑛
Uncertainty 

Value
Predicted 

Pixels

Last Dense 
Layer 

2° Dense 
Layer 

Uncertainty 
Value

Predicted 
Pixels

Last Dense 
Layer 

Input Patch (Xin)

1° Dense 
Layer

1° Dense 
Layer

Last Dense 
Layer 

2° Dense 
Layer 

Predicted 
Pixels

…

…

1° Dense 
Layer

Fig. 1. Our proposed architecture for Multi-step super resolu-
tion. Each module is a fully-connected network that upscales
a patch and generates an uncertainty value on the prediction.

resolution image I corresponds to a 2 × 2-pixel block in the
high-resolution image IHD. To formalize this, we seek a
function fθ that, given a local patch around I(x, y), predicts
the corresponding 2 × 2 block NHD

2×2(x, y) in IHD. Since
a single pixel I(x, y) alone provides insufficient informa-
tion to reconstruct NHD

2×2(x, y), we instead provide fθ with
Nk×k(x, y), a k × k patch centered at (x, y). For simplicity,
we assume k is odd so that I(x, y) lies at the center. This
larger local context helps recover edges, corners, and other
high-frequency details lost in the low-resolution input.

Low-resolution 2D barcodes (e.g., QR, Datamatrix) are
demanding for SR due to sharp edges and corners, where
small positional shifts can cause large intensity changes.
Meanwhile, uniform backgrounds (e.g., paper) are simpler.
We thus develop a multi-step architecture that concentrates
more computation on complex, high-frequency areas while
reducing effort on uniform regions. To achieve this, we pro-
pose a multi-step architecture in which each step refines the
prediction of NHD

2×2(x, y) given the local patch Nk×k(x, y).
Every step yields a usable output and an uncertainty estimate.
If that uncertainty is under a threshold, we stop; otherwise,
we proceed. By adapting the number of refinement steps to
local complexity, we ensure fidelity in key barcode regions
while optimizing for speed elsewhere.

In Fig. 1, we illustrate the overall design. For each pixel
I(x, y), we extract Nk×k(x, y), flatten it into Xin(x, y), and
feed this into a fully connected network M1. This model gen-
erates three outputs: (i) ŷ1, a 4-element vector predicting the
intensities of the pixels in NHD

2×2(x, y); (ii) σ2
1 , a scalar uncer-

tainty estimate, used to decide whether to refine further; (iii)
L1, a latent representation from the penultimate layer of M1.
If σ2

1 < Th1, ŷ1 is the final prediction for NHD
2×2(x, y). Oth-

erwise, we invoke the next model, M2. Each subsequent net-
work Mi is a fully connected network that refines the previous
prediction by taking as input Xin(x, y), plus the previous la-
tent representation Li−1. Specifically, Li−1 is concatenated
with the output of the first layer of Mi rather than appending
it directly to Xin. This setup enables the first layer to extract
new features from Xin more effectively and is usually faster
because it limits the size of the input of the first layer. For

n total steps, each intermediate Mi (where i < n) outputs
a prediction ŷi of NHD

2×2(x, y), an uncertainty value σ2
i and a

latent representation Li. Again, if σ2
i < Thi, we stop; other-

wise, we continue. The final model Mn outputs only a refined
prediction ŷn. Thresholds {Th1, . . . , Thn−1} are set before
inference and affect image quality: higher thresholds yield
faster inference but lower overall quality, while lower thresh-
olds improve quality at the expense of more computation.

This architecture is loosely inspired by GrowNet [13], but
differs in three main ways: (i) each step outputs a standalone
prediction instead of combining intermediate results; (ii) each
step’s uncertainty estimate σ2

i indicates when to stop; and (iii)
latent representations are concatenated after the first layer, not
directly with Xin.

Variance Prediction. So far, we have focused on predicting
NHD

2×2(x, y) from Nk×k(x, y). Next, we want to estimate
the probability distribution of the prediction error and use
it as a stopping criterion. Assuming a Gaussian error with
zero mean, fully characterizing this distribution amounts to
predicting its variance σ2. In our proposed setup, each net-
work Mi receives an input vector Xin (the flattened patch)
and outputs ŷi and σ2

i (Xin). Here, ŷi is the predicted mean
of the output distribution (i.e., the super-resolved intensi-
ties), and σ2

i (Xin) is the estimated error variance conditioned
on Xin. Following the analysis of Nix and Weigend [14],
Mi can be viewed as a maximum-likelihood estimator for
P (ŷi + e | Xin), where e is the prediction error. If e is
normally distributed with mean zero, minimizing its negative
log-likelihood reduces to optimizing the cost C, defined as:

C =
(ŷi − ytrue)

2

σ2
i (Xin)

+ ln
(
σ2
i (Xin)

)
, (1)

where ytrue is the ground truth vector obtained by flattening
NHD

2×2(x, y). Using C alone can cause large initial variances
to dominate training, hindering the ability to learn. Nix and
Weigend [14] address this by training the mean first (via MSE
loss) and fine-tuning with C. We instead propose doing both
simultaneously via a combined loss:

Li = ((ŷi − ytrue)
2 + αC), (2)

where α is a small scalar. If α ≪ 1, the network is initially
driven to minimize (ŷi− ytrue)

2, ensuring good mean predic-
tions before shifting emphasis toward variance estimation.

Training Strategy. During training, each patch is processed
by all n steps (i.e., M1,M2, . . . ,Mn). Notably, each model
Mi can be reinterpreted as a convolutional network (CNNi),
where the first layer corresponds to an k × k kernel and sub-
sequent layers to 1× 1 convolutions. The weights will be the
same but reshaped. This reshaping facilitates efficient GPU-
based training. The overall training loss, for each patch, is as
follows:

Ltotal =

n∑
i=1

Li, (3)



Datalogic INTERNAL

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

… 𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

+

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

…

(a) ExpandNets

Datalogic INTERNAL

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

… 𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

+

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

…

(b) Ours

Datalogic INTERNAL

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

… 𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒌𝒌 × 𝒌𝒌

+

𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊 × 𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝟑𝟑 × 𝟑𝟑

𝑪𝑪𝑪𝑪𝒎𝒎𝒊𝒊𝒎𝒎 × 𝑪𝑪𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐 × 𝟑𝟑 × 𝟑𝟑

…

(c) Inference

Fig. 2. Over-parameterization strategies during training: (a)
ExpandNets, (b) Our Proposal. In (c) we see how architec-
tures (a) and (b) are converted in the inference model.

where Li is the combined loss, Eq. (2), for network Mi. Fi-
nally, we take the mean of each patch loss. However, optimiz-
ing all Mi jointly can lead to conflicting gradients. Instead,
we adopt a sequential approach:

1. Train M1 alone, learning ŷ1 and σ2
1 until convergence;

2. Freeze M1 and train M2 to refine predictions from Xin

and L1;
3. Repeat for M3, . . . ,Mn, each time freezing previous

models;
4. Finally, unfreeze all weights and train the architecture

end-to-end.

This procedure prevents instability from competing updates,
yet allows the entire network to benefit from end-to-end fine-
tuning at the last stage.

Model Over-Parameterization. To improve training stabil-
ity and performance, we employ model over-parameterization,
as proposed in recent works [9, 15, 16]. This technique trains
networks with additional linear layers (stacked or parallel),
which collapse into a single equivalent layer at inference
time. It ensures faster, more stable training while maintaining
a compact model for deployment, a strategy widely adopted
in real-time super-resolution [8, 11, 17]. In each network Mi,
we first targeted the large k×k kernel that extracts crucial in-
formation from the input patch. Inspired by ExpandNets [16],
we replaced a single k× k layer with a cascade of k−1

2 layers
with 3 × 3 kernels. We then modified the ExpandNets ap-
proach by adding a parallel k× k branch to the 3× 3 cascade
for better feature extraction, as shown in Fig. 2. Based on
positive results with kernel expansion, we also applied the ex-
panding convolutional layer strategy from ExpandNets [16]
to all remaining layers. Each 1 × 1 layer was replaced by
three consecutive layers with kernel 1 × 1 and an expansion
factor of 2. This further stabilizes training and improves per-
formance, yet still collapses to a single layer for inference.

Inference. After training, we apply two structural re-
parameterization steps. First, the over-parameterized linear
blocks become single convolutional layers. Next, the re-
sulting CNNs are converted to fully connected models, as

Datalogic PUBLIC

Im2ColImg LD Img UpCol2Im

Patch Upscale

For every patch

……

… …

Fig. 3. Super resolution pipeline at inference time.

inference operates on flattened patches. Fig. 3 illustrates
our inference pipeline: we transform the input image into a
batch of flattened patches via an optimized im2col function,
process them with {M1, . . . ,Mn}, and then use a col2im
function to reassemble the final upscaled image. During in-
ference, the pre-defined thresholds {Th1, . . . , Thn−1} guide
selective refinement: all patches go to M1, and for each patch,
if σ2

i ≥ Thi, it proceeds to Mi+1 for further enhancement.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

Dataset. In our tests, we used the publicly available BarBeR1

dataset [18, 19, 20], which contains 8 748 barcode images,
including 1 756 2D barcodes. From these, we selected only
QR, Datamatrix, and Aztec crops with a minimum density of
3.2PPM, producing 1 366 valid crops. Each crop was resized
via bicubic interpolation to yield seven low-resolution (LR)
variants (1.0PPM to 1.6PPM, with a step of 0.1PPM) and
seven corresponding high-resolution (HR) versions at double
each LR density (2.0PPM to 3.2PPM). This process gen-
erated 9 562 LR/HR pairs. All images are 128×128 pixels,
converted to grayscale, and contrast stretched to [0,1]. When
we decrease the pixel density, the background proportion in-
creases accordingly. We performed 4-fold cross-validation to
ensure a higher reliability of the results.
Hardware Setup. The primary goal of our method is to run
efficiently on CPUs, aligning with real-world barcode appli-
cations. To evaluate performance, we benchmarked on two
contrasting systems: a high-end PC (AMD Ryzen Threadrip-
per Pro 5965WX) and a Raspberry Pi 3B+ (1.4 GHz quad-
core ARM CPU).
Code Implementation. All training and testing routines are
written in Python. During tests, each model is converted to
TensorFlow Lite for optimization. To speed up the image
conversion to patches, we implemented a SIMD-optimized
im2col kernel in C++, reducing runtime to a mean of 75µs
on the PC. Then, we integrated it using a Ctypes interface.
Additional preprocessing steps were accelerated with Numba,
ensuring an efficient overall pipeline.

3.2. Comparison with State-of-the-arts

Model Parameters. We train three upscaling networks
{M1,M2,M3} with a 7× 7 input patch. M1 has 3 layers and

1https://ditto.ing.unimore.it/barber/

https://ditto.ing.unimore.it/barber/


Table 1. PSNR, SSIM, and decoded barcode count for base-
line models compared to our method, with processing times
on PC and Raspberry Pi.

Method PSNR
(dB, ↑) SSIM (↑) # Deco-

dings (↑)
Time

PC (ms, ↓)
Time Rasp-

berry (ms, ↓)

Bicubic (openCV) 15.35 0.705 2 336 0.046 1.13

eSR-MAX K5C8 [10] 15.62 0.772 2 657 0.887 26.60
Ours (0.252, 0.252) 15.77 0.782 3 330 0.883 23.29

ECBSR M4C8 [8] 15.81 0.788 3 502 2.195 62.83
RT4KSR XXS [11] 15.64 0.775 2 900 2.182 55.73
RT4KSR S [11] 15.64 0.776 2 901 3.413 86.70
Ours (0.132, 0.132) 15.83 0.785 3 517 1.688 44.29

AsConvSR [12] 15.59 0.772 2 815 8.778 200.2
ESPCN [6] 15.84 0.784 3 596 7.121 198.2
eSR-TM K7C16 [10] 15.65 0.777 2 940 9.458 238.7
eSR-TR K7C16 [10] 15.74 0.781 3 208 9.938 318.6
FSRCNN [5] 15.85 0.787 3 602 13.45 442.9
IMDN RTC [7] 15.83 0.790 3 695 10.97 356.6
RT4KSR XL [11] 15.64 0.776 2 893 6.586 178.9
QRCNN [4] 15.77 0.780 3 488 172.1 3 162
Ours (0.052, 0.072) 15.90 0.788 3 714 4.221 109.9

1 154 parameters, M2 has 4 layers and 3 778 parameters, and
M3 has 4 layers and 14 274 parameters. We use Leaky ReLU
(α = 0.1) for each hidden layer, while the output layer uses
a sigmoid activation. Each network is trained for 100 epochs
(batch size of 16, Adam optimizer, learning rate 1 × 10−3),
halving the learning rate whenever the training loss stagnates
for 15 epochs. Then, we unfreeze all weights and train further
with a learning rate of 1×10−4, again halving under the same
stagnation condition until it falls below 1× 10−6.

Reference Models. We compare our model against repre-
sentative state-of-the-art models in real-time super-resolution:
AsConvSR [12], RT4KSR (XXS, S, XL) [11], eSR-MAX
(k = 5, c = 8), eSR-TM (k = 7, c = 16), eSR-TR (k =
7, c = 16) [10], ECBSR (M = 4, C = 8) [8], IMDN
RTC [7], ESPCN [6] and FSRCNN [5]. We also included QR-
CNN [4], specifically proposed for QR code SR. All models
were trained on the BarBeR dataset following original strate-
gies but using a single input channel.

Comparison Results. We measure the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), and the
number of successfully decoded barcodes by pyzbar, a Python
wrapper of zbar. For each image, the detection is run five
times and the lowest timing value is taken. This is done to
remove the effect of external factors. All measures are taken
using a single thread. PSNR and SSIM are calculated only
on the pixels of the 2D barcodes since this is the main fo-
cus. Fig. 4 shows that, for a given mean processing time,
our method decodes more barcodes than any other approach
when appropriate thresholds are selected. We tested multiple
combinations of thresholds Th1 and Th2, selecting values be-
tween 0 and 0.252 under the condition Th1 ≤ Th2. Thresh-
olds are expressed as squares to better represent them in terms

2500

2700

2900

3100

3300

3500

3700

3900

0.8 1.6 3.2 6.4 12.8

D
ec

od
ed

 B
ar

co
de

s

Time ms

Ours AsConvSR RT4KSR ECBSR IMDN_RTC
FSRCNN ESPCN eSR-MAX eSR-TM eSR-TR

Fig. 4. Number of decoded barcodes by different types of
upscaling methods. The x-axis shows the computational time
on the test PC.

LD eSR-MAX ECBSR IMDN RTC

GT Ours (0.252, 0.252) Ours (0.132, 0.132) Ours (0.052, 0.072)

Fig. 5. Comparison of different upscaling methods on a crop
of a 1.3PPM QR Code. The numbers in parenthesis indicate
the values of Th1 and Th2.

of standard deviation. In Tab. 1, we group baselines by their
processing times on a PC: (i) below 1ms, (ii) between 1ms
and 4ms, and (iii) above 4ms. We select appropriate thresh-
olds (Th1 and Th2) for our method to satisfy each time con-
straint. Across all groups, our method is the fastest (on both
PC and Raspberry Pi), ensures the highest number of decod-
ings, and achieves the highest PSNR. For instance, we decode
42.5% more than the nearest competitor with slightly lower
latency. In the mid-speed group, it matches the top decoding
rate (ECBSR) but uses only 76.9% of the time on PC and
70.5% on Raspberry Pi. In the slowest group, it exceeds the
best competitor (IMDN RTC) by a small margin in decoding,
finishing in 38.5% of the time on PC and 30.8% of the time
on Raspberry Pi. Our consistently high PSNR reflects how
devoting extra computation to challenging regions effectively
reduces outliers. Conversely, our method is not the highest
scoring in terms of SSIM. We believe this is due to our loss
function and the interleaving of outputs from different mod-
els, which may reduce smoothness but does not seem to hurt
decoding accuracy (Tab. 1). Fig. 5 compares visual results,
while Fig. 6 shows decoding rates across various pixels-per-
module (PPM) values. We compare our method using the
previously selected thresholds against the next-best method



Table 2. Results in terms of PSNR, SSIM and number of
decodings of the models M1, M2 and M3 with and without
applying over-parameterization (op) during training.

Upscaled output PSNR (dB, ↑) SSIM (↑) # Decodings (↑)

M1 - wth op 15.77 0.782 3 330
M1 - w/o op 15.68 0.777 3 212

M2 - wth op 15.85 0.786 3 511
M2 - w/o op 15.78 0.782 3 360

M3 - wth op 15.91 0.788 3 689
M3 - w/o op 15.85 0.786 3 587

for each time group. For reference, we also include bicubic
upscaling. Without upscaling, none of the LR patches are de-
coded, showing the necessity of super-resolution for this task.

Efficacy of Variance Prediction. We evaluated whether the
model accurately predicts error variance at each step by ex-
tracting 2.24× 107 patches from the dataset. For each patch,
we calculated the actual error and compared it to the predicted
variance from M1 and M2. For each patch, we used models
that had never seen the patch during training. The predicted
standard deviation (square root of variance) was binned into
100 intervals between 0 and 0.25, and the root mean squared
error of the patches in each bin was recorded. Ideally, these
values should match the bin’s central predicted standard devi-
ation if the model is well-calibrated. As shown in Fig. 7, the
empirical curve closely follows the ideal line up to 0.15. Be-
yond that, predictions diverge slightly but remain monotonic.
This is sufficient for our method to work since it still ranks
patches by error standard deviation.

3.3. Ablation Studies

Utility of Model Over-Parameterization. We trained three
models identical to {M1,M2,M3} but without over-para-
meterization during training. Tab. 2 shows that over-para-
meterization consistently improves PSNR and SSIM while
increasing the number of decoded barcodes for each Mi.

Input Patch Size. The input patch size plays a crucial role:
larger patches provide more context but increase computa-
tional cost. In our experiments, 7×7 delivered the best results
in terms of speed and performance. Fig. 8 compares 5×5 and
9 × 9 against 7 × 7, using multiple thresholds. While 5 × 5
can be slightly faster under certain thresholds, it significantly
reduces image quality. Surprisingly, 9 × 9 is slower and less
accurate, likely due to additional context not translating into
useful features, which destabilizes training.

4. CONCLUSIONS

In this paper, we introduced Mosaic-SR, a multi-step, adap-
tive super-resolution algorithm tailored for 2D barcodes.
Mosaic-SR devotes more computational effort to patches
likely containing barcodes than to uniform backgrounds. It

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Pixels per module

0

10

20

30

40

50

60

70

D
ec

od
in

g 
R

at
e

Bicubic
eSR-MAX
ECBSR
IMDN RTC
Ours (0.052, 0.072)
Ours (0.132, 0.132)
Ours (0.252, 0.252)

Fig. 6. Decoding rate depending on the PPM.

0.00 0.05 0.10 0.15 0.20 0.25
Predicted Standard Deviation

0.00

0.05

0.10

0.15

0.20

0.25

R
oo

t 
M

ea
n 

Sq
ua

re
d 

E
rr

or

Ideal curve
M1
M2

Fig. 7. Change of the root mean squared error at the change
of predicted standard deviation.

2500

2700

2900

3100

3300

3500

3700

3900

0.8 1.6 3.2 6.4 12.8

D
ec

od
ed

 B
ar

co
de

s

Time ms

5x5 7x7 9x9

Fig. 8. Decodings vs time depending on the input patch size.

achieves this by estimating each patch’s error variance and re-
fining high-variance patches through additional steps. Since
barcodes feature numerous edges and corners, they exhibit
higher variance and benefit most from extra refinements. Our
experiments demonstrate that Mosaic-SR surpasses state-
of-the-art SR methods on barcode images, achieving higher
PSNR and decoding rates in less time. While our focus
was on 2D barcodes, Mosaic-SR’s principles could extend
to applications like enhancing text in scanned documents,
refining satellite and medical images, and highlighting small
manufacturing defects. These examples, which could involve
high-frequency regions and uniform backgrounds, align well
with Mosaic-SR’s adaptive strategy. Finally, we have open-
sourced our code and trained models, ensuring reproducibility
and paving the way for future research.

Acknowledgements. Funding from UNIMORE and Fond.
Mo. is received through the FAR 2024 (E93C24002080007).



5. REFERENCES

[1] Shayantani Kar, Shresth Bhimrajka, Aditya Kumar, and
Subhamita Mukherjee, “Mobile based Inventory Man-
agement System with QR code,” in 2022 IEEE Interna-
tional Conference on Electronics, Computing and Com-
munication Technologies, 2022.

[2] Fei Chen, Yuxi Luo, Nektarios Georgios Tsoutsos,
Michail Maniatakos, Khaled Shahin, and Nikhil Gupta,
“Embedding Tracking Codes in Additive Manufactured
Parts for Product Authentication,” Advanced Engineer-
ing Materials, vol. 21, no. 4, 2019.

[3] Yuji Kato, Daisuke Deguchi, Tomokazu Takahashi,
Ichiro Ide, and Hiroshi Murase, “Low Resolution QR-
Code Recognition by Applying Super-Resolution Using
the Property of QR-Codes,” in 2011 International Con-
ference on Document Analysis and Recognition, 2011.

[4] Takahiro Shindo, Taiju Watanabe, Remina Yano,
Marika Arimoto, Miho Takahashi, and Hiroshi Watan-
abe, “Super Resolution for QR Code Images,” in 2022
IEEE 11th Global Conference on Consumer Electronics
(GCCE), 2022.

[5] Chao Dong, Chen Change Loy, and Xiaoou Tang, “Ac-
celerating the Super-Resolution Convolutional Neural
Network,” in Computer Vision–ECCV 2016: 14th Eu-
ropean Conference, Amsterdam, The Netherlands, Oc-
tober 11-14, 2016, Proceedings, Part II 14, 2016.

[6] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes
Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert,
and Zehan Wang, “Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convo-
lutional Neural Network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016.

[7] Jin Wang, Yiming Wu, Shiming He, Pradip Kumar
Sharma, Xiaofeng Yu, Osama Alfarraj, and Amr Tolba,
“Lightweight Single Image Super-Resolution Convolu-
tion Neural Network in Portable Device,” KSII Trans-
actions on Internet and Information Systems (TIIS), vol.
15, no. 11, 2021.

[8] Xindong Zhang, Hui Zeng, and Lei Zhang, “Edge-
oriented Convolution Block for Real-time Super Reso-
lution on Mobile Devices,” in Proceedings of the 29th
ACM International Conference on Multimedia, 2021.

[9] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong
Han, Guiguang Ding, and Jian Sun, “RepVGG: Mak-
ing VGG-style ConvNets Great Again,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[10] Pablo Navarrete Michelini, Yunhua Lu, and Xingqun
Jiang, “edge-SR: Super-Resolution For The Masses,”
in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2022.

[11] Eduard Zamfir, Marcos V Conde, and Radu Timofte,
“Towards Real-Time 4K Image Super-Resolution,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

[12] Jiaming Guo, Xueyi Zou, Yuyi Chen, Yi Liu, Jia
Hao, Jianzhuang Liu, and Youliang Yan, “AsCon-
vSR: Fast and Lightweight Super-Resolution Network
with Assembled Convolutions,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[13] Sarkhan Badirli, Xuanqing Liu, Zhengming Xing,
Avradeep Bhowmik, Khoa Doan, and Sathiya S Keerthi,
“Gradient Boosting Neural Networks: GrowNet,” arXiv
preprint arXiv:2002.07971, 2020.

[14] David A Nix and Andreas S Weigend, “Estimating the
mean and variance of the target probability distribution,”
in Proceedings of 1994 IEEE International Conference
on Neural Networks (ICNN’94), 1994, vol. 1.

[15] Sanjeev Arora, Nadav Cohen, and Elad Hazan, “On the
Optimization of Deep Networks: Implicit Acceleration
by Overparameterization,” in International Conference
on Machine Learning, 2018.

[16] Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann,
“ExpandNets: Linear Over-parameterization to Train
Compact Convolutional Networks,” Advances in Neu-
ral Information Processing Systems, vol. 33, 2020.

[17] Liu Ding Du Zongcai, Liu Jie, Tang Jie, Wu Gangshan,
and Fu Lean, “Fast and Memory-Efficient Network To-
wards Efficient Image Super-Resolution,” in NTIRE
(CVPR Workshop), 2022.

[18] Enrico Vezzali, Federico Bolelli, Stefano Santi, and
Costantino Grana, “Barber: A barcode benchmark-
ing repository,” in International Conference on Pattern
Recognition. Springer, 2025, pp. 187–203.

[19] Enrico Vezzali, Federico Bolelli, Stefano Santi,
Costantino Grana, et al., “BarBeR-Barcode Bench-
mark Repository: Implementation and Reproducibil-
ity Notes,” in Proceedings of 5th International Work-
shop on Reproducible Research in Pattern Recognition,
RRPR 2024, 2025.

[20] Enrico Vezzali, Federico Bolelli, Stefano Santi, and
Costantino Grana, “State-of-the-art Review and Bench-
marking of Barcode Localization Methods,” Engineer-
ing Applications of Artificial Intelligence, pp. 1–29,
2025.


	 Introduction
	 Proposed Method
	 Experimental Results
	 Experimental Setup
	 Comparison with State-of-the-arts
	 Ablation Studies

	 Conclusions
	 References

