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Abstract

Recently, Multimodal Large Language Models (MLLMs)
have emerged as a leading framework for enhancing the
ability of Large Language Models (LLMs) to interpret non-
linguistic modalities. Despite their impressive capabilities,
the robustness of MLLMs under conditions where one or
more modalities are missing remains largely unexplored. In
this paper, we investigate the extent to which MLLMs can
maintain performance when faced with missing modality
inputs. Moreover, we propose a novel framework to mit-
igate the aforementioned issue called retrieval-augmented
generation for missing modalities (MISSRAG). It consists
of a novel multimodal RAG technique alongside a tailored
prompt engineering strategy designed to enhance model
robustness by mitigating the impact of absent modalities
while preventing the burden of additional instruction tun-
ing. To demonstrate the effectiveness of our techniques,
we conduct comprehensive evaluations across five diverse
datasets, covering tasks such as audio-visual question an-
swering, audio-visual captioning, and multimodal senti-
ment analysis. Our source code is available at https:
//github.com/aimagelab/MissRAG.

1. Introduction
Multimodal learning, which integrates diverse data types
such as text, images, audio, and video, is gaining promi-
nence in Artificial Intelligence research. By leveraging
these complementary modalities, multimodal models have
achieved remarkable success in tasks like image caption-
ing [2, 5, 16, 29], audio-video question answering [11, 17,
28], and cross-modal retrieval [1, 9, 35, 40].

Recently, with the advent of Large Language Mod-
els (LLMs), the field has witnessed a trend of aligning
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Figure 1. From top to bottom: (i) the complete modality scenario,
where the MLLM receives all modality tokens, (ii) the missing
modality scenario where one modality is absent, and (iii) our pro-
posed multimodal RAG framework, enhanced with prompt engi-
neering, to mitigate the missing modality problem.

multimodal information with textual data to harness the
strong language generation and zero-shot transfer abilities
of LLMs [10, 21, 36, 53]. These models are designed to
generate representations of non-textual modalities that are
compatible with LLMs. This is achieved by creating token
representations for non-textual modalities, which we refer
to as modality tokens in this paper. These tokens maintain
the same representational depth as textual tokens, allowing
them to be fed directly into an LLM as input. Consequently,
these modality tokens can be seamlessly incorporated into
the LLM input through simple concatenation, enabling the
LLM to interpret non-textual data and perform tasks such as



multimodal captioning and multimodal question answering.
For example, X-LLM [10] and ChatBridge [53] integrate

pre-trained modality-specific image, video, and audio en-
coders with LLMs by employing separate models such as
Q-Former [30] or Perceiver [23]. In contrast, OneLLM [22]
addresses the alignment challenge by employing modality-
agnostic encoders, enabling direct mapping of inputs from
eight modalities into the LLM embedding space. This
design makes OneLLM one of the most versatile Multi-
modal Large Language Models (MLLMs) in terms of sup-
ported modalities. However, in real-world applications,
multimodal systems often face the challenge of handling
cases where certain data modalities are missing or incom-
plete [31]. This situation arises due to various factors such
as sensor malfunctions, hardware limitations, privacy con-
cerns, environmental interference, and data transmission is-
sues. In the literature, these challenges are collectively re-
ferred to as the missing modality problem.

To address the missing modality problem, numerous
studies have been conducted over the years [25, 33, 34, 37,
42, 52]. However, these works primarily focus on encoder-
only architectures that learn to solve tasks in a closed-
form manner by leveraging conventional training methods
or fine-tuning existing backbones. In contrast, MLLMs
contain billions of parameters, making fine-tuning compu-
tationally prohibitive. This has led to increased interest
in parameter-efficient alternatives such as zero-shot learn-
ing, where models generalize without task-specific training.
Recent efforts favor techniques that avoid updating LLM
parameters, such as prompt engineering [8, 14, 39, 46],
which involves manually modifying the textual prompt of
an MLLM to induce a desired behavior, and Retrieval-
Augmented Generation (RAG) [6, 26, 41, 49], which in-
tegrates a retrieval system to support the MLLM.

To the best of our knowledge, there are no studies that
investigate the robustness of MLLMs under missing modal-
ity conditions. Hence, in this paper, we assess the ro-
bustness of MLLMs that accept at least two non-textual
modalities as input, such as those addressing audio-video
tasks [13, 22, 53]. We extend our evaluation by incorporat-
ing a textual modality, thereby conducting the first exam-
ination of such models on three-modality-input tasks like
audio-video-text multimodal sentiment analysis.

Furthermore, we propose MISSRAG, a novel retrieval
framework empowered with a tailored prompt engineer-
ing strategy that mitigates the missing modality problem in
MLLMs without requiring additional fine-tuning. In par-
ticular, MISSRAG substitutes the missing modality with
a candidate retrieved from a prototype pool by querying
based on the available modalities. Specifically, our pro-
posed multimodal RAG for addressing missing modalities
is the first framework capable of concurrently managing
three modalities and retrieving all possible combinations

of single or multiple modality inputs. Also, the proposed
framework is enhanced with tailored prompts to inform the
model about the absent modality and condition the text gen-
eration process, as illustrated in Fig. 1. We validate the
significance of our findings through extensive experiments
on five multimodal datasets, covering a broad spectrum of
tasks such as, audio-visual question answering (MUSIC-
AVQA [27]), audio-visual captioning (VALOR-32K [11],
CharadesEgo [43]), and audio-video-text sentiment analy-
sis (MOSI [50], MOSEI [3]). In summary, our contributions
are as follows:
• We are the first to assess the robustness of MLLMs under

missing modality conditions across a wide range of tasks
involving audio-video, and audio-video-text data;

• This is the first work in which RAG is employed to ad-
dress the missing modality problem;

• We introduce MISSRAG, the first multimodal RAG
framework that concurrently operates across three distinct
modalities. This framework is capable of retrieving com-
plementary audio-visual-text data for any given combina-
tion of audio, visual, and textual inputs;

• Through extensive experiments and ablation studies, we
show that our proposed MISSRAG enhanced with the
proposed prompt engineering strategy effectively miti-
gates the missing modality problem for MLLMs.

2. Related Work
Multimodal Learning and Missing Modalities. The in-
tegration of heterogeneous data streams in Deep Learn-
ing models is a demanding problem in multimodal learn-
ing [7, 19, 24, 28]. Among them, the missing modality prob-
lem, wherein one or more modalities may be absent during
inference or even training, is one of the most challenging.

Contemporary studies [33, 34, 38, 51, 52] have been
directed towards the development of multimodal frame-
works capable of handling absent modalities. The SMIL
approach [33] has been introduced to infer the latent fea-
tures of data with incomplete modalities using Bayesian
meta-learning. Zeng et al. [51] designed a tag-encoding
mechanism that aids the training of Transformer encoders to
cope with absent modalities. Ma et al. [34] explored mul-
timodal Transformers under missing modality conditions,
improving robustness by automatically learning optimal fu-
sion strategies. However, these studies mainly focus on
encoder-only models that are designed to solve tasks in a
closed-form manner using standard training techniques or
by fine-tuning existing backbones, an experimental setup
that differs substantially from that addressed in this paper.
Multimodal Large Language Models. Early efforts to in-
ject visual cues into LLMs [4, 30, 32] have recently been
extended to additional modalities such as audio, video, and
point clouds, with the goal of unifying multiple modal-
ities within a single LLM framework. In this context,



X-LLM [10] pioneered the use of modality-specific Q-
Formers and adapters to bridge pre-trained image, audio,
and video encoders with frozen LLMs. Follow-up works
such as ChatBridge [53] and AnyMAL [36] adopt simi-
lar designs but with varying connector modules, including
Perceiver and linear layers. VideoLLaMA 2 [13] exploits
a pretrained visual encoder in combination with a learn-
able Spatial-Temporal Convolution Connector to process
visual information, while the audio modality is encoded via
the BEATs model [12] and aligned to text with an MLP.
Qwen2.5-Omni [47] jointly models perception and genera-
tion of text and speech across interleaved video and audio
inputs, via a thinker-talker architecture and novel positional
encoding. VITA [18] enables speech-to-speech dialogue
while maintaining remarkable visual-language understand-
ing capabilities. Also, OneLLM [22] removes the need for
modality-specific encoders by introducing a universal en-
coder and projection module, supporting eight modalities.

In this work, we focus our experiments on three repre-
sentative MLLMs (i.e., ChatBridge, OneLLM, and VideoL-
LaMA 2) selected for their public availability and demon-
strated robustness in audio-visual-text scenarios.
RAG and Prompt Engineering. Retrieval-Augmented
Generation (RAG) [6, 26, 41, 49] has emerged as a power-
ful paradigm for enriching LLMs and MLLMs with external
knowledge. By retrieving relevant snippets from a pre-built
knowledge base and incorporating them into the prompt,
RAG complements the intrinsic capabilities of generative
models with dynamic, context-aware information from ex-
ternal information repositories. In this context, Lewis et
al. [26] demonstrated the effectiveness of this approach by
conditioning the generation on retrieved textual documents.
More recently, Xu et al. [6] introduced VisualRAG, com-
bining image retrieval with text generation for multimodal
tasks. Despite these recent advancements, our proposed
multimodal RAG-based framework is the first to operate
concurrently across three distinct modalities.

Prompt engineering [8, 14, 39, 46] utilizes task-specific
instructions to elicit desired behaviors without modifying
model weights. Radford et al. [39] demonstrated that care-
fully designed prompts enable zero-shot learning, where
models perform unseen tasks without labeled examples.
Wei et al. [46] further introduced chain-of-thought prompt-
ing to encourage step-by-step reasoning. Building on its
success, in this work we develop a tailored prompt engineer-
ing strategy to handle missing modalities within our multi-
modal RAG framework.

3. Proposed Method
This work addresses the challenge of missing modalities in
the field of multimodal learning, specifically for MLLMs.
Since no previous literature has tackled the missing modal-
ity problem for MLLMs, we establish a benchmark to eval-

uate the robustness of these models across a wide range
of tasks, including audio-visual question answering, audio-
visual captioning, and audio-video-text sentiment analysis.
In this setting, we evaluate the robustness of MLLMs under
six missing modality scenarios: Missing Audio (MA), Miss-
ing Video (MV), Missing Text (MT), Missing Audio-Video
(MAV), Missing Audio-Text (MAT), and Missing Video-Text
(MVT). Additionally, we consider a Complete (C) scenario
in which all modalities are available. Accordingly, in our
experimental design, once a specific missing modality sce-
nario is established, we remove the corresponding modal-
ities from all samples in the analyzed dataset to simulate
conditions of missing modalities with 100% of missing rate.
Thus, we work in the worst-case scenario where all samples
strictly adhere to the specified missing modality condition.
Consequently, in a hypothetical scenario of lower missing
rates, the overall performance would be higher.

Within this scope, our main contribution is a novel multi-
modal RAG framework for missing modalities called MIS-
SRAG, the first RAG-based solution that simultaneously
manages three different modalities, thereby mitigating the
missing modality problem. MISSRAG exploits pre-trained
contrastive backbones to query a pool of prototypes of the
same modality as the missing ones, retrieving the corre-
sponding modality tokens to ensure that the model consis-
tently receives complete input pairs or triplets. Moreover,
we enhance MISSRAG with a specific prompt engineering
strategy that informs the model about which modalities are
present and which are absent. It also forces the model to
infer the likely context of the missing modality through a
customized prompt. By integrating both techniques, we re-
construct the input data and induce the model to adapt its
behavior in scenarios with missing modalities.

3.1. Preliminaries

Problem Statement. In our setting, we employ multimodal
datasets comprising M modalities, where M ∈ {2, 3}. To
assess the robustness of our models under missing modality
conditions, we omit one or two modalities at a time across
all samples within each dataset. Consequently, for a dataset
comprising M modalities, there exist 2M−1 potential miss-
ing modality scenarios, each corresponding to a non-empty
subset of the M modalities excluding the case where all
modalities are absent. Specifically, for audio-visual ques-
tion answering and audio-visual captioning datasets, the
missing modality scenarios include Missing Audio, Missing
Video, and Complete. In the case of audio-video-text senti-
ment analysis, we consider seven scenarios: Missing Audio,
Missing Video, Missing Text, Missing Audio-Video, Missing
Video-Text, Missing Audio-Text, and Complete.
Contrastive Backbone. A contrastive backbone is de-
signed to map data from different modalities into a uni-
fied embedding space by pulling together the representa-
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Figure 2. Overview of three different scenarios: (a) complete modality scenario where both reference video and reference audio are
available; (b) missing video scenario without compensation for the missing modality; (c) missing video scenario where our proposed
MISSRAG+PE approach retrieves a prototype video while employing a designed prompt to mitigate the impact of the missing modality.
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Figure 3. Overview of our MISSRAG framework with three modalities. (a) Creation of modality embeddings through a contrastive
embedder, pooled for retrieval. (b) Retrieval of the top-k most similar prototypes by computing similarity scores between the embeddings
of available modalities (i.e., query) and the stored embeddings of the missing modality via dot product, then aggregated to obtain the
missing modality representation. Dashed arrows indicate that the second modality may be unavailable.

tions of similar data points while pushing apart those of dis-
similar ones. This process encourages the formation of dis-
tinct clusters in the shared embedding space, where seman-
tically similar instances are grouped closely together. This
approach facilitates effective cross-modal retrieval, as it al-
lows for direct similarity computations between data points
from disparate modalities. For example, elements with a
high dot product are likely to represent similar concepts.

In our work, we use ImageBind [20] as contrastive back-
bone. It aligns seven modalities (i.e., audio, image, video,
text, IMUs, thermal, and depth) into a shared embedding
space, making it useful for retrieval tasks where establish-
ing semantic similarity between modalities is essential.
MLLM Backbone. For what concerns the MLLM, we se-
lect three publicly available models, namely OneLLM [22],
VideoLLaMA 2 [13], and ChatBridge [53], due to their
broad support to different input modalities and state-of-
the-art zero-shot performance on audio-visual question-
answering and audio-visual captioning tasks.

In particular, OneLLM, VideoLLaMA 2, and Chat-
Bridge employ LLaMA-7B [44], Qwen2-7B [48], and
Vicuna-13B [15], respectively, as their underlying LLM
backbones, alongside a framework that maps non-textual
modalities into the LLM embedding space. MLLMs are in-

deed engineered to translate each non-textual modality into
a format interpretable by the LLM. Specifically, the LLM
processes text input as token embeddings, where each token
represents a subcomponent of a sentence and is embedded
using an embedding layer that maps the token to a learnable
representation of fixed dimension dmodel. As a result, the
input to the LLM has a dimensionality of (ntokens, dmodel).
Moreover, to map each non-textual modality into the in-
put embedding space of the LLM, a token representation
must be generated, which we refer to as modality tokens.
These modality tokens are created by employing a modality
encoder and a projection module, which process the non-
textual modality to produce a token representation that can
be concatenated with the textual tokens in the LLM input.
MLLM Prompt Structure. The input prompts for MLLMs
adhere to a specific structure designed to enhance model
performance. Specifically, each input prompt consists of
two primary components: the system message and the user
instruction. An example of an input prompt is provided in
Fig. 2a.1 The system message provides contextual informa-
tion that guides the behavior of the LLM, while the user in-
struction simulates a human request to the machine, which

1Additional details on the employed input prompts are reported in the
supplementary material.
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✗
MA The audio is missing. The assistant must use visual data to infer a probable audio context.

MV The video is missing. The assistant must use audio data to infer a probable visual context.

C Both video and audio are present.

✓
MA The assistant receives an approximate audio data and uses it to generate a response as accurately as possible.

MV The assistant receives an approximate visual data and uses it to generate a response as accurately as possible.
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t ✗

MA The audio is missing. The assistant must use visual and textual data to infer a probable audio context.

MV The video is missing. The assistant must use audio and textual data to infer a probable video context.

MT The input text is missing. The assistant must use audio and visual data to infer a probable textual context.

MAT The audio and input text are missing. The assistant must use visual data to infer a probable audio and textual context.

MVT The video and input text are missing. The assistant must use audio to infer a probable video and textual context.

MAV The video and audio are missing. The assistant must use textual data to infer a probable visual and audio context.

C Audio, visual and textual data are all present.

✓

MA The assistant receives an approximate audio data and uses it to generate a response as accurately as possible.

MV The assistant receives an approximate visual data and uses it to generate a response as accurately as possible.

MT The assistant receives an approximate input text data and uses it to generate a response as accurately as possible.

MAT The assistant receives an approximate audio and input text data and uses them to generate a response as accurately as possible.

MVT The assistant receives an approximate visual and input text data and uses them to generate a response as accurately as possible.

MAV The assistant receives an approximate visual and audio data and uses them to generate a response as accurately as possible.

Table 1. Prompt Engineering (PE) details for all missing modality scenarios and retrieval modes.

the LLM must respond to while also considering the infor-
mation contained in the system message.

3.2. Multimodal RAG for Missing Modalities

In this study, we propose MISSRAG, the first multimodal
RAG-based framework that simultaneously processes three
distinct modalities. This framework is capable of retriev-
ing complementary audio, visual, and textual data for any
given combination of these input modalities. Specifically,
when a modality is absent, we utilize the information from
the available modalities to retrieve optimal candidates for
substitution. This approach aims to achieve performance
comparable to scenarios where all modalities are present,
thereby mitigating the missing modality problem.

To implement this, we require a repository of prototypes
for each modality that needs to be retrieved during the test-
ing phase. In practice, we construct this prototype pool us-
ing the training set of each respective dataset independently.
This approach does not make the proposed prototype re-
trieval technique restricted or sensitive to the tasks.

Subsequently, to establish an effective retrieval system,
we employ a function that maps the samples of each modal-
ity into a shared embedding space where representations of
similar concepts are proximally located. Consequently, we
expect that within this embedding space, the modality rep-
resentations of a given sample will exhibit greater similarity
to one another than to those of different samples.

A pre-trained multimodal backbone facilitates this map-
ping by ensuring that semantically similar samples are
closely aligned in the embedding space. Specifically, we
use a contrastive backbone to generate key embeddings for
each modality in the training set, as shown in Fig. 3, which
can then be queried using corresponding embeddings de-
rived from the available modalities in the test set.

We then calculate the dot product between these queries

and the embeddings of the missing modality. The result-
ing similarity scores are concatenated, and the top-k high-
est scores are selected to retrieve the most relevant samples.
If only one modality is available, there is no concatenation
of similarity scores, and the process is executed two times
to obtain candidates for each of the two missing modali-
ties. Once retrieved, the modality tokens that correspond to
the retrieved samples are computed and averaged. It is im-
portant to note that there are no modality tokens for the text
modality, as it is the native modality of the LLM. Therefore,
we concatenate multiple retrieved texts if k is greater than 1.
The retrieved information is subsequently used to complete
the missing sections of the LLM input prompt, ensuring that
the input becomes fully comprehensive.

3.3. Prompt Engineering
In this work, we leverage Prompt Engineering (PE) tech-
niques to improve the comprehension of our MLLM with
respect to its input data, inducing it to cope with cases of
missing modalities. In particular, our prompt engineering
strategy has two objectives: informing the model about the
input modality status and inducing it to mitigate the missing
modality problem with a Compensation Strategy for Miss-
ing Modalities (CSMM) prompt.

Specifically, we append to the system message a string
that describes the input modality status, composed of a con-
catenation of input descriptors for each of the possible input
modalities of the task defined as:

{Modality}: {Present/Prototype/Missing}.

Taking an audio-video task as an example, the string
used to indicate that the audio is original and the video is
retrieved is “Audio: Present; Video: Prototype”.

Subsequently, we append the compensation strategy, i.e.,
a handcrafted string designed to induce behavior in the



LLM that helps the mitigation of the missing modality prob-
lem. These prompts are detailed in Table 1 for each miss-
ing modality scenario and retrieval mode. Specifically, the
handcrafted prompt for the Complete (C) scenario is uti-
lized in both retrieval and non-retrieval modes, as the latter
scenario does not require any data retrieval.

3.4. Multimodal RAG and Prompt Engineering
Our proposal to mitigate the missing modality problem con-
sists in our proposed multimodal RAG for missing modali-
ties, called MISSRAG, enhanced with our proposed prompt
engineering strategy. Such techniques aim to mitigate the
missing modality problem by working on two different and
independent levels. The former improves the input qual-
ity by substituting missing input with optimal candidates,
while the latter is designed to induce the MLLM to change
its behavior in front of missing or retrieved modalities. An
enhanced visualization of the application of our method is
depicted in Fig. 2c.

4. Experimental Results
We evaluate our proposed methodology in a zero-shot set-
ting by applying it to three baseline models, ChatBridge,
OneLLM, and VideoLLaMA 2. The only exception is
VideoLLaMA 2 on the MUSIC-AVQA dataset, as it has
been exposed to data from this benchmark during train-
ing. These baselines use their default system messages
and user instructions and, by augmenting them with our
proposed MISSRAG framework enhanced with the design
prompt engineering strategy, we achieve remarkable perfor-
mance gains. We assess the effectiveness of our methodol-
ogy across three multimodal downstream tasks: question-
answering, captioning, and sentiment analysis.

Audio-Visual Question Answering. We evaluate our
methods on audio-visual question answering on MUSIC-
AVQA [27], a dataset which contains 45K question-answer
pairs. The problem requires a comprehensive multimodal
understanding of both audio and visual cues.

Audio-Visual Captioning. We evaluate our methods on
audio-visual captioning tasks on VALOR-32K [11] and
CharadesEgo [43]. VALOR-32K is a large-scale dataset
that contains 32K videos with rich audio-visual captions.
CharadesEgo contains 7,860 first and third-person videos
annotated with textual descriptions, making it suitable for
audio-visual captioning.

Audio-Video-Text Sentiment Analysis. We evaluate our
methods on audio-video-text sentiment analysis, testing
them on CMU-MOSI [50] and CMU-MOSEI [3], where the
goal is to predict the sentiment of the video. CMU-MOSI is
a collection of 2,199 opinion video clips, and CMU-MOSEI
is an extension of the CMU-MOSI dataset that contains
23,453 annotated video segments. For both datasets, each

video segment is paired with a text describing spoken words
and annotated with a negative, neutral, or positive label.

Metrics. To assess the performance on these diverse tasks,
we employ accuracy for audio-video-text sentiment analy-
sis and audio-visual question answering and the CIDEr met-
ric [45] for the captioning task.

Evaluation Protocol. For captioning, we compute CIDEr
using the COCO caption evaluation toolkit,2 a publicly ac-
cessible tool that supports multiple captioning evaluation
metrics. To assess the accuracy on the MOSI and MOSEI
datasets, we implement a customized evaluation function
designed to maximize conservativeness. Specifically, we
categorize as missed any prediction that includes multiple
labels, and we invert a label polarity if it is preceded by the
negation term “not” within the prediction. For further de-
tails, please refer to the supplementary material.

4.1. Main Results
As shown in Table 2, our method, MISSRAG+PE, con-
sistently improves ChatBridge in 22 out of 23 experi-
ments, OneLLM in 21 out of 23 experiments, and Vide-
oLLaMA 2 in 17 out of 23 experiments, demonstrating
the effectiveness of our approach in missing modality sce-
narios, especially when the absent modality is the domi-
nant one for the task. In fact, in audio-video tasks such
as MUSIC-AVQA, VALOR-32K, and CharadesEgo, our
method achieves significant gains over ChatBridge (+15.93,
+5.90, +2.86), OneLLM (+7.18, +13.23, +1.30), and Vide-
oLLaMA 2 (+0.54, +3.28, +2.60), in the most challenging
scenarios where visual information is absent.

Regarding MOSI and MOSEI, our methods generally
lead to improved performance across all evaluated MLLMs.
However, to contextualize these results, it is important to
emphasize that the models are assessed in a zero-shot set-
ting and have not been explicitly trained on tasks analogous
to sentiment analysis—tasks which demand complex rea-
soning across textual, visual, and auditory inputs. This leads
to two potential issues: (i) a model may lack understand-
ing of the task and thus perform poorly overall (e.g., Chat-
Bridge); or (ii) a model may struggle to reason across mul-
tiple modalities, and perform best when prompted exclu-
sively with text—the most natural input for an MLLM (e.g.,
VideoLLaMA 2 and OneLLM). Furthermore, our approach
tries to align the performances of the missing modality sce-
narios with that of the Complete one, regardless of whether
the latter leads to the optimal performance for the MLLM.
Consequently, if our method does not yield improvements
in every missing modality scenario, we do not attribute this
to a shortcoming of the proposed methodology, but rather to
inherent limitations of current MLLMs in addressing com-
plex multimodal tasks such as sentiment analysis across au-

2https://github.com/tylin/coco-caption



Task Audio-Video Audio-Video Audio-Video-Text
Question Answering Captioning Sentiment Analysis

Dataset MUSIC-AVQA VALOR32K CharadesEgo MOSI MOSEI
Metric Accuracy CIDEr CIDEr Accuracy Accuracy

Method MA MV C MA MV C MA MV C MA MV MT MAV MAT MVT C MA MV MT MAV MAT MVT C

ChatBridge [53] 41.80 27.25 43.87 18.36 4.30 20.22 9.47 1.51 9.96 18.51 29.01 17.49 23.18 15.16 11.37 26.38 40.20 21.76 35.20 28.38 39.02 21.76 36.81
MISSRAG+PE 45.14 43.18 46.10 19.09 10.20 20.66 10.85 4.37 10.25 24.78 30.09 18.22 23.76 16.18 17.93 28.12 41.21 40.95 37.05 40.46 36.19 37.33 38.94
Improvement +3.34 +15.93 +2.23 +0.73 +5.90 +0.44 +1.38 +2.86 +0.29 +6.27 +1.08 +0.73 +0.58 +1.02 +6.56 +1.74 +1.01 +19.19 +1.85 +12.08 -2.83 +15.57 +2.13

OneLLM [22] 48.89 39.48 49.86 20.41 3.34 26.40 2.98 1.20 3.76 48.54 73.91 40.23 75.88 38.34 41.69 56.41 30.82 57.70 40.22 58.75 38.14 46.10 40.09
MISSRAG+PE 50.85 46.66 51.32 27.19 16.57 26.42 4.03 2.50 4.17 78.57 74.20 46.65 76.68 54.08 45.48 75.51 59.18 51.66 45.16 52.35 45.89 47.66 61.56
Improvement +1.96 +7.18 +1.46 +6.78 +13.23 +0.02 +1.05 +1.30 +0.41 +30.03 +0.29 +6.42 +0.80 +15.74 +3.79 +19.10 +28.36 -6.04 +4.94 -6.40 +7.75 +1.56 +21.47

VideoLLaMA 2 [13] 77.20 59.57 79.94 19.36 7.02 22.40 10.17 0.69 12.20 46.06 43.59 10.50 74.34 10.20 4.37 25.80 41.36 44.24 28.55 53.17 28.07 22.00 36.62
MISSRAG+PE 77.53 60.11 79.97 21.42 10.30 22.64 11.96 3.29 12.62 33.38 37.76 23.76 40.52 11.02 23.34 34.69 38.63 39.47 29.20 40.14 30.31 27.15 39.17
Improvement +0.33 +0.54 +0.03 +2.06 +3.28 +0.24 +1.79 +2.60 +0.42 -12.68 -6.23 +13.26 -33.82 +0.82 +18.97 +8.89 -2.73 -4.77 +0.65 -13.03 +2.24 +5.15 +2.55

Table 2. Main results comparing the baseline versions of ChatBridge, OneLLM, and VideoLLaMA 2 with their enhanced counterparts
incorporating our MISSRAG+PE method. In this experiment, we assess the robustness of the MLLMs under seven missing modality
scenarios: MA (Missing Audio), MV (Missing Video), MT (Missing Text), MAV (Missing Audio-Video), MAT (Missing Audio-Text), MVT
(Missing Video-Text), and C (Complete). All experiments are conducted using k = 1 retrieved elements. Best results in bold. Gray color
indicates that the model has seen the dataset during training.

dio, video, and text. Notably, the Complete scenario never
yields optimal performance for all MLLMs in this task.

In particular, ChatBridge consistently demonstrates rel-
atively poor performance in this task. Indeed, qualitative
analysis shows that its responses are often nonsensical com-
pared to those generated by OneLLM and VideoLLaMA 2,
highlighting its limitations. Nevertheless, our method gen-
erally contributes to performance improvements.

Conversely, VideoLLaMA 2 shows discrete performance
when operating with text-only inputs, but underperforms in
the multimodal setting. This suggests that while its under-
lying language model possesses the necessary capabilities,
the overall multimodal framework struggles to effectively
integrate and reason over multimodal inputs. As a result,
our methodology encourages the model to behave similarly
to the Complete scenario, which, in the case of VideoL-
LaMA 2, is suboptimal and may lead to a reduction in the
final results.

On the other hand, OneLLM is the only model capa-
ble of achieving satisfactory performance in the Complete
scenario when prompted and does not exhibit performance
degradation in the presence of the audio modality. Con-
sequently, when integrated with our proposed method, it
exhibits substantial performance gains in both the Missing
Audio and Complete scenarios—achieving improvements
of +30.03 and +19.10 on the MOSI dataset, and +28.36
and +21.47 on the MOSEI dataset, respectively. However,
similar to the other models, OneLLM experiences perfor-
mance degradation both when the video modality is present
and when the text is absent. Accordingly, as shown in Ta-
ble 3, when our PE is used alone, yields the highest ac-
curacy under the Missing Video scenario. Hence, by ex-
plicitly informing the MLLM of the absence of the video
modality, the PE improves its reasoning ability, resulting
in a 6.88-point increase in accuracy. Furthemore, a plausi-
ble explanation for the performance degradation observed
when incorporating the video modality lies in the MLLMs

visual encoder. Hence, video encoders utilized for senti-
ment analysis tasks extract highly specific visual features
based on facial landmarks, as opposed to general-purpose
visual encoders employed by our MLLM backbone. For
what concerns the absence of text—the typically worst-case
scenario—our method consistently improves OneLLM.

Finally, although the evaluated models natively strug-
gle with audio-video-text sentiment analysis, these exper-
iments provide valuable insights. They serve to validate ex-
isting literature and offer a robust benchmark for assessing
the multimodal reasoning capabilities of current MLLMs
across three heterogeneous input modalities.

5. Ablation Studies
Our ablation studies offer a thorough evaluation of the pro-
posed MISSRAG framework and prompt engineering strat-
egy. For consistency, experiments are conducted using
OneLLM [22], which in general demonstrates greater ro-
bustness across various missing modality scenarios.
MISSRAG: on the Effect of the k Parameter. The ob-
jective of this ablation study is to investigate the impact of
the hyperparameter k in MISSRAG, which determines the
number of prototypes retrieved by our RAG-based frame-
work. We conduct experiments both with and without iso-
lating the MISSRAG from the PE component across all
tasks and datasets discussed in this paper. The results, pre-
sented in Table 3, indicate that our solution consistently out-
performs the baseline in 22 out of 23 cases. Moreover, en-
hancing our MISSRAG with our proposed PE yields per-
formance improvements compared to utilizing the MISS-
RAG alone. These results suggest that the two techniques
are complementary, thereby justifying their combined ap-
plication. However, it is also important to note that if in-
corporating all modalities does not result in optimal perfor-
mance for the MLLM, the most effective approach may be
to employ only PE. This is because PE is designed to en-
hance the model behavior regardless of the available input



Task Audio-Video Audio-Video Audio-Video-Text
Question Answering Captioning Sentiment Analysis

Dataset MUSIC-AVQA VALOR32K CharadesEgo MOSI MOSEI
Metric Accuracy CIDEr CIDEr Accuracy Accuracy

Method MA MV C MA MV C MA MV C MA MV MT MAV MAT MVT C MA MV MT MAV MAT MVT C

OneLLM [22] 48.89 39.48 49.86 20.41 3.34 26.40 2.98 1.20 3.76 48.54 73.91 40.23 75.88 38.34 41.69 56.41 30.82 57.70 40.22 58.75 38.14 46.10 40.09

PE 51.72 41.81 51.32 23.79 3.77 26.42 3.25 1.22 4.17 68.66 79.74 44.90 76.11 39.48 42.72 75.51 48.12 64.58 49.43 47.69 31.79 41.73 61.56
MISSRAG (k = 1) 49.61 45.55 - 25.00 15.83 - 3.93 2.2 - 65.60 63.41 39.50 56.71 49.97 38.78 - 42.20 36.34 28.89 31.53 26.23 22.04 -
MISSRAG (k = 3) 49.67 45.69 - 22.87 17.13 - 3.99 2.17 - 63.70 63.85 46.79 53.35 40.96 44.46 - 41.43 31.70 26.89 26.74 31.36 22.84 -
MISSRAG (k = 5) 49.50 46.27 - 21.01 17.16 - 4.22 2.14 - 62.68 60.50 47.52 51.60 49.56 48.98 - 41.34 30.78 24.55 25.80 31.96 21.59 -

MISSRAG+PE (k = 1) 50.85 46.66 51.32 27.19 16.57 26.42 4.03 2.5 4.17 76.09 74.49 47.81 76.68 54.08 45.48 75.51 59.18 51.66 46.16 52.35 45.89 47.66 61.56
MISSRAG+PE (k = 3) 50.86 46.80 51.32 24.86 17.34 26.42 4.00 2.31 4.17 76.38 74.05 48.69 72.01 49.71 51.02 75.51 57.67 49.04 41.21 43.79 44.47 37.48 61.56
MISSRAG+PE (k = 5) 50.83 47.29 51.32 23.50 17.49 26.42 4.25 2.60 4.17 76.53 72.74 49.98 70.85 49.42 50.73 75.51 57.07 47.91 37.33 42.91 41.83 31.90 61.56

MISSRAG+PE (k = 1)† 50.71 46.57 51.32 26.73 16.37 26.42 3.97 2.46 4.17 78.43 73.85 48.25 72.68 54.96 45.34 75.51 55.42 49.33 48.89 52.16 45.78 46.51 61.56

Table 3. Ablation study on the impact of the number k of retrieved prototypes in MISSRAG conducted on OneLLM. The symbol † denotes
that the prototype pool is constructed by merging the prototype pools from all datasets.

Task Question Answering Captioning
Dataset MUSIC-AVQA VALOR32K
Metric Accuracy CIDEr

Method MA MV C MA MV C

OneLLM [22] 48.89 39.48 49.86 20.41 3.34 26.40

System Message 51.72 41.81 51.32 23.79 3.77 26.42
User Instruction 48.68 41.02 49.27 23.00 3.58 27.30

Table 4. Ablation study on system message vs. user instruction,
performed on OneLLM. Best results in bold.

modalities, whereas MISSRAG aims to improve the model
performance to closely approximate that of the Complete
modality scenario. Consequently, when the Complete sce-
nario represents the optimal condition, performance gains
are maximized. Otherwise, a performance decline may be
observed. Nevertheless, this decline is not attributable to
our methodology but rather stems from inherent limitations
within the MLLM backbone (i.e., OneLLM).

Robustness of MISSRAG. We design an experiment to
evaluate the robustness of our MISSRAG in a scenario
where the prototype pool is generic and not customized for
each dataset. To this end, we create a unified pool by merg-
ing the prototype pools from all datasets and repeat the ex-
periment with k = 1. The results, presented in the last
row of Table 3, indicate that there is no significant deviation
compared to the MISSRAG+PE (k = 1) case.

Prompt Engineering: in the System Message vs. in the
User Instruction. A key research question is whether our
PE technique is more effective when applied to the system
message or the user instruction. To explore this, we eval-
uate both variants on the MUSIC-AVQA and VALOR-32K
datasets, as presented in Table 4. The results demonstrate
that applying our PE technique to the system message yields
superior results compared to applying it to the user instruc-
tion across both tasks. This indicates that enhancing the
initial system message with the PE method contributes to
increased robustness against missing modalities.

Prompt Engineering: Compensation Strategy. The ob-
jective of this ablation study is to demonstrate that incor-
porating the Compensation Strategy for Missing Modali-
ties (CSMM) immediately following the string indicating

Task Question Answering Captioning
Dataset MUSIC-AVQA VALOR32K
Metric Accuracy CIDEr

Method MA MV C MA MV C

OneLLM [22] 48.89 39.48 49.86 20.41 3.34 26.4

PE 51.72 41.81 51.32 23.79 3.77 26.42
PE w/o CSMM 49.68 40.79 51.01 23.06 3.69 26.27

Table 5. Ablation study on the prompt engineering compensation
strategy, performed on OneLLM. Best results in bold.

the input modality status within the system message leads
to enhanced performance. To isolate the impact of CSMM
from that of prototypes, we employ only PE in this setting.
Specifically, within the input modality string, the possible
values for each modality are Present/Missing, whereas
the CSMM prompts, as detailed in Table 1, correspond to
prompts without retrieval and are designed to induce the
model to infer a plausible context for the missing modality
using the available ones. Our results, presented in Table 5,
indicate that, across both datasets, adding the instructions
to infer missing modalities after the input modality status
yields superior performance.

6. Conclusion

In this work, we have presented the first comprehensive
study on the robustness of MLLMs under missing modality
conditions. To address this challenge, we have introduced
MISSRAG, a novel multimodal RAG-based framework, en-
hanced with a tailored Prompt Engineering (PE) strategy,
designed to effectively handle missing modalities. Notably,
our approach is the first to jointly manage three distinct
modalities within a RAG-based paradigm. Extensive ex-
periments across five diverse datasets spanning audio-visual
question answering, audio-visual captioning, and audio-
video-text sentiment analysis have demonstrated that the
proposed solution significantly outperforms baseline meth-
ods. Specifically, MISSRAG enhances input quality by sub-
stituting missing information with contextually appropriate
candidates, while PE improves model robustness to incom-
plete inputs. Combined, MISSRAG+PE consistently yields
superior performance in complex multimodal scenarios.
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Supplementary Material

A. Additional Implementation Details
MLLM Backbones. In our experiments, we employ
OneLLM [22], ChatBridge [53], and VideoLLaMA 2 [13]
as our MLLMs. OneLLM maps non-textual modali-
ties to token representations of shape (ntokens, dmodel) with
ntokens = 30 and dmodel = 4,096, reflecting the representa-
tion depth of LLaMA-7B [44] and supporting a maximum
input size of 2,048 tokens. In contrast, ChatBridge maps
non-textual modalities to token representations of shape
(ntokens, dmodel) with ntokens = 32 and dmodel = 5,120, cor-
responding to the representation depth of Vicuna-13B [15]
and also supporting a maximum input size of 2,048 tokens.
Finally, VideoLLaMA 2 is based on Qwen2 [48], operat-
ing with dmodel = 4,096, and maps the video modality to
ntokens = 676 and the audio modality to ntokens = 1,496.

Default System Message and User Instructions. To dis-
close our prompts, Table 6 provides the default system mes-
sages for each input modality combination and Table 7 pro-
vides the default user instructions for each task.

Enhanced Visualization of the Prompt Engineering De-
tails. In Table 9, we provide an enhanced visualization of
the PE details, also reported the main paper.

Custom Evaluation Metric. In our experiments, we em-
ploy a custom evaluation metric to assess the performance
in audio-video-text sentiment analysis on the MOSI and
MOSEI datasets. A pseudo-code version of the aforemen-
tioned metric is exemplified in Algorithm 1.

B. Additional Quantitative Results
Beyond validating our approach on ChatBridge, OneLLM,
and VideoLLaMA 2 as done in the main paper, we here
provide additional experiments with other MLLMs, namely
VITA [18], and Qwen2.5-Omni [47]. Specifically, VITA
is based on the Mixtral 8×7B LLM and is trained using
a bilingual instruction tuning strategy. Instead, Qwen2.5-
Omni, based on the Qwen2.5-7B LLM, handles interleaved
video and audio inputs using a thinker-talker architecture

Input Modalities Prompt

A chat between a curious human and an artificial
intelligence assistant. The assistant gives helpful, detailed,

and polite answers to the human’s questions,

Audio-Video combining visual and audio data.

Audio-Video-Text combining visual, audio and textual data.

Table 6. Default system messages for all modality combinations.

Algorithm 1 Custom evaluation function for classification.
TASK CLASSES← [“class 1”, . . ., “class n”]
correct← 0
total← 0
for each sample in samples do

total← total + 1
label← sample[“label”]
negative label← concat(“not”, label)
prediction← sample[“prediction”]
count match← 0
for each ground truth in TASK CLASSES do

if ground truth is in prediction then
count match← count match + 1

end if
end for
if count match > 1 then

continue
else if (label is in prediction) and not(negative label is in prediction)
then

correct← correct + 1
end if

end for
accuracy← correct / total

and a time-aligned positional encoding scheme.
Results are reported in Table 8 for the audio-visual ques-

tion answering (i.e., MUSIC-AVQA) and audio-visual cap-
tioning (i.e., VALOR32K and CharadesEgo) tasks.3 As
shown, MISSRAG+PE consistently improves both VITA
and Qwen2.5-Omni across all tasks and metrics. When
applied to VITA, our method yields gains of up to +6.92,
+3.70, and +0.43 on MUSIC-AVQA, VALOR32K, and
CharadesEgo, respectively, when the visual information is
missing (i.e., MV). Similarly, for Qwen2.5-Omni, we ob-
serve consistent improvements of +4.92, +1.53, and +3.15
under the same MV scenario. These results further validate
the generality and effectiveness of our approach across di-
verse MLLM architectures.

3For these MLLMs, we exclude MOSI and MOSEI due to the poor
performance of the models on the audio-video-text sentiment analysis task.

Task Prompt

Audio-Video
Question Answering {Question} Answer the question using a single word or phrase.

Audio-Video
Captioning

Provide a detailed description for the given video in one
sentence.

Audio-Video-Text
Sentiment Analysis

Input text: Text. Given the class set [ClassList]
What is the sentiment of this video?

Table 7. Default user instruction prompt table for all tasks.



Dataset MUSIC-AVQA VALOR32K CharadesEgo
Metric Accuracy CIDEr CIDEr

Method MA MV C MA MV C MA MV C

VITA [18] 33.24 28.12 42.70 22.30 6.90 25.60 10.62 3.21 11.31
MISSRAG+PE 39.38 35.04 42.80 24.30 10.60 25.70 11.64 3.64 11.33
Improvement +6.14 +6.92 +0.10 +2.00 +3.70 +0.10 +1.02 +0.43 +0.02

Qwen2.5-Omni [47] 62.77 51.78 62.42 8.75 7.38 10.10 9.30 2.24 14.15
MISSRAG+PE 64.21 56.70 64.42 9.45 8.91 13.64 12.33 5.39 16.29
Improvement +1.44 +4.92 + 2.00 +0.70 +1.53 +3.54 +3.03 +3.15 +2.14

Table 8. Results with additional state-of-the-art MLLMs. Best
results in bold.

C. Qualitative Results
Fig. 4 illustrates sample qualitative results that demonstrate
the effectiveness of our proposed framework in the context
of audio-visual-text sentiment analysis, specifically evalu-
ated on the MOSI dataset [50].

The subfigures in the leftmost column depict three exam-
ples illustrating scenarios where all modalities (i.e., video,
audio, and text) are present. Under these conditions, the
MLLM model successfully interprets the sentiment of the
reference video and provides the correct output. The sub-
figures in the middle column provide examples where one
modality is absent. Specifically, the top example lacks
video input, the middle example lacks audio, and the bot-
tom example lacks the input text. In these cases, the model
struggles to accurately determine sentiment, resulting in
wrong answers. Finally, the subfigures in the rightmost col-
umn demonstrate how our proposed approach (i.e., MIS-
SRAG+PE) effectively addresses the challenge of missing
modalities. By retrieving an appropriate prototype and em-
ploying a carefully designed prompt, the MLLM is better
equipped to interpret the available inputs, thus mitigating
the effects of the missing modality input.



A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
Input Modality Status: Video: Prototipe;
Audio: Present; Input text: Present.
The assistant receives an approximate visual
data and uses it to generate a response as
accurately as possible.
###Human: Input text: HE IS AVERAGE. Given
the class set [Positive, Neutral, Negative] What
is the sentiment of this video?
###Assistant:

(retrieved video) (reference audio)

MissRAG+PE

The video is expressing a positive sentiment.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Input text: HE IS AVERAGE. Given
the class set [Positive, Neutral, Negative] What
is the sentiment of this video?
###Assistant:

(missing video) (reference audio)

Default Prompt

The sentiment of the video is negative.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Input text: HE IS AVERAGE. Given
the class set [Positive, Neutral, Negative] What
is the sentiment of this video?
###Assistant:

(reference video) (reference audio)

Default Prompt

The video is a recording of a woman talking about a
man, and the woman is expressing a positive
sentiment towards him.

CORRECT
ANSWER

CORRECT
ANSWER

WRONG
ANSWER

(a) Missing Video Scenario

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
Input Modality Status: Video: Present; Audio:
Prototipe; Input text: Present.
The assistant receives an approximate audio
data and uses it to generate a response as
accurately as possible.
###Human: Input text: BUT I DO NOT TAKE RYAN
REYNOLDS SERIOUSLY FOR SHIT IN THIS
MOVIE. Given the class set [Positive, Neutral,
Negative] What is the sentiment of this video?
###Assistant:

(reference video) (retrieved audio)

MissRAG+PE

The sentiment of this video is negative.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Input text: BUT I DO NOT TAKE RYAN
REYNOLDS SERIOUSLY FOR SHIT IN THIS
MOVIE. Given the class set [Positive, Neutral,
Negative] What is the sentiment of this video?
###Assistant:

(reference video) (missing audio)

Default Prompt

Based on the video, the girl is talking about a movie
and giving her opinion on it. she is wearing
headphones and seems to be enjoying the movie.
therefore, I would say the sentiment of the video is
positive.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Input text: BUT I DO NOT TAKE RYAN
REYNOLDS SERIOUSLY FOR SHIT IN THIS
MOVIE. Given the class set [Positive, Neutral,
Negative] What is the sentiment of this video?
###Assistant:

(reference video) (reference audio)

Default Prompt

The sentiment of this video is negative, as the
woman is expressing her dislike for the movie "the
proposal" and its star ryan reynolds.

CORRECT
ANSWER

CORRECT
ANSWER

WRONG
ANSWER

(b) Missing Audio Scenario

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
Input Modality Status: Video: Present; Audio:
Present; Input text: Prototipe.
The assistant receives an approximate input
text data and uses it to generate a response as
accurately as possible.
###Human: Input text: BECAUSE I JUST GOT
REALLY BORED WITH IT. Given the class set
[Positive, Neutral, Negative] What is the
sentiment of this video?
###Assistant:

(reference video) (reference audio)

MissRAG+PE

The sentiment of this video is negative.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Given the class set [Positive,
Neutral, Negative] What is the sentiment of this
video?
###Assistant:

(reference video) (reference audio)

Default Prompt

The video is of a woman giving a speech, and she is
wearing a black shirt. The video is not clear enough
to determine her exact emotions, but based on her
attire, it is likely that she is expressing a positive
sentiment.

A chat between a curious human and an artificial
intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human's questions, combining audio, visual and
textual data.
###Human: Input text: BUT THE ADULTS WERE
THE ADULTS THAT WERE ACTUALLY
ATTEMPTING TO WATCH IT AND THE PEOPLE
WHO WERE MY AGE AS WELL WERE LIKE WHAT
DID I JUST SEE. Given the class set [Positive,
Neutral, Negative] What is the sentiment of this
video?
###Assistant:

(reference video) (reference audio)

Default Prompt

Based on the information provided, it seems that
the video is a recording of a woman speaking in
front of a camera. the video is described as a "rant"
and the woman is seen talking about her feelings.
Therefore, I would say that the sentiment of this
video is negative. CORRECT

ANSWER
CORRECT
ANSWER

WRONG
ANSWER

(missing input text) (retrieved input text)

(c) Missing Text Scenario

Figure 4. Qualitative results on the MOSI dataset [50] evaluated under three missing modality scenarios using OneLLM as underlying
model. From top to bottom, the scenarios are: missing video, missing audio, and missing text. In each scenario, the subfigures are
organized into three columns. The leftmost column depicts the baseline method under the complete scenario; the middle column shows the
baseline method under the missing modality scenario; and the rightmost column illustrates our proposed technique, namely MISSRAG+PE.
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Table 9. Prompt Engineering (PE) details for all missing modality scenarios and retrieval modes.
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