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Abstract. Testicular ultrasound imaging is vital for assessing male in-
fertility, with testicular inhomogeneity serving as a key biomarker. How-
ever, subjective interpretation and the scarcity of publicly available data-
sets pose challenges to automated classification. In this study, we explore
supervised and unsupervised pretraining strategies using a ResNet-based
architecture, supplemented by diffusion-based generative models to syn-
thesize realistic ultrasound images. Our results demonstrate that pre-
training significantly enhances classification performance compared to
training from scratch, and synthetic data can effectively substitute real
images in the pretraining process, alleviating data-sharing constraints.
These methods offer promising advancements toward robust, clinically
valuable automated analysis of male infertility. The source code is pub-
licly available at https://github.com/AImageLab-zip/TesticulUS/.
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1 Introduction

Testicular UltraSound (TUS) imaging is a key non-invasive tool for evaluating
male reproductive health by assessing tissue characteristics, such as parenchymal
inhomogeneity, an emerging biomarker for male infertility [28]. However, subjec-
tive image interpretation and complex tissue patterns hinder reliable, standard-
ized assessment, highlighting the need for automated classification tools.

Progress in this area is hampered by the lack of large, publicly available
datasets. Ethical and privacy concerns limit data sharing, resulting in small,
institution-specific datasets that constrain deep learning model development
and hinder generalization. To address data scarcity, medical imaging research
increasingly leverages pretraining [7] and synthetic data generation [25]. Super-
vised and self-supervised pretraining on large datasets enhances feature extrac-
tion and improves performance on smaller target datasets [18, 23]. Meanwhile,
diffusion-based generative models [13] have emerged as powerful tools for syn-
thesizing high-quality, realistic medical images, outperforming Generative Ad-
versarial Networks (GANs) in stability and details modeling [24].
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In this work, we evaluate supervised and self-supervised pretraining strategies
for classifying testicular inhomogeneities using a ResNet-18 backbone. To address
label noise common in ultrasound data, we propose a heuristic filtering method
to improve training quality. Additionally, we explore diffusion-based synthetic
data as a practical alternative to real images [4,29], aiming to replicate the real
data distribution and overcome data scarcity. Together, these strategies target
improvements in both data quality and availability.

To summarize, our key contributions are: (i) a systematic evaluation of pre-
training in testicular ultrasound analysis, (ii) a heuristic approach to reduce label
noise, and (iii) the application of diffusion models for synthetic data generation
in this sensitive, data-scarce domain.

2 Related Work

Deep Learning in UltraSound Image Analysis. Ultrasound (US) imaging
is essential in medical diagnostics due to its safety, accessibility, and real-time
capabilities, but interpretation remains challenging due to artifacts, noise, low
contrast, and operator dependency [14]. Deep learning, particularly Convolu-
tional Neural Networks (CNNs), has shown promise in automating analysis and
extracting quantitative information [11,17,19,20,26].

However, US imaging presents unique challenges compared to modalities like
MRI [21] or CT [3]. Limited annotated datasets, stemming from time-consuming,
expert-dependent labeling, hinder model training, while heterogeneity and vari-
ability across devices and operators complicate generalization [30]. Privacy con-
cerns further restrict data availability, impeding the development of robust mod-
els for applications like TUS analysis [27].
Generative Models for Synthetic Medical Image Generation. Gener-
ative models, particularly Generative Adversarial Networks (GANs) [10], have
been used to alleviate data scarcity by augmenting datasets, performing cross-
modality synthesis, and enabling anonymization [9, 15, 25], though they often
suffer from training instability and limited diversity [2].

Recently, Denoising Diffusion Probabilistic Models (DDPMs) [13] emerged as
a more effective alternative, achieving superior performance in generating realis-
tic, diverse samples for MRI [24] and CT [22]. Conditional DDPMs further allow
controlled generation based on clinical attributes or segmentation maps [29].

In this work, we address the underexplored domain of TUS classification by
introducing the first benchmark targeting testicular pathology classification. To
overcome data-sharing constraints, we demonstrate the effectiveness of DDPM-
generated synthetic datasets when integrated into our pretraining pipeline.

3 Dataset Curation and Filtering

To the best of our knowledge, there is currently no publicly available dataset
of testicular ultrasound images. Existing automatic approaches are primarily
focused on testicular segmentation, and they typically rely on private datasets
for training and evaluation [1]. For this reason, all the experiments presented
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(a) Homogeneous

(b) Inhomogeneous

Fig. 1: Example images provided by
the clinical center. Red boxes indi-
cate the regions selected during the
cropping process.

in this paper are conducted on an in-house
dataset collected at the Antonio Nalin Cen-
ter of the Baggiovara Hospital in Modena,
Italy, using two different ultrasound acquisi-
tion systems: Esaote® MyLab25 Gold and
Esaote® MyLab XPro80.1

The dataset includes image pairs, as il-
lustrated in Fig. 1. Each pair contains static
views of the same testicle, captured from
transverse and sagittal planes. Pairs are
cropped to remove metadata and isolate sin-
gle views. Each view is treated separately,
inheriting the original label.
Unlabeled Dataset (UD). While the pri-
mary focus of this work is on predicting the
homogeneity versus inhomogeneity of testic-
ular tissue, the dataset is enriched with thy-
roid ultrasound images, which are leveraged
for pretraining purposes. Among the total
25 792 images, 1 664 correspond to testicu-
lar scans and 24 126 to thyroid scans, not necessarily from the same patients.
Labeled Dataset (LD). Additionally, for a subset of 880 testicular images, be-
longing to 220 patients, the inhomogeneity/homogeneity label is available, with
a class distribution of approximately 20-80%. A significant challenge encoun-
tered during this project is the inherent noisiness in the pairing of images and
labels. Ultrasound examinations are inherently dynamic, with clinicians rely-
ing on real-time video evaluation to assess anatomical properties. However, only
static screenshots are saved during clinical practice. As a result, these images
may not always accurately reflect the actual homogeneity characteristics of the
tissue, introducing noise into the dataset.
Filtering Noisy Labels. To address this, we first developed an automatic
filtering procedure applied to the 880 labeled images. This step aimed to identify
and discard low-quality or misleading samples, thereby improving the reliability
of the subsequent analyses and model training.

Leveraging a three-fold cross-validation schema, we train a simple ResNet-18
classifier for homogeneity classification based on the cross-entropy loss. Images
from the same patient are always placed in the same fold to avoid data leakage.
Results demonstrate poor classification performance and overfitting on train-
ing data. Particularly, it was clear that some of the examples were strongly
perturbing the loss, indicating possible inconsistent labeling. A simple yet ef-
fective filtration schema has been adopted as follows. During model training,
the per-sample loss values were recorded across epochs. Upon analyzing the loss
trajectories, it was observed that most samples exhibited a near-monotonically

1 Data will be anonymized and publicly released after receiving approval from the ethical
committee. Download link: https://ditto.ing.unimore.it/testiculus.
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Table 1: ResNet-18 pretrained on Ima-
geNet and fine-tuned on the complete LD
dataset, filtering 72 “suspicious” images, or
flipping their labels.

Dataset Accuracy (↑) F1-Score (↑)

Complete 81.51 ± 2.78 55.72 ± 4.37
Filtered 88.15 ± 1.94 68.59 ± 3.30
Flipped 86.78 ± 2.21 73.17 ± 1.55

decreasing loss trend. However, a sub-
set of samples displayed highly irreg-
ular behavior, with spikes where the
loss exceeded the value of 1. Empiri-
cally, a sample was flagged as “suspi-
cious” if its training loss exceeded the
threshold value of 1 on at least three2

occasions during training. This eval-
uation process was repeated two times, leveraging ResNet-18 initialized with
distinct pretrained weights, i.e., ImageNet and those provided by Chen et al . [7].
For each model, training was conducted using four random seeds and a three-
fold cross-validation schema, resulting in a total of 24 runs. Due to the three-fold
setup, each sample could be evaluated as “suspicious” between 0 and 16 times
(i.e., appearing in multiple folds and seeds). Samples that were consistently
flagged as “suspicious” in all 16 evaluations (72 images in total) were either
discarded from the dataset or the corresponding label was flipped. Tab. 1 shows
an improvement in model classification performance, confirming our hypothesis.

Finally, a clinical evaluation was also performed. Clinicians were tasked to
re-evaluate the labels of “suspicious” cases, this time using only the static views
provided with the dataset since no video from the medical visit is available. Sur-
prisingly, the evaluation was inconsistent with the original annotation, meaning
that further study should rely not only on static images but on the entire video
of the examination. All the experiments discussed in the rest of the paper were
performed with the dataset resulting from such a polishing operation.

4 Methods
This section describes the strategies we propose to pretrain the classification
model in a semi-supervised fashion and the process we leverage for generating
and filtering synthetic ultrasound images. We also detail the neural network
architectures evaluated, the fine-tuning procedure on the target classification
task, and the evaluation protocol adopted to assess the synthetic data generation.

4.1 Pretraining Strategies

For the classification task, we selected a ResNet-18 architecture [11] as the back-
bone model.3 It is widely recognized that, in such low-data regimes, models
can benefit from pretraining strategies that enable better feature extraction [7].
Therefore, we explored effective approaches for pretraining the network to en-
hance its performance on the classification task (Fig. 2).

In contrast with classical ImageNet-based pretraining or other existing ap-
proaches [7], we investigated two different sources of data for pretraining:

– Real ultrasound images of the thyroid and testicular areas, using our UD
dataset described in Sec. 3;

2 Thresholds of four and five exceedances were also tested, but found to be less effective.
3 Preliminary experiments showed that more complex architectures, such as ResNet-50 and Vision

Transformers, tended to overfit, given the limited size of our LD dataset.
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Fig. 2: Proposed pretraining leveraging synthetic or UD, and fine-tuning on the LD.

– Synthetic ultrasound images of testicles, generated using a diffusion model
with a procedure to filter out-of-distribution samples, detailed in Sec. 4.2.

For the pretraining task, we employed a semi-supervised approach combining
contrastive learning with supervised classification of the type of organ targeted
in the ultrasound image (thyroid or testicle in our case). Specifically, we used
the SimCLR framework [6] for the unsupervised contrastive component and a
cross-entropy loss for the classification of the organ.
Contrastive Pretraining. SimCLR is a contrastive learning framework aimed
at training an image encoder f(·) to produce representations that are invariant
to image augmentations. This is achieved by maximizing the agreement between
differently augmented views of the same image (positive pairs), while minimizing
the agreement between views of different images (negative pairs).

Given a batch of N images {xi}Ni=1, we apply a stochastic augmentation
pipeline twice to each image, resulting in two correlated views (x̃2i−1, x̃2i) per
image. This effectively yields a batch of 2N augmented examples. Each aug-
mented view x̃k is passed through a shared encoder f(·) followed by a projection
head g(·), resulting in projected representations zk = g(f(x̃k)).

The similarity s(zj , zk) between any pair of representations is measured using
cosine similarity, and the contrastive loss ℓ(j, k) for a positive pair is defined via
a normalized temperature-scaled cross-entropy, as follows:

s(zj , zk) =
z⊤j zk

∥zj∥ ∥zk∥
, ℓ(j, k) = − log

exp (s(zj , zk)/τ)∑2N
m=1 1[m̸=j] exp (s(zj , zm)/τ)

, (1)

where τ is a temperature hyperparameter, and 1[m̸=j] is an indicator function
equal to 1 when m ̸= j, and 0 otherwise. Then the contrastive loss is computed
by averaging over all positive pairs in the batch:

Lcon =
1

2N

N∑
i=1

[ℓ(2i− 1, 2i) + ℓ(2i, 2i− 1)] . (2)

Supervised Classification. To further enhance the learned representations,
we incorporate a supervised classification objective during pretraining. For this
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purpose, each image is annotated with a label corresponding to its anatomical
region, i.e., thyroid or testicle, and a classification head h(·) is attached to the
encoder f(·) to predict these labels. For each augmented view, we predicted the
logits ck = h(f(x̃k)), and the supervised loss is computed using the cross-entropy
across all pairs of augmented views:

Lsup =
1

2N

N∑
i=1

(
CE(c2i−1, yi) + CE(c2i, yi)

)
. (3)

The final pretraining objective is a weighted combination of the contrastive and
supervised losses:

L = Lcon + λLsup, (4)

where λ is set to 0.2 to balance the contribution of the supervised loss.

4.2 Synthetic Data Generation and Filtering

To address data scarcity in ultrasound imaging and overcome privacy-related
data sharing constraints, we explored synthetic image generation for pretraining.
A Denoising Diffusion Probabilistic Model (DDPM) was used to produce high-
quality synthetic images as a substitute for real data. Specifically, we used the
framework introduced by [8], which has demonstrated superior performance over
GANs in image synthesis tasks.

The diffusion model operates through a two-phase process: a forward diffusion
phase and a reverse denoising phase. In the forward phase, Gaussian noise is
incrementally added to an image over multiple time steps, transforming a clean
image into pure noise. This process is defined by a Markov chain, where each
step adds a small amount of noise, controlled by a predefined variance schedule.
In the reverse phase, a U-Net architecture is trained to reconstruct the original
image by progressively removing the added noise. The model learns to predict
the noise component and the diagonal covariance matrix of the noise distribution
at each time step, allowing it to denoise the image iteratively. During inference,
starting from a Gaussian noise sample, the model iteratively refines this noise
through a series of denoising steps. At each step t, the model estimates the noise
component ϵθ(xt, t) present in the current noisy image and computes a less noisy
image xt−1. This iterative process continues until the final step t = 0, resulting
in a synthetic image x0 that resembles the distribution of real ultrasound images.
For our application, we trained the diffusion model on the LD dataset of real
testicular ultrasound images.
Evaluation Metrics for Synthetic Images. We employed three established
metrics to evaluate the quality of the generated images: improved precision and
recall, both introduced by Kynkäänniemi et al . [16], and the Fréchet Inception
Distance (FID) [12]. The precision assesses the fidelity of the generated images,
quantifying the distributional similarity between real and generated data, while
the recall measures the diversity of the synthetic data, indicating how much of
the real data distribution is covered by the synthetic samples. FID, by comparing
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Fig. 3: Overview of the pipeline used for synthetic data generation and filtering.

both the mean and the covariance of the real and generated feature distributions,
captures both two aspects.

The process to compute these metrics involves embedding both real and gen-
erated images into a high-dimensional feature space using a pretrained network
(i.e., Inception). Let Φr = {ϕr

1, ϕ
r
2, . . . , ϕ

r
N} denotes the set of feature vectors

for real images, and Φg = {ϕg
1, ϕ

g
2, . . . , ϕ

g
M} for generated images. For each real

image feature vector ϕr
i we define an hypersphere B(ϕr

i , ri) centered at ϕr
i , where

the radius is the distance to its k-th nearest neighbor in Φr (symmetrically hy-
perspheres B(ϕg

j , rj) are constructed around each generated sample ϕg
j using its

k-th nearest neighbor in Φg).
Defining the real data manifold Mr (respectively, the generated data mani-

fold Mg) as the union of all the real data (generated data) hyperspheres:

Mr =

N⋃
i=1

B(ϕr
i , ri),

(
Mg =

M⋃
j=1

B(ϕg
j , rj)

)
, (5)

the precision P is computed as the fraction of generated samples whose embed-
dings fall inside the real data manifold Mr, and the recall R is the fraction of
real samples falling inside the generated data manifold Mg:

P =
1

M

M∑
j=1

1Mr (ϕ
g
j ), R =

1

N

N∑
i=1

1Mg (ϕ
r
i ), (6)

where 1Mr
(ϕg

j ) (respectively 1Mg
(ϕr

i )) is an indicator function which is 1 if
ϕg
j ∈ Mr (ϕr

i ∈ Mg), 0 otherwise.
The FID assumes that the feature vectors of real and generated data, ex-

tracted from the pretrained Inception network, follow multivariate Gaussian
distributions. Let µr and Σr be the mean and covariance of the real image
features Φr, and µg and Σg those of the generated image features Φg. The FID
is defined as the Fréchet distance between these two distributions:

FID = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
. (7)
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Fig. 4: Sample images from our generated dataset. Green represents high-quality sam-
ples, while red identifies those discarded by our filtering method.

Algorithm 1 Filtering Algorithm.
Input: Xg , Φr, Φg, # of neighbors k.
Initialize Xfiltered

g ← ∅
for all ϕr

i in Φr do
Compute ri ← Euclidean distance to

the k-th nearest neighbor of ϕr
i in Φr

B(ϕr
i , ri) ← hypersphere centered at

ϕr
i with radius ri

end for
Mr ←

⋃N
i=1 B(ϕr

i , ri)

for all ϕg
j in Φg do

if ϕg
j ∈ Mr then
Add xg

j to Xfiltered
g

end if
end for
return Xfiltered

g

A lower FID value indicates that the gen-
erated images are statistically more sim-
ilar to the real ones, reflecting both high
fidelity and appropriate variability in the
synthetic data distribution.
Filtering Method. To ensure the qual-
ity of the generated synthetic ultrasound
images, we developed a filtering method
based on the abovementioned precision
metric. Specifically, we computed the real
data manifold, Mr, from the feature em-
beddings of the LD dataset used to train
the diffusion model, as specified in Eq. (5).
Given the set of generated images Xg =
{xg

1, x
g
2, . . . , x

g
M}, we compute their corresponding feature representations, Φg,

and filter them by selecting only those whose embeddings lie inside Mr, obtain-
ing the final filtered synthetic dataset X filtered

g (Algorithm 1, Fig. 3).
Generation Results. Following [8], to compute precision and recall metrics
on generated data, we set the number of neighbors k = 3 and leverage three non-
overlapping reference batches of 64 real images sampled from the LD dataset.
Instead, since the filtering process is based on the entire LD dataset, it leverages a
k = 50. We found that k should scale approximately linearly with the number of
real data employed in the computation of the manifold to maintain hyperspheres
of comparable size across different settings.

Applying our filtering, we increased the precision of the synthetic dataset
from 79.68 ± 4.81 to 90.1 ± 4.70. As a natural consequence, some generated
samples were removed, leading to a reduction of the recall from 25.0 ± 1.56 to
11.9 ± 3.25. However, the variations in recall remained limited, and the FID
decreased from 119.84 ± 2.39 to 116.84 ± 4.12, confirming that the filtering
strategy achieved a good compromise between maintaining similarity to the real
data distribution and preserving adequate coverage of the feature space. After
filtering, the original ∼ 20K synthetic samples were reduced to ∼ 9K.4 Samples
of generated images are available in Fig. 4.
4 Filtered synthetic data are publicly released at https://ditto.ing.unimore.it/testiculus.

https://ditto.ing.unimore.it/testiculus


Enhancing Testicular Ultrasound Image Classification 9

Table 2: Three-fold cross-validation results for ResNet-18 on the homogeneous and
inhomogeneous downstream task, starting from different pretraining strategies.

Pretraining # Samples Accuracy (↑) F1-Score (↑) Precision (↑) Recall (↑)

∼ ∼ 73.93± 6.80 56.05± 7.11 45.48± 9.91 75.12± 3.66
ImageNet 1.28M 83.89± 2.15 67.89± 1.85 61.72± 3.08 76.08± 4.11
USCL [7] 23.00K 75.46± 2.64 57.43± 1.63 47.37± 2.16 73.86± 4.76

UD (only testicles) 1.66K 81.09± 2.95 65.44± 2.32 55.86± 2.74 79.55± 2.79
UD (only thyroids) 24.13K 80.13± 2.83 63.92± 2.46 54.30± 3.87 78.88± 2.06
UD 25.79K 86.78 ± 2.21 73.17 ± 1.55 67.84 ± 1.67 80.27 ± 2.13

4.3 Fine-tuning

Fine-tuning was conducted on the LD dataset using a standard transfer learning
setup. The pretrained ResNet-18 backbone was used as a feature extractor, and a
lightweight classification head o(·) (Fig. 2), consisting of a single linear layer, was
appended on top to perform binary classification. To prevent the network from
focusing on superficial visual cues, such as spurious patterns or annotations, we
added random synthetic markers to each image (Fig. 5) during training. This
forced the network to learn more robust and generalizable features. In addition
to marker insertion, we applied a series of spatial data augmentations, including
random rotations, horizontal flipping, and small random shifts, to further im-
prove generalization and mitigate overfitting. Finally, in order to mitigate class
imbalance, we used a weighted sampler.

5 Experiments and Results

Implementation Details. The ResNet-18 backbone was pretrained on syn-
thetic ultrasound data using supervised and unsupervised objectives (batch size
1024) on two NVIDIA L40S GPUs (48 GB), with the LARS optimizer and a
polynomial learning rate schedule (initial value 10−3). Inputs were normalized
(mean 0.5, std. dev. 0.25). Fine-tuning for binary classification employed three-
fold cross-validation over four random seeds, using a batch size of 64 on a single
RTX 2080 Ti GPU. The backbone and classification head were fine-tuned with
learning rates of 10−5 and 10−4, respectively. Synthetic ultrasound images were
generated using a diffusion model retrained from scratch on domain-specific data
(batch size 16, 256×256 input resolution) with a single L40S GPU, following [8].
Both mean and variance were learned, and sampling was unguided.
On the Role of Pretraining. To validate the effectiveness of the proposed
pretraining strategy, we applied it to ResNet using our UD dataset. For com-
parative analysis, we also considered ResNet pretrained on ImageNet and the
ultrasound-specific pretrained weights provided by Chen et al . [7], devised for
ultrasound data, although focused on lung and liver. In each of the three pre-
training scenarios, the model was subsequently fine-tuned on our LD dataset
following a three-fold cross-validation schema. All data from the same patient
were strictly confined to the same fold to effectively prevent data leakage. To
ensure a fair comparison and reliable convergence, the number of training steps
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Table 3: Three-fold results on the downstream task when pretraining ResNet-18 with
different combinations of real and synthetic data with (X f

g ) or without (Xg) applying
the proposed filtering procedure.

Real
Testicle

Real
Thyroids

Synthetic
Testicle Accuracy (↑) F1-Score (↑) Precision (↑) Recall (↑)

✗ ✗ Xg 80.58± 3.58 64.24± 2.31 55.46± 3.08 77.13± 1.70

✗ ✗ Xf
g 80.42 ± 2.71 64.77 ± 1.62 54.69 ± 3.24 80.12 ± 2.02

✓ ✗ ∼ 81.09± 2.95 65.44± 2.32 55.86± 2.74 79.55± 2.79
✗ ✓ Xg 82.88± 2.11 67.61± 1.56 58.87± 1.71 79.59± 3.63

✗ ✓ Xf
g 84.60± 2.08 70.63± 1.20 62.19± 1.76 82.17 ± 0.97

✓ ✓ ∼ 86.78 ± 2.21 73.17 ± 1.55 67.84 ± 1.67 80.27± 2.13

was held constant across all experiments, regardless of variations in the size of
the pretraining dataset. This ensures that each model undergoes the same total
number of forward and backward passes. The results are summarized in Tab. 2.

Our initial observation indicates that leveraging ultrasound-specific pretrained
weights from Chen et al . (third row of Tab. 2) does not necessarily yield optimal
performance, particularly when the pretraining data originates from different
ultrasound acquisition systems, as in the case of the USCL dataset [7]. Con-
versely, when images are sourced from the same acquisition system, variations
in the anatomical regions, namely testicles and thyroid, did not significantly
impact performance. Specifically, downstream performance on testicular imag-
ing was nearly identical regardless of whether testicular or thyroid images were
employed during pretraining (fourth and fifth rows of Tab. 2). It is important
to highlight that in these instances, pretraining leveraged exclusively the con-
trastive component of the loss in Eq. (4). Interestingly, the ImageNet-pretrained
model achieved the best results, highlighting the superior generalization of fea-
tures learned through supervised training on diverse natural images, even across
domains as different as natural and ultrasound images.

Finally, combining ultrasound data from different anatomical structures, in
this case testicular and thyroid images (last row of Tab. 2), enabled the inte-
gration of supervised and unsupervised losses, delivering the best overall perfor-
mance. This strategy resulted in a noticeable improvement, increasing accuracy
by approximately 3 points and the F1-score by about 6 points compared to the
ImageNet pretrained baseline. An ablation study to compare the impact of loss
weightings is also conducted in Tab. 4. Results show both losses affect perfor-
mance, with λ = 0.2 yielding the best outcome.

Table 4: Ablation study on using different
loss components and varying λ, Eq. (4).
Lcon Lsup λ Accuracy (↑) F1-Score (↑)

✓ ✗ 0.0 84.77 ± 2.56 69.41 ± 0.51
✓ ✓ 0.1 85.38 ± 2.71 71.40 ± 0.93
✓ ✓ 0.2 86.78 ± 2.21 73.17 ± 1.55
✓ ✓ 0.3 85.29 ± 2.68 71.36 ± 0.70
✓ ✓ 0.4 85.03 ± 2.43 71.22 ± 1.26
✗ ✓ 1.0 83.88 ± 2.56 70.11 ± 1.56

The Impact of Synthetic Data.
Tab. 3 demonstrates that using fil-
tered synthetic data (X filtered

g ) consis-
tently yields better performance com-
pared to unfiltered synthetic data
(Xg). Although the highest accuracy
is achieved when both real datasets
are included, the performance of mod-
els trained solely on synthetic data remains competitive, exhibiting only a mod-
est degradation. These findings underscore the practical utility of synthetic data,
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particularly in scenarios where access to real data is restricted due to privacy
concerns or availability limitations.

(a) Sample 1.

(b) Sample 2.

Fig. 5: Grad-CAM++.

Qualitative Evaluation. A heatmap visualization
generated using Grad-CAM++ [5] on two represen-
tative samples from the test set of our LD dataset
is reported in Fig. 5. For each sample, four images
are shown: outputs of the same model trained either
with (left column) or without (right column) apply-
ing the augmentation strategies reported in Sec. 4.3.
The second row for each sample differs from the first
by the introduction of artificial markers . As can be
observed, the use of augmentation strategies helped
focus the model’s attention more precisely on the in-
ner part of the testicle, the region most closely associ-
ated with the inhomogeneity property relevant to our
downstream task. Furthermore, the proposed augmen-
tation approach, which introduces synthetic random
artifacts during training, proved effective in mitigat-
ing the influence of such artifacts on the predictions.
This effect is particularly evident when comparing the
bottom-left and bottom-right images of each sample.

6 Conclusion and Future Research Directions

In this study, we addressed key challenges in the automated classification of
testicular ultrasound inhomogeneity, a promising biomarker for male infertility.
By combining supervised and unsupervised pretraining with diffusion-based syn-
thetic augmentation, we achieved significant improvements over models trained
from scratch or using pretraining strategies tailored for ultrasound imaging.

Future work will focus on incorporating dynamic ultrasound videos, which
may offer richer contextual information for classification. We also aim to develop
label-conditioned synthetic image generation to produce datasets suitable for
both pretraining and fine-tuning. Advancing these directions will be essential
for the next generation of automated, clinically deployable tools.
Acknowledgements. This project is funded by the University of Modena and
Reggio Emilia and Fondazione di Modena through FAR-2024 (E93C24002080007)
and FARD-2024, and by the Italian Ministry of Research’s NRRP complemen-
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