
Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Survey paper

State-of-the-art review and benchmarking of barcode localization methods
Enrico Vezzali a , Federico Bolelli a ,∗, Stefano Santi b, Costantino Grana a

a Department of Engineering ‘‘Enzo Ferrari’’, University of Modena and Reggio-Emilia, Via P. Vivarelli 10, Modena 41125, MO, Italy
b Datalogic S.r.l., Via San Vitalino, 13, Lippo 40012, BO, Italy

A R T I C L E I N F O

Dataset link: ditto.ing.unimore.it/barber

Keywords:
Barcodes
Benchmarking
Quick response codes
Object detection

A B S T R A C T

Barcodes, despite their long history, remain an essential technology in supply chain management. In addition,
barcodes have found extensive use in industrial engineering, particularly in warehouse automation, component
tracking, and robot guidance. To detect a barcode in an image, multiple algorithms have been proposed in the
literature, with a significant increase of interest in the topic since the rise of deep learning. However, research
in the field suffers from many limitations, including the scarcity of public datasets and code implementations
which hinders the reproducibility and reliability of published results. For this reason, we developed ‘‘BarBeR’’
(Barcode Benchmark Repository), a benchmark designed for testing and comparing barcode detection algo-
rithms. This benchmark includes the code implementation of various detection algorithms for barcodes, along
with a suite of useful metrics. Among the supported localization methods, there are multiple deep-learning
detection models, that will be used to assess the recent contributions of Artificial Intelligence to this field. In
addition, we provide a large, annotated dataset of 8 748 barcode images, combining multiple public barcode
datasets with standardized annotation formats for both detection and segmentation tasks. Finally, we provide
a thorough summary of the history and literature on barcode localization and share the results obtained from
running the benchmark on our dataset, offering valuable insights into the performance of different algorithms
when applied to real-world problems.
1. Introduction

Barcodes are a visual data representation with the property of
being easily readable by a machine. They are an automatic identi-
fication technology that greatly improves the accuracy and speed of
data collection and identification (Weng and Yang, 2012). For this
reason, plus their cost-effectiveness, barcodes have found extensive use
in various real-world engineering applications. First of all, they are a
cornerstone of supply chain management (McCathie, 2004), playing
a crucial role in managing the flow of goods from manufacturers
to consumers. They help in tracking inventory, managing logistics,
and improving efficiency (Weng and Yang, 2012). Secondly, barcodes
are extensively used in warehouses to automate the process of goods
receipt, storage, and dispatch, helping in reducing manual errors and
improving the speed of operations (Kubáňová et al., 2022). Barcodes
are also a valuable tool in automation, with applications ranging from
unmanned retail (Niu et al., 2023) to robot guidance (Kalinov et al.,
2020; Soliman et al., 2023). Other notable applications are compo-
nent tracking in manufacturing (Weng and Yang, 2012) and product
recognition in retail (Melek et al., 2024). Despite their inception over
seven decades ago, barcodes continue to hold their ground in today’s

∗ Corresponding author.
E-mail addresses: enrico.vezzali@unimore.it (E. Vezzali), federico.bolelli@unimore.it (F. Bolelli), stefano.santi@datalogic.com (S. Santi),

costantino.grana@unimore.it (C. Grana).

digital age. The AIDC 100 projects a consistent utilization of barcodes
in the forthcoming years (Kapsambelis, 2005), a prediction that is
corroborated by scholarly literature (Kubáňová et al., 2022). This is
reflected in the projected growth of the barcode reader market, which
was valued at $7.4 billion in 2022 and is expected to reach $13.3 billion
by 2032, growing at a CAGR of 6.3% from 2023 to 2032 (Vaishnavi
Shyamsundar Mate, 2023).

Barcodes come in two categories: one-dimensional (1D or linear)
and two-dimensional (2D). Linear barcodes encode data with lines of
varying widths and spacing but have limited data storage capacity.
To overcome this issue, 2D barcodes were introduced. Their structure
allows data to be stored on both vertical and horizontal axes, offering
greater capacity compared to 1D barcodes (Taveerad and Vongpradhip,
2015). The process of reading a barcode can usually be divided into
two macro steps: localization and decoding. Some papers focus on
both steps (Gallo and Manduchi, 2010; Tekin and Coughlan, 2012;
Klimek and Vamossy, 2013). However, most of the publications just
focus on the localization part. Especially in recent times, it has become
https://doi.org/10.1016/j.engappai.2025.110259
Received 6 May 2024; Received in revised form 23 December 2024; Accepted 6 Fe
vailable online 21 February 2025
952-1976/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
bruary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0001-9643-8645
https://orcid.org/0000-0002-5299-6351
https://orcid.org/0000-0002-4792-2358
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
https://ditto.ing.unimore.it/barber
mailto:enrico.vezzali@unimore.it
mailto:federico.bolelli@unimore.it
mailto:stefano.santi@datalogic.com
mailto:costantino.grana@unimore.it
https://doi.org/10.1016/j.engappai.2025.110259
https://doi.org/10.1016/j.engappai.2025.110259
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2025.110259&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E. Vezzali et al.

T

i
e

e

t

t

l

T
Y

K

o

i

w

f
i

w
e
c
o

J

G

T
C

w
f

l
t

I

m
i
i

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
the norm to use public third-party libraries to handle the decoding
step (Wudhikarn et al., 2022). The two most used libraries are ZXing1

and Zbar.2 Each software tool can handle both 1D and 2D barcodes.
herefore, our primary focus from now on will be on the localization.

Barcode recognition is often used in industrial applications, where
accuracy and speed are paramount. Until recently, real-time speed for a
localization algorithm was achievable solely through the computation
of hand-crafted features from the image. In this regard, linear barcodes
have two main features: they are made of high-contrast lines and
these lines are parallel. To exploit these two features, most barcode
localization methods typically involve an initial edge-detection phase
and an aggregation phase where edges with similar directions are
grouped (Viard-Gaudin et al., 1993; Tekin and Coughlan, 2012; Yun
and Kim, 2017). Two-dimensional barcodes are instead made up of two
sets of parallel lines rotated 90◦ from one another. A common strategy
s to use the Hough Transform to find a set of perpendicular lines (Hu
t al., 2009; Szentandrási et al., 2012; Klimek and Vamossy, 2013).

With the significant breakthrough of AlexNet in 2012 (Krizhevsky
t al., 2012), deep-learning methods have come to dominate the field

of Computer Vision (Bhatt et al., 2021). The recent increase in the
significance of deep learning has been fueled by the appearance of
large, high-quality, publicly available labeled datasets, coupled with
he huge advancements in GPU computing (Voulodimos et al., 2018).

Initially, neural networks were used to process extracted features of the
image, since end-to-end models require more processing time. This was
he case for the method proposed by Zamberletti et al. (2013), which

used a neural network to process the Hough Transform of the image.
However, in the following years, the use of end-to-end models became
more prominent. According to Wudhikarn et al. (2022), between the
years 2015 and 2021, 25 publications introduced a method for barcode
ocalization (either 1D, 2D, or both) that utilized deep learning tech-

niques. Out of the 25 papers reviewed, 9 utilized a custom CNN model.
he remaining papers employed publicly available architectures, with
OLO (Redmon et al., 2016) being the most popular among them,

followed by Faster R-CNN (Ren et al., 2015) and SSD (Liu et al., 2016).
Numerous detection methods for barcodes and QR codes based on deep
learning have been proposed, with many papers featuring comparisons
between two or more methods (Sörös and Flörkemeier, 2013; Yun and

im, 2017; Kamnardsiri et al., 2022). However, several issues prevent
definitive conclusions about the methods’ effectiveness.

Dataset availability. Most of the literature relies mostly on just
two public datasets for 1D barcodes (Wudhikarn et al., 2022): Arte-
Lab (Zamberletti et al., 2010) and WWU Muenster (Wachenfeld et al.,
2008), comprising 430 and 1 055 images respectively. For 2D barcodes,
the most used public dataset is Dubska QR (Dubská et al., 2016) of
400 images. These datasets are relatively small, and as subsequent
publications continue to improve their scores on these datasets, it be-
comes challenging to determine whether these improvements translate
to real-world applications. Furthermore, these datasets are certainly too
small to train Neural Networks for object detection. A few other public
datasets have been used, but they are also quite small (Wudhikarn
et al., 2022). Datasets of barcodes of more than 5 000 images are just
f two types: private (Ventsov and Podkolzina, 2018; Yuan et al.,

2019; Do and Pham, 2021; Zhang et al., 2021) or synthetic (Bodnár
et al., 2018; Quenum et al., 2021; Monfared et al., 2021). However,
the reliance on synthetic datasets for evaluation can lead to mislead-
ng results. For instance, the method proposed by Katona and Nyúl

(2013) achieved an accuracy of 96.8% on a synthetic dataset, but
hen tested on the Muenster Dataset, the average accuracy dropped

to 19.8% (Sörös and Flörkemeier, 2013). Another issue is the lack of
standardization across datasets. Different datasets employ different for-
mats, which complicates the use of multiple datasets without additional
preprocessing.

1 https://github.com/zxing/zxing
2 https://github.com/ZBar/ZBar
 t

2
Reproducibility. Most of the publications in this research area are not
ollowed by a publication of the code used for the test. This makes
t much more time-consuming to reproduce the experiments since it

requires writing the code from scratch. Even in the rare instances
here code is available, it is uncommon to find subsequent studies that

mploy the same algorithm, datasets, and metrics. The use of different
oding languages and frameworks further complicates the comparison
f different methods.

Metrics consistency. The third issue is that different studies use
varying metrics, leading to contradictory results even with identical
algorithms and datasets. For instance, Sörös and Flörkemeier (2013)
compared his proposed method against Tekin and Coughlan (2012)
and Gallo and Manduchi (2010) methods on the Muenster dataset. The
accard’s Index (J) (Etude, 1901) was used as a metric, with a good

detection defined as J>0.5. Tekin’s method ranked highest, followed by
allo and then Sörös. Nevertheless, in a following paper (Yun and Kim,

2017) compared the same algorithms on the same dataset using the
Dice Similarity Coefficient (DSC) (Dice, 1945) with a threshold of 0.8.

his time, Sörös’ method ranked first, followed by Gallo’s and Tekin’s.
hanging the evaluation metric can completely alter the ranking of

these methods. Therefore, it is crucial to use a consistent set of metrics
hen comparing different experiments and to employ multiple metrics

or a comprehensive comparison.
The goal of this paper is to address these challenges in barcode

ocalization research. In particular, this work offers several key con-
ributions:

1. First, we will present an exhaustive review of existing methods
for barcode localization, synthesizing the various approaches
present in the literature. This will provide a strong foundation
for understanding the current landscape of the field;

2. The public release of an annotated dataset of 8 748 images.
This dataset merges multiple public datasets of 1D and 2D
barcodes, standardizing the annotation formats. While all the
annotations are provided in VGG (Dutta and Zisserman, 2019)
format, they can be easily converted to COCO (Lin et al., 2014)
or YOLO (Redmon et al., 2016) formats using a conversion script
that we make available. Barcode regions are described with
polygons, allowing both detection and segmentation;

3. The creation of BarBeR (Barcode Benchmark Repository), a pub-
lic benchmark for barcode detection. This benchmark includes a
set of default algorithms for comparison but can be readily ex-
tended to encompass any localization algorithm. In addition, our
benchmark incorporates a range of metrics that can be utilized
to evaluate the performance of barcode detection algorithms.
The benchmark is open-source, as well as the scripts to train
deep-learning models on the proposed dataset, promoting the
reproducibility of our findings and facilitating further research
in the field by allowing researchers to build upon our work.

This article is structured as follows. Section 2 describes the publicly
available datasets we found, their characteristics, and our process
for developing a unified annotation standard. Section 3 provides a
history of proposed methods for both 1D and 2D barcode detection.
n Sections 4 and 5 we detail the publicly available detection algo-

rithms and the deep-learning architectures selected to be included in
our benchmark, respectively. After that, Section 6 explores evaluation

etrics used in object detection and our implementation choices. Then
n Section 7, we can find a description of our benchmark’s repository,
ts structure, and the available tests and methods. Sections 8, 9, and 10

present the collected benchmark results, covering single-class detection
(1D or 2D), multi-class detection, and timing measurements. Finally,
he ending conclusions will be presented in Section 11.

https://github.com/zxing/zxing
https://github.com/ZBar/ZBar

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Fig. 1. Sample of images of the dataset. Some images contain a single linear barcode or a single bidimensional barcode. Other images, instead, contain multiple codes, sometimes
of multiple classes.
2. Datasets

For this project, we needed a large enough dataset to reliably
compare different algorithms and train object detection neural net-
works. For this reason, we reviewed the available literature on barcode
detection and decoding to identify publicly available datasets.
WWU Muenster. Released in 2008, it is the oldest dataset we have
found. It contains 1 055 images of 1D barcodes taken with a Nokia
N95 (Wachenfeld et al., 2008). All the images have a resolution of
2 592×1 944.
Artelab Medium Barcode 1D (Zamberletti et al., 2010). Published in
2010, it consists of 430 images of linear barcodes. All the images depict
a single barcode near the center of the image, with a rotation of ± 30◦.
Szentandrasi QR. Published by Szentandrási et al. (2012), the dataset
consists of 115 images of QR codes. Most of these images have a
resolution of 15 MegaPixels and contain multiple QR codes.
Dubska QR. The same group of the Szentandrasi QR dataset published
another dataset of 810 images containing QR codes, half of which are
captured with a camera and the other half with a smartphone (Dubská
et al., 2016). There are 25 images common to both the Szentandrasi
QR and Dubska QR datasets; these were removed from the former to
avoid duplication.
Arte-Lab Extended 1D. In 2013, the group that published the Arte-
Lab dataset, released two additional datasets: Arte-Lab Rotated 1D and
Arte-Lab Extended 1D, of 365 and 155 images each (Zamberletti et al.,
2013). Both contain only images of 1D barcodes. However, as Arte-Lab
Rotated uses the same objects captured in the original Arte-Lab dataset,
we decided not to include it in our study due to its high similarity.
Bodnar-Huawei. Released in 2018, it consists of 98 images of QR codes
taken with a Huawei smartphone, all of which contain a single code and
have a resolution of 1 600×1 200 (Bodnár et al., 2018).
Skku Inyong DB. Released in 2017, the dataset contains 325 im-
ages at a resolution of 1 440×2 560 with multiple instances of linear
barcodes (Yun and Kim, 2017).
ZVZ-Real. Another interesting dataset was published by Zharkov and
Zagaynov (2019) under the name ZVZ-Real. The dataset contains 921
3
images of a large variety of 1D and 2D barcodes. Some images depict
multiple barcodes.
DEAL KAIST. It is the largest barcode dataset that we collected (Do
and Kim, 2021) and is usually referred to as DEAL KAIST Barcode or
QuickBrowser dataset. The dataset contains 3 308 images of barcodes
(mostly linear) at various resolutions (from 141×200 to 3 480×4 640).
InventBar and ParcelBar. Finally, Kamnardsiri et al. (2022) worked
on developing other two datasets of linear barcodes, used for neural
network training and testing. The two datasets have 527 and 844
images each. ParcelBar in particular, is one of the most difficult datasets
for barcode detection that we have found since the barcodes are very
small compared to the size of the images.
OpenFood Facts. In addition to these public datasets used in literature,
we collected other 185 images of linear barcodes from Open Food Facts
github.3
The collected datasets account for a total of 8 748 images with 9 818 an-
notated barcodes, 8 062 linear, and 1 756 two-dimensional. An example
of images contained in the dataset is presented in Fig. 1, while Table 1
provides a breakdown of every dataset used, plus some information
about them. The symbologies of 1D barcodes included are Code 128,
Code 39, EAN-2, EAN-8, EAN-13, GS1-128, IATA 2 of 5, Intelligent Mail
Barcode, Interleaved 2 of 5, Japan Postal Barcode, KIX-code, PostNet,
RoyalMail Code, and UPC. For 2D barcodes, the included symbologies
are Aztec, Datamatrix, PDF-417, and QR Code.

One immediate challenge we encountered was that not all datasets
had annotations, and the ones available followed widely different
formats. Some annotations were designed for object detection, others
for segmentation. Furthermore, there were unannotated 2D barcodes in
the datasets intended for 1D detection and vice versa. Consequently, we
created new annotations for all the images in the dataset. Datalogic’s
proprietary software was used to automate the generation of the anno-
tations. This tool generates a 4-point polygon for every barcode read
and provides additional information about the code, such as its type,

3 https://github.com/openfoodfacts/openfoodfacts-ai/issues/15.

https://github.com/openfoodfacts/openfoodfacts-ai/issues/15

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 1
List of the public datasets collected for the benchmark. # Images is the number of images in the dataset. Minimum and maximum resolution refers to the resolution of the image
with the minimum and the maximum number of pixels in the dataset respectively. # 1D and # 2D represent the number of linear and two-dimensional barcode instances in the
dataset respectively.

Dataset name # Images Minimum resolution Maximum resolution # 1D # 2D

Arte-Lab Medium 1D (Zamberletti et al., 2010) 430 1 152×864 2 976×2 232 430 7
Arte-Lab Extended 1D (Zamberletti et al., 2013) 155 648×488 648×488 165 3
Bodnár-Huawei QR (Bodnár et al., 2018) 98 1 600×1 200 1 600×1 200 0 98
DEAL KAIST Lab (Do and Kim, 2021) 3 308 141×200 3 480×4 640 3 378 76
Dubska QR (Dubská et al., 2016) 810 402×604 2 560×1 440 0 806
InventBar (Kamnardsiri et al., 2022) 527 480×640 480×640 530 33
Muenster 1D (Wachenfeld et al., 2008) 1 055 1 600×1 200 2 592×1 944 1 068 1
OpenFood Facts 185 390×520 5 984×3 376 187 5
ParcelBar (Kamnardsiri et al., 2022) 844 1 108×1 478 1 478×1 108 1 196 17
Skku Inyong DB (Yun and Kim, 2017) 325 1 440×2 560 1 440×2 560 368 10
Szentandrasi QR (Szentandrási et al., 2012) 90 1 024×768 4 752×3 168 0 225
ZVZ-Real (Zharkov and Zagaynov, 2019) 921 407×576 3 288×4 930 740 475

Total 8 748 200 × 141 5984 × 3376 8062 1756
Fig. 2. (a) shows an element (or module) of a linear barcode, while (b) shows an
element (or module) of a 2D barcode.

and the encoded string. In addition, we have information about the
pixel density of the barcode, usually measured in pixels per element
(PPE), i.e., the mean width of the smallest element in a barcode (shown
in Fig. 2). This measure can be referred to as pixels per module (PPM).

While most codes were annotated this way (8 096), a few (1 722)
were un-decodable due to blur, noise, or incorrect scale (either too high
or too low resolution). These additional codes have been annotated by
hand using VGG annotator (Dutta and Zisserman, 2019) and they lack
some information like the PPE. The missing fields have been filled with
a symbolic value of −1. As said, the annotations use polygons instead
of boxes and thus are suitable for both detection and segmentation.

3. Algorithms history

3.1. Early barcode localization efforts

Joseph Woodland and Bernard Silver invented the linear barcode in
1949 and patented it in 1952 (Norman J. Woodland, 1949). Alongside
the barcode proposal, they described a method for reading it. The idea
was to focus light directly on the code and a photocell was tasked to
convert the reflective light into an analog signal. Finally, an analog
circuit was used to decode this signal. Laser scanners became the
primary decoding method in the ‘70s, leading to numerous optical
innovations (Hildebrand, 1977; Reich, 1977; Neyroud et al., 1980).
However, these systems required the reader to be directly aimed at the
barcode. The 1990s saw the advent of 2D image barcode reading. A
significant advantage of this approach is the ability to read a barcode
from a wider field of view, but to do so, the barcode must first be
located. Viard-Gaudin et al. (1993) proposed an algorithm using a set
of Sobel filters and blob detection. Liao et al. (1995) used an edge
detector to find the barcode edges and their direction to separate
the barcode from the background. The following year, Jain and Karu
(1996) explored the use of Multi-Layer Perceptrons (MLP) (Bishop,
4
1995) for texture classification. In one of the experiments, the authors
showed how this method could be used for barcode localization and
segmentation. The Hough Transform (Duda and Hart, 1972) gained
traction for linear barcode localization with Muniz et al. (1999)’s work.
The same year, Ottaviani et al. (1999) presented the first QR code
localization method which was based on gradient histograms.

3.2. Evolution and recent approaches

Over the years, numerous publications have addressed the lim-
itations of barcode localization and expanded their effectiveness to
more general applications. Chai and Hock (2005) proposed a method
based on skeletonization (Gonzalez and Woods, 2002) to locate linear
barcodes. A method based on texture direction analysis to localized 2D
barcodes was tested by Hu et al. (2009). Gallo and Manduchi (2010)
described a method for locating linear barcodes that is fast enough to be
used on a mobile phone of the time. However, it lacked the characteris-
tic of being rotation invariant. Tekin and Coughlan (2012) released an
Android application called BLaDE (Barcode Localization and Decoding
Engine), that was orientation invariant and could work in real-time on
smartphones. The same year, Szentandrási et al. (2012) showed the
Hough Transform’s applicability to QR code localization. Sörös and
Flörkemeier (2013) proposed a matrix structure-based method for 1D
and 2D barcodes, while Zamberletti et al. (2013) described a detection
algorithm based on the Hough Transform and machine learning.

3.3. The deep learning era

Chou et al. (2015) marked a shift by utilizing a small convolutional
neural network (CNN) for QR code detection. Deep-learning-based
methods have since dominated the field, with the notable exception
of Yun and Kim (2017), which relied on the orientation histogram. In
the same year, Hansen et al. (2017) trained and tested a YOLO-v2 net-
work on the ArteLab and WWU Muenster datasets, achieving impressive
results. The following year, Li et al. (2018) reported even higher accu-
racy scores on the same datasets using a Faster R-CNN. Zharkov and
Zagaynov (2019) proposed the use of a Dilated-Convolution network
for the segmentation of various linear and bidimensional barcodes. Do
and Kim (2021) introduced a unified model for real-time detection
and decoding of barcodes and simple objects by integrating multi-digit
recognition into a one-stage detection model. More recently, Quenum
et al. (2021) tackled barcode detection in ultra-high-resolution images
with a pipeline combining a modified Region Proposal Network (RPN)
and a Y-Net segmentation network, surpassing YOLO-v4 and Mask
R-CNN in both speed and performance. Numerous other papers on
deep-learning-based barcode detection have been proposed in recent
years (Wudhikarn et al., 2022).

E. Vezzali et al.

M

T
e
t
h

G
t
t
b
y
m
n
t
v
d

e
h

m
p
o
V
f
a
T
i
t
i
8

d
i

o
h
f
i

a

T

h

w
M
h
o

b
h
c
a

r

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 2
Characteristics of the public algorithms tested.

Method 1D 2D Multi
ROI

Rotation
invariance

Rotated
box

Gallo and Manduchi (2010) ✓ ✗ ✗ ✗ ✗

Sörös and Flörkemeier (2013) ✓ ✓ ✗ ✓ ✗

Zamberletti et al. (2013) ✓ ✗ ✓ ✓ ✓

Yun and Kim (2017) ✓ ✗ ✓ ✓ ✗

4. Available algorithms

Numerous algorithms for linear and two-dimensional barcodes have
been proposed, yet many lack publicly available implementations. In
total, we selected five functioning algorithms implemented in C++,
which are the ones with the highest number of comparisons and have
a public implementation available. These algorithms are: Gallo and

anduchi (2010), Tekin and Coughlan (2012), Sörös and Flörkemeier
(2013), Zamberletti et al. (2013) and Yun and Kim (2017). Since

ekin’s method generates scan lines rather than detection boxes, it was
xcluded from our comparison, but it is included in the repository for
esting. Because our benchmark is written in Python, these methods
ave been compiled to be loaded in Python using Ctypes.

The rest of this section will detail how the available detection
algorithms work. In Table 2, a summary of the main characteristics of
these selected methods is also reported.

4.1. Gallo and Manduchi

This localization method was proposed by Gallo and Manduchi
(2010). For brevity, we will refer to this algorithm with Gallo et al. or

allo’s method. This algorithm was engineered for speed, enabling it
o operate on contemporary mobile devices. The method was designed
o accurately identify linear barcodes, even in images compromised by
lur or noise. However, it is tailored specifically for 1D barcodes and
ields a single Region of Interest, making it unsuitable for detecting
ultiple barcodes within a single image. A key assumption underpin-
ing this algorithm is the orientation of the barcode. It assumes that
he barcode is positioned horizontally, with its parallel lines aligned
ertically. Only rotations of less than ±30◦ are allowed for reliable
etection.

The first step is to calculate a heatmap 𝐼𝑒(𝑛) which is the difference
between the horizontal and vertical derivatives:

𝐼𝑒(𝑛) = |𝐼𝑥(𝑛)| − |𝐼𝑦(𝑛)| (1)

𝐼𝑒(𝑛) should reasonably have higher values in the barcode region than
lsewhere. A box filter is applied to 𝐼𝑒(𝑛) to obtain the smoothed
eatmap 𝐼𝑠(𝑛). After that, 𝐼𝑠(𝑛) is binarized with a single threshold

using Otsu’s method (Otsu, 1979). The binarized heatmap may contain
ultiple blobs, but the method assumes that only a single barcode is
resent in the image. Therefore, only one blob is selected, and it is the
ne that contains the pixel 𝑛0 which is the one that maximizes 𝐼𝑠(𝑛).
ertical and horizontal lines, parallel to the image borders, are traced

rom 𝑛0, forming a rectangle with sides parallel to the axes of the image
nd containing the intersections of these lines with the edge of the blob.
he horizontal line 𝑙(𝑛) that passes through the center of this rectangle

s chosen as the scanline. Usually, the blob includes the quiet zone of
he barcode too, because of the large size of the box filter. To remove
t, the scanline is reduced from both sides until an intensity of less than
5% of the mean is found.

4.2. Soros and Florkemeier

Sörös and Flörkemeier (2013) proposed a barcode detection method
esigned for both 1D and 2D barcodes that is orientation invariant and
s quite resistant to blur. For brevity, we will refer to this algorithm
 h

5
with Soros et al. or Soros’s method. However, this method can only
utput a single ROI for each barcode type. The idea is to compute two
eatmaps, one for linear codes and one for two-dimensional codes. The
irst step is to compute the structure matrix 𝑀 for every pixel 𝑝 of the
mage:

𝑀 =
[

𝐶𝑥𝑥 𝐶𝑥𝑦
𝐶𝑥𝑦 𝐶𝑦𝑦

]

(2)

where the 𝑐𝑖𝑗 entries of 𝑀 are computed from the horizontal and
vertical derivatives of the image 𝐼𝑥 and 𝐼𝑦 over an image patch 𝐷
round the pixel 𝑝 using a window 𝑤:

𝐶𝑖𝑗 =
∑

(𝑥,𝑦)∈𝐷
𝑤(𝑥, 𝑦)𝐼𝑖(𝑥, 𝑦)𝐼𝑗 (𝑥, 𝑦) (3)

The values 𝑐𝑖𝑗 are used to compute the Unidirectional Variance Detector
and the Omnidirectional Variance Detector defined by Ando (2000).

hese two measures are indicated respectively with 𝑚1 and 𝑚2 and are
defined as:

𝑚1 =
(𝐶𝑥𝑥 − 𝐶𝑦𝑦)2 + 4𝐶2

𝑥𝑦

(𝐶𝑥𝑥 + 𝐶𝑦𝑦)2 + 𝜖
(4)

𝑚2 =
4(𝐶𝑥𝑥𝐶𝑦𝑦 − 𝐶2

𝑥𝑦)

(𝐶𝑥𝑥 + 𝐶𝑦𝑦)2 + 𝜖
(5)

The values 𝑚1 and 𝑚2 are computed for every pixel, generating two
eatmaps. The value 𝑚1 (Unidirectional Variance Detector) is strong

where edge structures are present, and 𝑚2 (Omnidirectional Variance
Detector) is high at corners. The value 𝜖 is a small constant that avoids
0∕0 conditions in flat areas. After calculating 𝑚1 and 𝑚2, a box filter
is applied to each heatmap. The two box-filtered maps are linearly
combined to get the two barcode saliency maps 𝑠1 and 𝑠2, one for
linear codes and the other for 2D codes. Finally, the resulting images
are thresholded, and the barcode box is found by tracing the binary
image from the pixel with maximal strength, following Gallo’s method.

4.3. Zamberletti et al.

This method was proposed by Zamberletti et al. (2013). The first
step of the algorithm is to apply Canny Edge Detector (Canny, 1986)
to the image 𝐼 obtaining the edge map 𝐼𝑒. Once the edge map has
been determined, the Hough Transform of 𝐼𝑒 is computed in the two-
dimensional Hough Transform space H. A line in 𝐼 is represented as
a point in 𝐻 and the (𝑥, 𝑦) coordinates of this point represent 𝜌 and
𝜃, where 𝜌 is the distance of this line from the origin and 𝜃 is its
angle. The two-dimensional Hough transform of the image indicated

ith 𝐴𝐻 , is divided into cells of size 𝑚 × 𝑛 that are processed by a
ulti-Layer Perceptron (MLP) one at a time. The output of the MLP

as the same dimension as the input, so that processing each cell we
btain a matrix with the same dimensions of 𝐴𝐻 . Each value of 𝐴𝐻

indicates the probability of that cell to contain the lines corresponding
to a barcode. The algorithm assumes that all barcodes are oriented with
the same angle and this angle is predicted by taking the angle 𝜃𝑏 with
the most barcode lines, i.e. the column of 𝐴𝐻 with the highest sum of its
elements. After the angle prediction, the algorithm proceeds by finding
the set 𝑆 of all the segments in 𝐼 by applying the same technique
of Galamhos et al. (1999) to 𝐴𝐻 . We call 𝑆𝑏 ⊂ 𝑆 the set of all the
segments with angles differing less than ±5◦ from 𝜃𝑏. A binary image
𝐼𝑠𝑏 is created, in which the intensity value assigned to the pixels of the
segments of 𝑆𝑏 is 1, and the others are assigned a 0. 𝐼𝑠𝑏 is then rotated
y 90◦ −𝜃𝑏 degrees, so that most of the segments are vertical. Then, two
istograms are defined to describe the intensity profile of the rows and
olumns of the binary image. Each bin of these histograms is computed
s the sum of the elements of a row/column in the binary image. A

smoothing filter is applied to each histogram. Finally, the bounding
box of the barcode is determined as the intersection area between the
ows and columns associated with the remaining non-zero bins in the
istograms. This algorithm can generate multiple rotated boxes, but all

E. Vezzali et al.

v

b
T
s
i
s
a

e

o
p
u
t

e

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 3
Characteristics of the deep-learning models used in our tests.
Network Type Backbone # Parameters GFlops @(640 × 640)

Zharkov et al. One-Stage dilated-net 0.0424M 1.528
Faster R-CNN Two-Stage resnet50_fpn_3x 41.755M 134.38
RetinaNet One-Stage resnet50_fpn_3x 34.014M 151.54
YOLO-v8 One-Stage yolov8 medium 25.903M 39.66
YOLO-v8 Nano One-Stage yolov8 nano 3.157M 4.429
RT-DETR Transformer-based HGNetv2-L 31.005M 54.17
t
w

l
b
e

i
t

l

detections have the same angle. This can be useful in the case of a single
label with multiple barcodes, where every code has the same angle of
rotation.

The open source code available online4 is compatible with OpenCV
ersions ≤ 2. We modified it to make it compatible with OpenCV 4.

4.4. Yun and Kim

This detection method was described by Yun and Kim (2017). For
revity, we will refer to this algorithm with Yun et al. or Yun’s method.
he algorithm is designed for the detection of linear barcodes and
upports multiple detections per image. The first step is to compute the
mage derivatives ∇𝐼𝑥 and ∇𝐼𝑥 using the Sobel operator to the gray-
cale version of the image and use them to compute the module and
ngle of the gradient:

𝑚𝑎𝑔(𝑝) = ∇𝐼𝑥 + ∇𝐼𝑦 (6)

𝑎𝑛𝑔(𝑝) = ar ct an(∇𝐼𝑦
∇𝐼𝑥

) (7)

An orientation histogram ℎ𝐺 is computed by counting how many
pixels with a magnitude bigger than the threshold 𝑇𝑚𝑎𝑔 there are for
very orientation. The histogram has 18 bins in total, each of which

covers 10◦. The mapping 𝑉 𝑚𝑎𝑝
ℎ𝐺

(𝑏) separates the principal orientation
components from the weak orientation components analyzed in the ℎ𝐺:

𝑉 𝑚𝑎𝑝
ℎ𝐺

(𝑏) =
{

𝑂𝑠, if ℎ𝐺(𝑏) > 𝑇ℎ𝑖𝑠𝑡
𝑂𝑤, otherwise

(8)

𝑇ℎ𝑖𝑠𝑡 = max
𝑏

(ℎ𝐺(𝑏)) × 𝛼 (9)

where 𝑂𝑠 denotes a principal orientation component, 𝑂𝑤 is a weak
rientation component and 𝑇ℎ𝑖𝑠𝑡 is the threshold used to separate the
rincipal orientation components. The constant 𝛼 is a ratio constant
sed to calculate 𝑇ℎ𝑖𝑠𝑡 and 0 < 𝛼 < 1. For detecting the salient regions,
he entropy scheme is used (Chang and Yang, 1983). The image is

divided into non-overlapping cells. To each cell, we assign a direction,
and this direction is the orientation with the highest value in the
local orientation histogram ℎ𝐿. We indicate with 𝑖𝑚𝑎𝑥 the index of the
maximum component of ℎ𝐿. The entropy of every patch 𝑓 is calculated
as follows:

𝐸(𝑓) =
{

𝐽 , if 𝑉 𝑚𝑎𝑝
ℎ𝐺

(𝑖𝑚𝑎𝑥) = 𝑂𝑠

0, otherwise
(10)

𝐽 =
∑

𝑖
ℎ𝐿(𝑖) − ℎ𝐿(𝑖𝑚𝑎𝑥) (11)

𝐸(𝑓) is small if the principal component of the patch is much stronger
than the others, indicating a high probability of a barcode region. The
ntropy map 𝐸(𝑓) is thresholded to obtain the saliency map 𝑆(𝑓).

After setting the important region, a box filter is used to blur 𝑆(𝑓)
to eliminate the noise regions and to connect the separated barcode
regions. Then the saliency map is binarized using Otsu’s binarization.
Finally, to determine each blob’s central point and bounding box,
connected components labeling is used.

4 https://github.com/SimoneAlbertini/BarcodeDetectionHough
6
5. Deep-learning models

As discussed earlier, most of the barcode detection algorithms pro-
posed in the latest years relied on deep-learning detection models.
Some authors released their trained architectures like Zharkov and
Zagaynov (2019). We decided to include it in our benchmark, but due
o the overlap between our test set and the training set of this network,
e re-trained it from scratch. In addition, we selected a few mainstream

architectures pre-trained on the MS-COCO (Lin et al., 2014) dataset.
These networks were then fine-tuned on our dataset using transfer
learning. In total, six different architectures have been tested: (Zharkov
and Zagaynov, 2019), Faster R-CNN (Ren et al., 2015), RetinaNet (Lin
et al., 2017b), YOLO Medium and Nano (Redmon et al., 2016) and
RT-DETR (Lv et al., 2023). Table 3 contains a summary of the main
characteristics of these architectures.

5.1. Zharkov and Zagaynov

In 2019, Zharkov and Zagaynov (2019), proposed a custom convo-
utional neural network architecture for the detection of 1D and 2D
arcodes. For brevity, we will refer to this architecture with Zharkov
t al. Their architecture is composed of three key modules:

• Downscale module. This module consists of three convolutional
layers and two downscaling layers. It reduces the input image
resolution by a factor of four, expanding the network’s receptive
field for more efficient processing;

• Context module. Inspired by the work of Yu and Koltun (2015),
this module utilizes dilated convolutions to further increase the
networks’ receptive field. It comprises 9 convolutional layers with
different dilation factors;

• Classification layer. It is a 1 × 1 convolutional layer, with 1 +
𝑛_𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠 outputs, where 𝑛_𝑐 𝑙 𝑎𝑠𝑠𝑒𝑠 it is the number of different
barcode types (two in our tests).

The network produces a multi-channel output map at a quarter of the
nput resolution. The first channel indicates potential barcode locations
hrough higher values. After applying a threshold, individual blobs are

extracted, and bounding boxes are generated. The other channels of the
output are used to classify every blob, with the highest-scoring channel
determining the barcode’s type. Finally, a confidence score based on the
mean value of predicted pixels in the first channel is assigned to each
detected box.

To train the network, we used the loss function proposed by its
original paper. This loss function is designed to prioritize high recall
over high precision.

5.2. Faster R-CNN

Faster R-CNN (Ren et al., 2015) has been the first near-realtime deep
earning detector to be developed (Zou et al., 2023). Faster R-CNN is a

two-stage object detection network, meaning that it generates regions
of interest before defining candidate bounding boxes. Its architecture
is comprised of two main components:

https://github.com/SimoneAlbertini/BarcodeDetectionHough

E. Vezzali et al.

i

o
d
b

D
l
u
R

d
a
e
e
h
p

Y

v

p
r

m

f
f

n
r

t
b
d
a

t
s
h

h
t

R

t

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
• Region Proposal Network (RPN). A fully convolutional network
that proposes regions. A convolutional backbone is used to extract
features from the image. Then, for each sliding window of the
feature map, it proposes a set of regions. The proposals are
parameterized relative to a set of reference anchor boxes;

• Fast R-CNN detector. A neural network that given an image
and a set of possible ROIs detects up to 𝑘 objects per ROI.
For every object, a bounding box and a classification label is
generated (Girshick, 2015).

The main contribution of Faster R-CNN is that the RPN runs nearly
cost-free because it runs directly on the extracted features. In this
way, the feature extraction backbone needs to run only one time,
and its output is used by both the RPN and Fast R-CNN. A following
improvement to Faster R-CNN was the Feature Pyramid Network (Lin
et al., 2017a), which links high-level and bottom-level feature data,
mproving small-sized object detection.

This neural network was selected for our tests because it is the sec-
nd most used for barcode detection (Kamnardsiri et al., 2022). In ad-
ition, Faster R-CNN is one of the most cited papers for deep-learning-
ased object detection. In our experiments, we used ResNet-50 (He

et al., 2016) with FPN as a backbone for Faster R-CNN.

5.3. RetinaNet

The RetinaNet model was first described by Lin et al. (2017b).
RetinaNet is a one-stage network composed of a backbone network and
two task-specific subnetworks:

• Backbone network. It is composed of a bottom-up pathway and
a top-down pathway with lateral connections. The bottom-up
pathway is used for feature extraction, calculating the feature
maps at different scales. The top-down pathway upsamples the
spatially coarser feature maps in subsequent steps. Same-scale
features from both pathways are then merged together.

• Subnetwork for object detection. It does class-agnostic bound-
ing box regression. Detection is done relative to translation-
invariant anchor boxes at different scales.

• Subnetwork for object classification. Predicts the probability of
object presence at each spatial position for each of the anchors
and object classes. It does not share weights with the object
detection subnetwork.

RetinaNet introduces a novel loss function called Focal Loss, which
is designed to address the issue of class imbalance during training.

espite being a very famous object detector, there are no barcode
ocalization papers that have used RetinaNet. In our experiments, we
sed ResNet-50 FPN as a backbone, the same that we selected for Faster
-CNN.

5.4. YOLO

YOLO, introduced by Redmon et al. (2016), revolutionized object
etection with its speed, paving the way for real-time applications. It is
 one-stage network that predicts bounding boxes and probabilities for
ach region of the image. Despite initial localization accuracy issues,
specially for small objects. The following iterations of the networks
ave paid more attention to this problem, significantly increasing its
erformance (Zou et al., 2023):

• Yolo v2 (Redmon and Farhadi, 2017) incorporated batch normal-
ization, anchor boxes, and dimension clusters;

• Yolo v3 (Redmon and Farhadi, 2018) enhanced the backbone
and enabled multi-scale detection by making predictions at three
different scales of granularity (Hussain, 2023);

• Yolo v4 (Bochkovskiy et al., 2020) introduced feature aggrega-
tion (Lin et al., 2017a) and an SPP block (He et al., 2015) to
increase the receptive field and feature separation.
7
Other incremental changes in architecture, like anchor-free detec-
tion and improvements in the loss functions, have been applied from

OLO-v5 (Jocher, 2020) to YOLO-v7 (Wang et al., 2022).
In January 2023, Ultralytics, the same team that released YOLO-

5 (Jocher, 2020), confirmed the newest member of the YOLO family
with the launch of YOLO-v8 (Jocher et al., 2023). While a detailed
aper and additional features are still in the pipeline for the YOLO-v8
epository, preliminary comparisons indicate that it surpasses its pre-

decessors, establishing a new benchmark in the YOLO series (Hussain,
2023).

We decided to include YOLO in our benchmark since it is one of the
ost famous object detection architectures and the one most used in

barcode detection literature (Wudhikarn et al., 2022). In addition, the
ocus on performance and efficiency makes YOLO an ideal candidate
or industrial applications (Hussain, 2023).

For our tests, we used the latest version of this network i.e. YOLO-
v8. In particular, we tested two architectures: YOLO-v8 Medium and
YOLO-v8 Nano. The former is the standard architecture for YOLO-v8.
The latter, while maintaining a similar structure, is a more compact
etwork with fewer layers and channels, resulting in an eightfold
eduction in weight.

5.5. RT-DETR

Transformers, introduced by Vaswani et al. (2017), have revolu-
ionized the field of Natural Language Processing (NLP). They are
ased on the attention mechanism, which allows the model to focus on
ifferent parts of the input sequence when generating the output. This
bility to handle dependencies regardless of their position in the input

makes Transformers particularly effective for NLP tasks. The incredible
achievements of Transformers in NLP motivated researchers to explore
heir applications in computer vision tasks. Today, the highest mAP
core on the MS-COCO dataset (Lin et al., 2014) for object detection
as been achieved by Co-DETR (Zong et al., 2023), a transformer-

based detector (DETR) (Shah and Tembhurne, 2023). However, the
igh computational cost of DETRs makes them hardly suitable for real-
ime applications. To solve this problem, Lv et al. (2023) proposed in

2023 a faster DETR, called RT-DETR, that could work in real time.
T-DETR architecture is made up of three main components:

• Backbone network. It is a convolutional neural network that
extracts features from the image at different scales;

• Hybrid encoder. It transforms the multi-scale features from the
backbone into a sequence of image features;

• Transformer decoder. First, an IoU-aware query selection is
employed to select a fixed number of image features from the
encoder. These selected features serve as initial object queries for
the decoder. Finally, the decoder, equipped with auxiliary pre-
diction heads, iteratively refines these object queries to generate
bounding boxes and confidence scores.

It is important to note that this architecture, along with the other
ransformer-based networks, eliminates the need for non-maxima sup-

pression, thereby accelerating the post-processing stage. We opted to
incorporate RT-DETR into our evaluations to ensure the inclusion of a
transformer-based network in our tests. As pointed out before, these
networks are currently excelling in object detection, yet no existing
papers have applied transformers to barcode detection.

6. Evaluation metrics

One of the primary objectives of our research is to introduce a suite
of metrics for barcode detection and localization that are needed to
evaluate the test results. In particular, we have described two main
types of algorithms so far:

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
• Non-deep-learning-based. These methods utilize traditional com-
puter vision techniques for object detection. The image features
are typically hand-crafted. While they may incorporate smaller
machine-learning models for feature processing, they are not
trained end-to-end;

• Deep-learning-based. Rely on deep-learning models for both
feature extraction and processing.

The key difference is that non-deep-learning algorithms output
boxes and classes, but not confidence scores. Deep-learning detection
models, however, generate confidence scores for each predicted bound-
ing box. Consequently, we will divide the metrics into two categories:
metrics that do not require confidence scores and metrics that do.

6.1. Metrics that do not require confidence

6.1.1. Intersection over union
To evaluate the quality of detection we want to measure how close

the detected bounding boxes are to the ground-truth bounding boxes.
By far the most common metric used to do so is the Intersection over
Union (IoU), also called Jaccard Index (Etude, 1901). This measure-
ment is done independently for each object class (Padilla et al., 2021).
The IOU is equal to the area of the overlap (intersection) between the
predicted bounding box 𝐵𝑝 and the ground-truth bounding box 𝐵𝑔 𝑡
divided by the area of their union:

𝐼 𝑜𝑈 =
area of overlap
area of union = (12)

An ideal match has an IoU of 1, while no intersection results in an
IoU of 0. The closer to 1, the better the detection. IoU values are
usually expressed in percentages, with 50% and 75% being the most
used thresholds (Padilla et al., 2021).

6.1.2. Precision and recall
Precision measures a model’s ability to identify only relevant ob-

jects, while recall assesses its success in finding all existing objects. To
calculate the precision and recall values, each detected bounding box
must first be classified as:

• True Positive (TP). A correct detection matching a ground-truth
object;

• False Positive (FP). An incorrect detection in an empty area or
a misplaced detection of an existing object;

• False Negative (FN). An undetected ground-truth object.

Given a dataset of 𝐺 ground truth and a model that outputs a total of
𝑁 detections, we define as 𝑆 the number of correct predictions (𝑆 ≤ 𝐺).
Precision and recall can be computed as follows:

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 = 𝑆

𝑁
(13)

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 = 𝑆

𝐺
(14)

Matching ground truth and prediction boxes can be complex, as there
could be multiple predictions with an IoU over the threshold for a
single ground truth box or a single prediction can overlap multiple
ground truth boxes. For the purpose of this study, we have adopted
the same methodology used in the COCO API, which was developed
to evaluate detections on the MS-COCO dataset (Lin et al., 2014).
Essentially, it employs a greedy algorithm that examines the detection
boxes individually. For each detection box, the algorithm finds the
unmatched ground-truth box with the highest Intersection over Union

(IoU) score. If the IoU exceeds a threshold, a match is established,

8
and the corresponding ground-truth box is removed from the pool of
unmatched ones. If the IoU falls below the threshold, it is considered
a false positive. Any remaining unmatched ground-truth boxes at the
end are deemed false negatives.

6.1.3. 𝐹1 score
The 𝐹1 score is the harmonic mean of precision and recall, and

synthesize the prediction performance in a single scalar value:

𝐹1 = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐 𝑎𝑙 𝑙 (15)

6.1.4. Curves
As of now, we have considered a fixed threshold for the IoU (𝑇𝐼 𝑜𝑈).

This approach results in a static level of false positives and negatives,
limiting our understanding of the model’s performance across different
levels of strictness. In particular, precision and recall are monotonically
decreasing functions of the IoU threshold 𝑇𝐼 𝑜𝑈 . To gain a deeper
insight into the model’s behavior, visualizing the relationship between
precision, recall, or F1-score and the varying IoU threshold can be
highly beneficial.

6.2. Metrics that require confidence

6.2.1. Average precision
By setting a confidence threshold 𝜏, detections with confidence

greater than 𝜏 are considered positive, and the rest are negatives. This
allows us to express precision, recall, and 𝐹1-score as functions of 𝜏:

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝜏) = 𝑇 𝑃 (𝜏)
𝑇 𝑃 (𝜏) + 𝐹 𝑃 (𝜏) (16)

𝑅𝑒𝑐 𝑎𝑙 𝑙(𝜏) = 𝑇 𝑃 (𝜏)
𝑇 𝑃 (𝜏) + 𝐹 𝑁(𝜏)

(17)

𝐹1(𝜏) = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝜏) × 𝑅𝑒𝑐 𝑎𝑙 𝑙(𝜏)
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝜏) + 𝑅𝑒𝑐 𝑎𝑙 𝑙(𝜏) (18)

Both 𝑇 𝑃 (𝜏) and 𝐹 𝑃 (𝜏) decrease with 𝜏, while 𝐹 𝑁(𝜏) increases. For
this reason, the recall is a decreasing function of 𝜏, while nothing
can be said a priori about precision. Indeed, the graph of 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝜏)
versus 𝑅𝑒𝑐 𝑎𝑙 𝑙(𝜏) often exhibits a zig-zag pattern in real-world sce-
narios (Padilla et al., 2021). The Average Precision (AP) is defined
as the Area Under the Curve (AUC) of the Precision–Recall curve.
To handle the curve’s zig-zag pattern, we used the COCO API’s N-
point interpolation method with N=101 to compute AP. In the N-point
interpolation, the first step is to take 𝑁 points equally spaced in the
interval [0, 1], that is:
𝑅𝑒(𝑛) = 𝑁 − 𝑛

𝑁 − 1 , 𝑛 = 1, 2,… , 𝑁 (19)

where 𝑅𝑒(𝑛) is the 𝑛th recall value. Now, we would like to have a
value of precision 𝑃 𝑟 for every value of recall, to compute the Riemann
Integral of the function 𝑃 𝑟(𝑅𝑒(𝜏)). The problem is that we do not always
have a single value of recall given a value of precision. To solve the
issue, we define the function 𝑃 𝑟𝑖𝑛𝑡𝑒𝑟𝑝(𝑅), a continuous function of 𝑅𝑒,
as follows:

𝑃 𝑟𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) = max
𝑘|𝑅𝑐(𝜏(𝑘))≥𝑅

{𝑃 𝑟(𝜏(𝑘))} (20)

Finally, we can compute the AP with the following equation:

𝐴𝑃 = 1
𝑁

𝑁
∑

𝑛=1
𝑃 𝑟𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑟(𝑛)) (21)

6.2.2. Mean average precision
For datasets with many classes, the mean Average Precision (mAP)

is defined as the average AP over all classes. It is used to have a single
AP score for all classes:

𝑚𝐴𝑃 = 1
𝐶

𝐶
∑

𝑖=1
𝐴𝑃𝑖 (22)

where 𝐴𝑃𝑖 is the AP value for the 𝑖th class and 𝐶 is the total number
of classes being evaluated.

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 4
Number of 1D barcodes with module size within a specified range (in pixels).

PPE Range 0-0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 3.5–4.0 > 4.0 Undefined

Num. Examples 14 1 035 1 340 1 405 1 176 545 163 61 28 1 044
Fig. 3. This histogram depicts the distribution of object sizes (calculated as the square
root of their area in pixels) within the dataset after images were resized to a 640-pixel
longest side. The 𝑥-axis displays the square root of the area, the 𝑦-axis indicates the
object count. Each bin has a range of 32 pixels.

6.2.3. AP@𝑇𝐼 𝑜𝑈
We indicate with AP@𝑇𝐼 𝑜𝑈 the average precision given an IoU

threshold 𝑇𝐼 𝑜𝑈 . Usually, the threshold 𝑇 is 0.5.

6.2.4. AP@[0.5:0.05:0.95]
The AP@[0.5:0.05:0.95] is the mean of all the values 𝐴𝑃@𝑇𝐼 𝑜𝑈

with 𝑇𝐼 𝑜𝑈 in the range 0.5 to 0.95 with a step size of 0.05. Can also
be shortened to AP@[0.5:0.95] or AP@[.5:.95].

6.2.5. AP across scales
The AP across scales is a set of three metrics, indicated with 𝐴𝑃𝑆 ,

𝐴𝑃𝑀 and 𝐴𝑃𝐿. These metrics are equal to the AP@[.5,.05:.95], but
taking into consideration the area of the ground-truth object:

• 𝐴𝑃𝑆 only evaluates small ground-truth objects (area < 322

pixels);
• 𝐴𝑃𝑀 only evaluates medium ground-truth objects (322 < area <

962 pixels);
• 𝐴𝑃𝐿 only evaluates large ground-truth objects (area > 962 pixels).

When evaluating objects of a given size, objects of other sizes (both
ground-truth and predicted) are not considered in the evaluation.

7. Benchmark description

7.1. Repository content

As part of this project, we have developed BarBeR, a benchmark
for barcode localization algorithms. Its code is publicly accessible and
it can be downloaded from GitHub.5 Our dataset, used for running our
tests, can be downloaded from the same GitHub repository. The project
contains the files necessary to build the following publicly available
detection methods: Gallo and Manduchi (2010), Zamberletti et al.
(2013), Sörös and Flörkemeier (2013), Tekin and Coughlan (2012)
and Yun and Kim (2017). Additionally, the project includes scripts for
training (Zharkov and Zagaynov, 2019)’s neural network and other
deep-learning models with Ultralytics or Detectron2 (Wu et al., 2019)
and supports early stopping. The repository contains multiple test

5 https://github.com/Henvezz95/BarBeR
9
Table 5
Precision, Recall and F1-score with an IoU threshold of 0.5. All images contain a single
1D barcode and were resized to have their longest side of 640 pixels. Upward arrows
mean that higher values of the metric indicate better performance.

Detection Method Precision ↑ Recall ↑ F1-score ↑

Gallo et al. 0.533 0.533 0.533
Soros et al. 0.658 0.658 0.658
Zamberletti et al. 0.234 0.340 0.278
Yun et al. 0.806 0.714 0.757
Zharkov et al. 0.725 0.952 0.823
Faster R-CNN 0.981 0.996 0.989
RetinaNet 0.988 0.991 0.990
YOLO Nano 0.978 0.997 0.987
YOLO Medium 0.984 0.998 0.991
RT-DETR Large 0.987 0.999 0.993

scripts and each supports multiple configurations. Here is a breakdown
of the test scripts and their main configuration parameters:

• Single class detection. Runs all the selected algorithms con-
sidering only images with the selected type of barcodes. The
script can be configured to only allow linear barcodes or two-
dimensional barcodes. It is also possible to include only images
with a single Region Of Interest (ROI) or allow multiple ROIs per
image. In addition, it is possible to set the target resolution used
to rescale the images in the test set. Finally, we can specify which
algorithms to use in the test and with which arguments;

• Multi-class detection. Runs all the selected algorithms on all the
images of the test set. As for single class detection, we can choose
the resizing resolution and algorithms included in the test;

• Timing performance. Measures the time required to run the
algorithms. The times can be taken from the average times on
all datasets or a subsection of it.

Test scripts are in Python format. The repository also contains bash
scripts used to run a pipeline of tests. This is useful, for example, for
k-fold cross-validation.

7.2. Methodology

This article will present the results from detection accuracy tests
in both single and multi-class modes. We used k-fold cross-validation
(k=5) for a comprehensive accuracy assessment, dividing the dataset
into five equal sections. Each section was used as a test set, with the
remainder for training. Deep-learning models were trained using 75%
of the training set, with the rest as a validation set for early stopping
(patience 10 epochs). The networks were trained using a batch size of
16 and the Adam optimizer (Kingma, 2014), configured with a learning
rate of 0.001, 𝛽1 = 0.9 and 𝛽2 = 0.999. To augment training data we
applied horizontal and vertical flips, as well as random adjustments
to brightness, contrast, and saturation. The methods of Gallo, Soros,
and Yun were tuned using the entire training set, selecting the optimal
size for the box filter’s window (15 pixels for Soros and Gallo, 30
pixels for Yun). Zamberletti’s method employs a pre-trained MLP model
that works on the Hough Transform. The original MLP network was
trained on the ArteLab Rotated dataset, which is not part of our dataset,
thus preventing any information leakage. Finally, we will measure the
timing for each detection method. For each image, the detection is
run three times and the lowest timing value is taken. This is done to
remove the effect of external factors such as background processes,
CPU loads, one-time initialization overheads, caching, and garbage
collection cycles. All tests were conducted on a PC with an AMD Ryzen

https://github.com/Henvezz95/BarBeR

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Threadripper Pro 5965WX CPU (24 cores), 128 GB DDR4 RAM, and an
RTX 4090 GPU. To provide an example of performance on embedded
systems, we also ran the time performance test on a Raspberry Pi 3B+.

8. Single-class benchmarks

First, the available detection algorithms are tested by considering
just images of a single class, linear barcodes, or 2D barcodes.

8.1. Single 1D barcode

This evaluation focuses on images with a single linear barcode,
allowing us to test all available algorithms, including those that output
a single Region of Interest (ROI). The total number of images included
in this test was 6 811. All images are resized using the method ‘‘resize
by longest side’’. For this test, we decided to set the value of the longest
side to 640 pixels. This is the same size used to test the methods of Gallo
et al. and Zamberletti et al. in their original paper. Soros and Yun’s
methods used instead a higher resolution, 960 × 723 and 1 024×768
respectively. This is also the default resolution for YOLO-v8 (Jocher
et al., 2023) and other object detection networks. At this resolution, our
dataset comprises 42 small objects (area < 322), 2 665 medium objects
(322 < area < 962), and 4 104 large objects (area > 962). Fig. 3 provides
additional information about object size distribution within the dataset.

Most objects fall into the medium and large categories at the se-
lected resolution, suggesting that they are likely easily detectable by
a neural network. However, all traditional methods we have found
in public repositories implement some form of texture detection for
localization. The texture of a barcode, whether linear or bidimensional,
primarily depends on the pixels per element. Barcodes with large
modules have recognizable edges and corners, but if the modules are
small, the texture becomes much more uniform. Ideally, a barcode
detector should always find a barcode that could be decoded. However,
defining the minimum number of pixels per module for a reliable
decode is challenging, as many other factors, such as contrast and
blur, are involved. We can see from the annotations of the dataset
that the automatic labeler was able to decode linear barcodes in the
range of 0.88 to 24.33 pixels per element and 2D barcodes in the
range of 1.21 to 71.1 pixels per element (PPE). However, decoding
at less than 1 PPE for linear barcodes and 2 PPE for 2D barcodes is
usually not guaranteed. In cases of blur or low contrast, the number
of required pixels per element increases significantly. When resizing,
the pixel density scales proportionally to the applied scaling factor.
A more detailed breakdown of the various PPE values at the selected
resize resolution can be seen in Table 4. As can be seen, most of the
barcodes have a pixel density between 1 and 3 pixels per module, which
is typically sufficient for a linear barcode decoder. There are also a few
barcodes with more than 3 pixels per module, peaking at 5.13 pixels
per module. However, over 1 000 barcodes have a PPE <1, indicating
that decoding them at this resolution would be very challenging or even
impossible. Additionally, there are 1 044 barcodes without PPE informa-
tion, suggesting that the automatic labeler was unable to decode them,
and this would likely remain true even after resizing the image. We
can conclude that this dataset would pose a significant challenge for
a barcode reader. However, having a few barcodes with a resolution
lower than required is useful for understanding the limits of a detector
and determining if it could be applied to a downscaled image, for real-
time purposes. Not all the methods tested generate a confidence score,
so, for a fair comparison, we decided to use precision, recall, and F1-
score as metrics. In Table 5 we can see the results of the different
methods considering an IoU threshold of 0.5.

Gallo and Soros’ algorithms produce a single prediction every time,
so their precision, recall, and F1 scores are always the same. However,
considering a single IoU threshold could not be enough for a fair
comparison. A more complete evaluation can be displayed with the
precision, recall, and F1-score curves at different values of 𝑇 . Fig. 4
𝐼 𝑜𝑈

10
Fig. 4. Precision, recall and F1-score curves of detection algorithms at different
thresholds. Images contain one 1D barcode and were resized to have the longest side
equal to 640 pixels.

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Fig. 5. F1-score of the tested detection methods on linear barcodes at different ranges of pixels per element. The picture on the left shows all non-deep-learning-based methods
while the one on the right shows only the deep-learning-based methods.
Fig. 6. This histogram depicts the distribution of object sizes (calculated as the square
root of their area in pixels) within the dataset after images were resized to a 640-pixel
longest side. The 𝑥-axis displays the square root of the area, the 𝑦-axis indicates the
object count. Each bin has a range of 32 pixels.

represents the precision, recall and F1-score curves of the different
methods. Apart from Zharkov’s architecture, all the other end-to-end
neural networks always outperform the other methods in all three
graphs. This was expected since these methods are much more com-
putationally intensive and well-versed for complex detection problems.
Among the tested classic algorithms, Yun and Kim (2017) is by far
the one that performs better at every IoU threshold, meaning this is
probably the suggested method every time a neural network would be
too cumbersome for the task. The methods of Gallo and Soros have
similar performance, with a moderate edge in favor of the second one
at low 𝑇𝐼 𝑜𝑈 . Zamberletti’s method is overall the weakest performer.
Zharkov’s architecture reaches a very high recall, much higher than
what is achieved by the classic algorithms, but scores lower in preci-
sion. All the other deep-learning-based methods reach a near-perfect
precision and recall for 𝑇𝐼 𝑜𝑈 < 0.75. Despite being the two biggest
models, Faster R-CNN and RetinaNet underperform a bit compared to
other networks for 𝑇𝐼 𝑜𝑈 > 0.75, meaning that the generated boxes are a
bit less precise. Overall, RT-DETR is at the top of the leaderboard, but
by an extremely small margin. Interestingly, YOLO Nano has a very
similar performance to YOLO Medium and RT-DETR, despite having
nearly 10 times fewer parameters. This indicates that the simplicity of
11
Table 6
Number of 2D barcodes with module sizes within a specified range (in pixels).

PPE Range 0–1 1–2 2–3 3–4 4–5 5–6 6–7 > 7 Undefined

Num. Examples 6 138 133 102 218 225 155 97 90

Table 7
Precision, Recall and F1-score with IoU threshold of 0.5. All images contain a single
2D barcode and were resized to have their longest side equal to 640 pixels. Upward
arrows mean that higher values of the metric indicate better performance.

Detection Method Precision ↑ Recall ↑ F1-score ↑

Soros et al. 0.140 0.140 0.140
Zharkov et al. 0.727 0.900 0.804
Faster R-CNN 0.981 0.992 0.987
RetinaNet 0.981 0.995 0.988
YOLO Nano 0.962 0.989 0.975
YOLO Medium 0.980 0.990 0.985
RT-DETR Large 0.972 0.997 0.984

this detection task allows small networks to perform very well, without
compromising on accuracy.

Finally, we can study the performance of different algorithms de-
pending on the pixel density of the barcodes. We consider the range
from 0 to 4 pixels per module and divide it into bins of 0.5 pixels per
module. As a single performance metric, we consider the F1-score at
𝑇𝐼 𝑜𝑈 = 0.5. For every bin, we have a different number of examples, as
we can see from Table 4. Fig. 5 shows that methods not based on deep
learning have an optimal pixel-per-module range for accurate detec-
tion. This is because they rely on edge features for localization. We can
see that the range of 1.5 to 3.5 pixels per module is the optimal range
for both Gallo’s and Soros’ detection algorithms. Zamberletti’s method
requires a bit more pixels per element, while the one proposed by Yun
performs better at 1.5 to 2.5 pixels per module. This method is also
the only one that is able to detect some barcodes with <0.5 PPE and is
moderately reliable at 0.5 < ppe < 1.0 without the use of deep learning.
On the other hand, we can see that the deep-learning-based methods
have near-constant performance in the pixels-per-element range that
goes from 0.5 to 4.0. The performance seems to drop a bit under 0.5
pixels per module, but it is hard to draw definitive conclusions with
only 14 samples.

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Fig. 7. Precision, recall, and F1-score curves of 2D barcode detection algorithms at different values of IoU threshold. All images contain one 2D barcode and were resized to have
their longest side of 640 pixels.
8.2. Single 2D barcodes

In this test, we only include examples with a single two-dimensional
barcode. Sörös and Flörkemeier (2013)’s method is the only non-deep-
learning-based method available that also detects 2D barcodes and has
been tested alongside the six neural networks presented so far. The
dataset contained 1 164 images, resized to a maximum edge length of
640 pixels. At this resolution, our dataset included 19 small objects
(area < 322), 202 medium objects (322 < area < 962), and 943 large
objects (area > 962).

A more detailed breakdown of the area distribution is presented in
Fig. 6. The dataset exhibits a bimodal area distribution, with clusters
of larger barcodes, with one group of larger barcodes with an area be-
tween 2402px2 and 3802px2 and the other group of tinier barcodes with
an area between 202px2 and 1402px2. The largest barcodes come mostly
from the Dubska (Dubská et al., 2016) dataset, while the smaller codes
are contained mostly in the ZVZ-Real dataset (Zharkov and Zagaynov,
2019). Most codes are classified as ‘‘large’’. Alongside the object’s area,
module density remains crucial for determining the dataset’s difficulty.
High pixel density in 2D barcodes aids in detecting corners and edges,
even with some image blur. Conversely, low pixel-per-element (PPE)
values obscure these features, making detection harder. As said before,
a density of at least 2 pixels per module is needed for reliable decoding,
but in case of blur and noise, a higher pixel density is required.
However, decodings between 1 and 2 pixels per module are sometimes
possible. Table 6 details the dataset’s PPE distribution, which ranges
from 0.68 to 9.58. Most codes have a density >2.0px/el, suggesting
probable readability, but there are still 144 codes with less than 2 PPE
that would present a decoding challenge. Additionally, 90 barcodes lack
PPE information, implying that even with resizing, reliable decoding is
unlikely. We can conclude that a good portion of the dataset could be
decoded by a two-dimensional barcode reader, but there are still a good
amount of hard cases to make the test more challenging. Not all the
methods tested generate a confidence score, so, for a fair comparison,
we decided to use precision, recall and F1-score as metrics. In Table 7
we can see the results of the different methods considering an IoU
threshold of 0.5. It is clear that the (Sörös and Flörkemeier, 2013)
method, with an F1 score of 0.14, is not a reliable 2D barcode detector.
To better understand how the other methods perform at different IoU
thresholds, we present their Precision, Recall, and F1 curves in Fig. 7.
Zharkov et al. achieves good results, especially in recall, but falls short
of the other deep learning architectures. At a lower 𝑇𝐼 𝑜𝑈 threshold
RetinaNet is the best method, in terms of F1-score. On the other hand,
for 𝑇𝐼 𝑜𝑈 > 0.75 YOLO Medium and RT-DETR are the best performers,
meaning that they generate a more precise bounding box. YOLO Nano
has a similar performance to YOLO Medium, but now the gap is a
12
Fig. 8. F1-score of the tested detection methods on 2D barcodes at different ranges of
pixels per element.

bit larger with respect to the 1D case. Finally, we can analyze the
performance of different algorithms depending on the pixel density of
the 2D barcodes. We consider the range from 1 to 7 pixels per module
and divide it into bins of 1 pixel per module. As a single performance
metric, we consider the F1-score at 𝑇𝐼 𝑜𝑈 = 0.5. For every bin, we have
a different number of examples, as we can see from Table 6. We can
see from Fig. 8 that Soros’s method reaches its peak performance in
the range of 3–5 pixels per module. While the performance degrades
fast outside this range, especially for lower pixel densities. Zharkov
et al. performs better if the PPE is higher than 3, while the other
deep-learning architectures seem to not be affected much by pixel
density.

9. Multi-class benchmarks

We expand our analysis to the entirety of the dataset, encompassing
both 1D and 2D barcode classes. The task is now not only about
detection, but also classification. The available methods for multi-class
and multi-ROI detection are the deep-learning-based models. As previ-
ously observed, deep-learning models significantly outperform classical
methods in this domain. However, implementing them in industrial

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 8
Average precision scores for the tested models across all images of the dataset, resized at different scales. Upward arrows mean that higher values of the metric indicate better
performance.

Longest side resolution Model 1D barcodes 2D barcodes Average

AP@0.5 ↑ AP@[.5:.95] ↑ AP@0.5 ↑ AP@[.5:.95] ↑ mAP@0.5 ↑ mAP@[.5:.95] ↑

640 px

Zharkov et al. 0.905 0.536 0.741 0.468 0.823 0.502
YOLO Nano 0.986 0.902 0.960 0.910 0.973 0.906
YOLO Medium 0.988 0.909 0.976 0.930 0.982 0.920
RT-DETR Large 0.989 0.914 0.973 0.930 0.981 0.922
Faster R-CNN 0.982 0.857 0.967 0.866 0.974 0.862
RetinaNet 0.973 0.848 0.968 0.894 0.970 0.871

480 px

Zharkov et al. 0.380 0.180 0.661 0.465 0.521 0.322
YOLO Nano 0.982 0.889 0.961 0.901 0.972 0.895
YOLO Medium 0.988 0.899 0.966 0.917 0.977 0.908
RT-DETR Large 0.987 0.900 0.968 0.919 0.977 0.910
Faster R-CNN 0.979 0.843 0.953 0.843 0.966 0.843
RetinaNet 0.963 0.830 0.948 0.866 0.955 0.848

320 px

Zharkov et al. 0.530 0.254 0.571 0.382 0.551 0.318
YOLO Nano 0.976 0.860 0.947 0.872 0.961 0.866
YOLO Medium 0.975 0.853 0.946 0.862 0.960 0.857
RT-DETR Large 0.980 0.875 0.955 0.893 0.968 0.884
Faster R-CNN 0.929 0.764 0.928 0.787 0.928 0.775
RetinaNet 0.887 0.740 0.890 0.793 0.888 0.766
Table 9
Number of objects per class and size category across the entire dataset, with
images resized at different resolutions.
Longest side resolution Type Small objects Medium objects Large objects Total

640 px
1D 172 3 613 4 277 8 062
2D 85 611 1 060 1 756
Total 257 4 224 5 337 9 818

480 px
1D 478 4 789 2 795 8 062
2D 157 712 887 1 756
Total 635 5 501 3 682 9 818

320 px
1D 1 813 5 447 802 8 062
2D 421 574 761 1 756
Total 2 234 6 021 1 563 9 818

applications could be challenging due to the high computational costs.
As we will better investigate in Section 10, running these models on
embedded devices requires a lot of time. A potential solution is to
detect barcodes at a lower resolution and execute the decoding phase
at full resolution. We thus decided to run our tests at three different
resolutions, to test the viability of this strategy. First, all images will
be resized to have their longest side equal to 640 pixels, the same
scaling policy adopted for the previous tests. Then, we will resize the
longest side of the images to 480 pixels and 320 pixels, to measure their
performance on downscaled images. For each scale, we re-trained the
models using a training set with the same scale. In Table 9 we see the
number of instances divided by class and size. As expected, at lower
resolution there will be more small objects and less large objects. In
total, 8 748 images are included, with 8 062 instances of 1D barcodes and
1 756 instances of 2D barcodes. To evaluate model performance, we will
calculate the Average Precision at an IoU threshold of 0.5 (AP@0.5)
and the Average Precision across IoU thresholds from 0.5 to 0.95 with
a step size of 0.05 (AP@[.5:.95]) for each class. In addition, we will
consider the corresponding mean Average Precision values (mAP@0.5
and mAP@[.5:.95]) for each model.

The results in terms of AP@0.5 and AP@[.5:.95] are presented in
Table 8. An overall comparison of the results obtained is depicted in
the bar chart in Fig. 9. Zharkov’s method remains the weaker model
among the tested ones but still achieves a respectable mAP@0.5 score
of 0.823 at the 640 pixels scale. However, we can see quite a huge drop
in performance at the other two scales. The other models perform well
at all tested resolutions. The drop in performance from 640 pixels to
480 pixels is small for most models while downscaling to 320 pixels
has a more noticeable impact on performance. At the 640 pixels scale,
Faster R-CNN and RetinaNet achieve lower scores than other models
13
Fig. 9. Values of mAP@[.5:.95] of different models at three different scales: longest
side resized to 640 pixels, longest side resized to 480 pixels, and longest side resized
to 320 pixels. The tests were conducted considering all images in the dataset.

while YOLO Medium and RT-DETR deliver the highest mAP@0.5 and
mAP@[.5:.95] respectively. At the two other scales, Faster R-CNN and
RetinaNet remain at the bottom of the leaderboard, but Faster R-CNN
seems to perform a bit better. RT-DETR is the best model across all
metrics considered, with an increase in lead at the lowest resolution.
Surprisingly, YOLO Nano has better metrics across all categories con-
cerning YOLO Medium at 320 pixels resize, while this is not true at 480
pixels resize. Finally, we measure the Average Precision across scales
for the lowest resolution (longest side resized to 320 pixels). Results are
shown in Table 10. As expected, the small object category is the one
with the lowest scores overall. Large 2D codes seem to be quite easier to
detect than large 1D barcodes. The ranking amongst different models
remains the same across scales. The only exception is that RetinaNet
struggles more than Faster R-CNN at small scales, but has better scores
for the medium and large categories.

10. Time measurements

In this section, we present inference times for the barcode detection
algorithms under evaluation. This analysis is crucial for barcode detec-
tion applications, many of which operate on embedded devices with
limited computational resources. To assess performance across diverse
use cases, we conducted benchmarks on two contrasting hardware

E. Vezzali et al.

a

F
d
r
w
a
i
b
d
i
p
t
r
i

R
t
t
w
t
a

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 10
Average precision across scales. 𝐴𝑃𝑆 , 𝐴𝑃𝑀 , 𝐴𝑃𝐿 are the AP[.5:.95] for objects with small (< 322), medium (> 322∧ < 962) and large (> 962) ground truth areas respectively. Test
images have been resized to have a maximum side length of 320 pixels. Upward arrows mean that higher values of the metric indicate better performance.

Model 1D barcodes 2D barcodes Average

𝐴𝑃𝑆 ↑ 𝐴𝑃𝑀 ↑ 𝐴𝑃𝐿 ↑ 𝐴𝑃𝑆 ↑ 𝐴𝑃𝑀 ↑ 𝐴𝑃𝐿 ↑ 𝑚𝐴𝑃𝑆 ↑ 𝑚𝐴𝑃𝑀 ↑ 𝑚𝐴𝑃𝐿 ↑

Zharkov et al. 0.050 0.360 0.439 0.005 0.139 0.678 0.028 0.25 0.558
YOLO Nano 0.641 0.886 0.922 0.613 0.845 0.966 0.627 0.866 0.944
YOLO Medium 0.633 0.878 0.900 0.633 0.841 0.947 0.633 0.859 0.923
RT-DETR Large 0.681 0.897 0.929 0.669 0.878 0.975 0.675 0.887 0.952
Faster R-CNN 0.464 0.810 0.841 0.526 0.748 0.853 0.495 0.779 0.847
RetinaNet 0.362 0.813 0.838 0.311 0.799 0.941 0.337 0.806 0.890
Table 11
Average time required for detection on PC and on Raspberry PI. All images have been resized to have the longest side to 640 pixels. The ∞
symbol indicates that there was not enough RAM to run the algorithm. Downward arrows mean that lower values of the metric indicate better
performance.
Detection method Times on PC (ms) Times on Raspberry PI (ms)

Single-thread CPU ↓ Multi-thread CPU ↓ GPU ↓ Single-thread CPU ↓ Multi-thread CPU ↓

Gallo et al. 1.632 – – 53.45 –
Soros et al. 11.25 – – 397.5 –
Zamberletti et al. 48.20 – – 1 360 –
Yun et al. 7.598 – – 146.3 –
Zharkov et al. 25.85 5.974 1.447 2 120 1 949
YOLO Nano 64.99 17.40 18.66 3 034 1 803
YOLO Medium 478.9 51.36 23.91 20 083 15 813
RT-DETR 985.4 141.0 37.55 39 882 33 224
Faster R-CNN 1 271 237.9 30.27 ∞ ∞
RetinaNet 1 124 105.2 36.00 ∞ ∞
q
t
p
t

m

setups: a deep-learning optimized PC (AMD Ryzen Threadripper Pro
5965WX with 24 cores, 128 GB DDR4 RAM, RTX 4090 GPU) and
a Raspberry Pi 3B+ (1.2 GHz quad-core ARMv8 CPU, 1 GB DDR2
RAM). The algorithms we tested, implemented in C++, were not specif-
ically optimized for multi-threading. However, they do leverage certain
OpenCV functions capable of running on multiple threads. To provide
a clear understanding of their performance, we ran these methods on
 single CPU thread. This approach ensures that the timings are not

skewed by the limited parallelization of only a few sections of the code.
or a balanced comparison, we also recorded the inference times of
eep-learning methods running on a single CPU thread. In addition, we
eport, for informational purposes, the times of deep-learning methods
hen running on GPU or on CPU with multi-threading enabled. Finally,
ll C++ implementations were compiled with -O3 optimization, which
ncludes auto-vectorization, to ensure maximum performance. For this
enchmark, we run all the detection methods on all the images of the
ataset. Every detection is repeated three times and the lowest timing
s considered. This is done to minimize the influence of background
rocesses on the measurement. The final time is the average of the
imes recorded for every image. Since the images have different aspect
atios we will also report the mean resolution in megapixels of the
mages used after scaling.

10.1. Time on PC

These are the reported times when running on a PC with an AMD
yzen Threadripper Pro 5965WX CPU and an RTX 4090 GPU. All the

ests were conducted after scaling the images following the rule that
he longest side must be 640 pixels. In total, we have 8 748 images,
ith a mean resolution after resizing of 0.284 Megapixels, equivalent

o the resolution of an image of 640 × 444 pixels. The inference is
lways conducted on a single image at a time. Table 11 reports the

times required to run the detection methods on a single thread on
the CPU. For the deep-learning methods, we also report the multi-
threaded performance on 24-cores and the GPU. We will first focus
on single-threaded performance on the CPU since this is the only way
to confront all the methods. As expected, there is a huge difference
between the methods involved, with the fastest method being 780 times

faster than the slowest one. Gallo et al. is by far the fastest one and

14
can run more than 600 times a second on a single thread. This was
expected since this is the oldest method and its main focus was to
run on limited hardware. This incredible speed is possible because the
method is not rotation invariant. Yun et al. is the second fastest method
(7.598 ms), despite having a better detection accuracy than Soros et al.
and Zamberletti et al. Soros et al. is a bit slower with a performance
of 11.25 ms. Zamberletti’s method is quite slower at 48.20 ms. Since it
uses MLP in the Hough Transform space, its performance is in between
classic CV methods and deep-learning methods. Zharkov et al. is the
only deep-learning model that could run in real-time on a single core
with a recorded time of 25.85 ms. YOLO Nano is also quite faster than
the other models with a mean time of 64.99 ms. YOLO Medium is more
than 7x slower than the Nano version at 478.9 ms in single-thread. As
expected RT-DETR is slower with a time of 985.4 ms and both RetinaNet
and Faster R-CNN are even slower with a time of 1 124 ms and 1 271 ms
respectively. Using multiple threads, all neural networks become 5–10
times faster, except YOLO Nano which becomes only 4 times faster with
a time of 17.4 ms. On GPU, the ranking remains the same, but bigger
models receive a bigger boost than smaller models. The fastest method
is still Zharkov et al. at 1.447 ms while the slowest one is RetinaNet
at 36.00 ms. All barcode detection methods could be used for real-time
applications on a high-end PC. However, it is hard to find a real-world
application for barcode detection where using a high-end GPU makes
economical and logistical sense.

Previously, we have seen that deep-learning-based detectors work
uite well even at lower resolution. For this reason, we also recorded
he single-thread performance when resizing the longest side to 480
ixels and 320 pixels. All these tests have been conducted using a single
hread on the CPU and are shown in Table 12.

We can see that the times more or less scale linearly with the
number of pixels of the images. Indeed, the resolution at 480 pixels is
around 1.8 less, and at 320 pixels is 4 times less than at 640 pixels. On
the lowest resolution, we could easily run a small network like Zharkov
et al. or YOLO Nano in real-time, while the other deep-learning-based

odels are still too slow.

E. Vezzali et al.

c
u

Y
o
m
l

s

C
s
e
p
a
w
o

c

d
c

d

l
u
n
r

u
t

t
r
e
w
m

a
i

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
10.2. Time on embedded device

As we have seen, a PC CPU is usually more than enough to run
detection algorithms for barcodes in real-time. However, many bar-
code reading applications rely on an embedded CPU. An example is
retail barcode readers, which should be small enough to be handheld
devices. Another example is part identification marking in industry,
where every component is marked with a barcode and multiple readers
are used along the pipeline. This method is used in industries where
precision and safety are paramount, such as aerospace, automotive,
medical devices, and electronics. Part identification is used to cross-
reference part specifications, ensuring that the correct components
are used in assembly. This helps avoid mistakes, reduces the risk of
faulty products, and minimizes costly recalls. The use of embedded
devices instead of PCs to handle the processing ensures a reduction in
costs and space requirements. In addition, offloading computation to
external machines would increase latency. To measure the performance
on embedded devices we run our benchmark on a Raspberry PI 3B+
system that uses a quad-core ARM Cortex A53 CPU at 1.2 GHz and
1 GB of DDR2 RAM. Since the tested system is now much slower,
we had to test on a subset of 500 randomly selected images of the
dataset, to make the test run in a reasonable time. The mean area
remained 0.284 Megapixels. We conducted single-core CPU tests for
all detection algorithms on the selected images, resizing them to a
maximum edge length of 640 pixels. Deep-learning methods have also
been tested using all the 4-cores of the CPU. Results are presented in
Table 11. Compared to the PC results, execution times on the Raspberry
PI increased by 40-50x. Insufficient RAM (1 GB) prevented Faster R-
CNN and RetinaNet from running. Consequently, no method currently
achieves real-time performance, with Gallo’s method being close. The
omparison between the various methods in terms of timings remains
nchanged. Gallo’s method is the fastest (53.45 ms), and then we have

Yun’s (146.3 ms) and Soros’ (397.5 ms) algorithms followed by the one
proposed by Zamberletti (1 360 ms). All the deep-learning methods are
slower than that, with multi-second time requirements. Zharkov et al. is
still the fastest network at 2 120 ms, followed by YOLO Nano at 3 034 ms.

OLO Medium and RT-DETR are incredibly slow with processing times
f 20 083 ms and 39 882 ms respectively. Multi-core execution yielded a
odest speed-up of roughly 1.5×, potentially limited by unoptimized

ibraries or system bottlenecks such as RAM.
We also recorded the single-thread performance when resizing the

longest side to 480 pixels and 320 pixels. The results are shown in
Table 12. The ranking remains the same, apart from Zharkov et al.
urpassing Zamberletti et al. at 320 pixels scaling. At this resolution, the

time required by the smaller neural networks, Zharkov et al. and YOLO
Nano, becomes more reasonable (340.9 ms and 1 050 ms respectively),
but still far from the real-time applications target.

It is crucial to acknowledge that the speed of these methods could
be significantly enhanced through optimization. For instance, the C++
methods we have tested are not currently optimized for multi-core
processing. However, this could be readily achieved with libraries such
as OpenMP (OpenMP Architecture Review Board, 2008). Furthermore,
++ code can be made much faster by employing SIMD intrinsics while,
oftware toolkits like OpenVINO (OpenVINO, 2024) and TFLite (Abadi
t al., 2015) can speed up the execution of deep-learning models,
articularly on embedded CPUs. Lastly, techniques such as quantization
nd pruning can be employed to boost the speed of neural networks
ith minimal impact on accuracy. However, this goes beyond the scope
f our paper.

11. Concluding remarks and future research directions

In this paper we presented a comprehensive review of the field of
barcode localization and released a public benchmark for barcode lo-
alization, addressing existing challenges in reproducibility and dataset
 a

15
standardization within the field. Our core contributions are summa-
rized as follows.
Dataset consolidation and standardization. We have collected a
dataset of 8 748 images from public sources and supplied it with stan-
ardized annotations. We decided to make the dataset public so that it
ould be used for future contributions to this field.
Reproducible benchmarking. BarBeR, our publicly accessible bench-
mark, features a suite of algorithms from the literature (thoroughly
escribed in Section 4), scripts for deep learning model training, and

diverse performance metrics (presented in Section 6). This ensures
transparency and enables researchers to easily replicate and expand
upon our work.

Finally, we performed multiple tests with our benchmark, using our
dataset and trained models, verifying its reliability and usability. In
particular, we can draw some interesting conclusions from the tests we
carried out so far. First, our tests confirmed the significant accuracy
advantage of deep learning methods over hand-crafted approaches.
However, the computational complexity of most deep learning models
remains a challenge for real-time embedded applications. On the other
hand, our findings suggest that small neural networks, such as YOLO
Nano, perform nearly as well as much bigger architectures like RT-
DETR and RetinaNet. Lastly, among the publicly available methods
tested, Yun et al. proposal offers the optimal blend of accuracy and
speed, surpassing Soros’ and Zamberletti’s methods in both metrics. The
fastest method, instead, was the one described by Gallo et al., showing
that decent accuracy could be achieved even on very constrained de-
vices. As stated in the introduction, barcode decoding technology plays
a vital role in industries such as logistics, supply chain management,
retail, and robotics, with a market value in the billions. This paper
aims to provide an academic perspective on the field, focusing on
barcode localization — the crucial first step in any decoding process. By
advancing open-source research in this area, we hope to foster growth
in industries leveraging barcode technology and support academic
endeavors that rely on it. For the future, we envision a set of possible
improvements to our benchmark that could be used to further push the
field of barcode reading.
Instance segmentation. The current software could easily be extended
to support image segmentation benchmarking. The dataset metadata
already defines ROIs with polygons.
Barcode decoding. Assessing the decoding capabilities of integrated
ocalization-decoding systems offers a broader evaluation for practical
se cases. Indeed, the final metric for a barcode reading system is the
umber of decoded barcodes and the time required to achieve that
esult.
Image enhancement. Studying the impact of image enhancement
techniques could potentially improve barcode reading success rates
nder challenging conditions. An image processing step could be added
o the pipeline before or after the localization phase.
Video support. In many applications, barcode reader inputs are se-
quences of images rather than single frames. Adding a video dataset
o the benchmark could open new evaluation possibilities, enabling
esearchers to explore the trade-offs between speed and accuracy. For
xample, faster and less precise decoders might process more frames,
hile slower but more accurate algorithms might rely on fewer. Bench-
arking could reveal which approach is more effective in different

scenarios. Additionally, leveraging temporal information across frames
could improve the accuracy or efficiency of localization algorithms,
offering new directions for video-based barcode detection research.

As a closing remark, we hope this benchmark will be a valuable
sset for further research in this field. Its modular design facilitates the
ntegration of new algorithms, metrics, and data. We welcome feedback
nd contributions to further enhance this project.

E. Vezzali et al.

n

B

c
i

a
a

Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Table 12
Average times required for detection on PC and on Raspberry PI, using a single thread on the CPU, at different longest side resolutions. The ∞ symbol indicates that there was
ot enough RAM to run the algorithm. Downward arrows mean that lower values of the metric indicate better performance.
Detection method Times on PC (ms) Times on Raspberry PI (ms)

Time at 640px ↓ Time at 480px ↓ Time at 320px ↓ Time at 640px ↓ Time at 480px ↓ Time at 320px ↓

Gallo et al. 1.632 0.919 0.409 53.45 32.04 14.31
Soros et al. 11.25 6.260 2.782 397.5 205.5 92.02
Zamberletti et al. 48.20 29.66 17.42 1 360 1 357 855.7
Yun et al. 7.598 4.498 2.171 146.3 103.8 52.80
Zharkov et al. 25.85 14.56 6.725 2 120 882.5 340.9
YOLO Nano 64.99 40.20 20.82 3 034 2 108 1 050
YOLO Medium 478.9 284.6 135.2 20 083 12 091 5 570
RT-DETR 985.4 604.0 329.2 39 882 25 371 13 427
Faster R-CNN 1 271 892.3 599.1 ∞ ∞ ∞
RetinaNet 1 124 665.0 319.1 ∞ ∞ ∞
CRediT authorship contribution statement

Enrico Vezzali: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Federico
olelli: Writing – review & editing, Validation, Supervision, Investi-

gation, Conceptualization. Stefano Santi: Writing – review & editing,
Supervision, Data curation. Costantino Grana: Writing – review &
editing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgment

This project has received funding from the University of Modena
nd Reggio Emilia and Fondazione di Modena, through the FAR 2024
nd FARD-2024 funds (Fondo di Ateneo per la Ricerca).

Data availability

Data are available online at ditto.ing.unimore.it/barber.

References

Abadi, M., et al., 2015. TensorFlow: Large-scale machine learning on heterogeneous
systems. URL https://www.tensorflow.org/, Software available from tensorflow.org.

Ando, S., 2000. Image field categorization and edge/corner detection from gradient
covariance. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2), 179–190.

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., Ghay-
vat, H., 2021. CNN variants for computer vision: History, architecture, application,
challenges and future scope. Electronics 10 (20), 2470.

Bishop, C., 1995. Neural networks for pattern recognition. Clarendon Press 2, 223–228.
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. Yolov4: Optimal speed and accuracy

of object detection. arXiv preprint arXiv:2004.10934.
Bodnár, P., Grósz, T., Tóth, L., Nyúl, L.G., 2018. Efficient visual code localization with

neural networks. Pattern Anal. Appl. 21, 249–260.
Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal.

Mach. Intell. (6), 679–698.
Chai, D., Hock, F., 2005. Locating and decoding EAN-13 barcodes from images

captured by digital cameras. In: 2005 5th International Conference on Information
Communications & Signal Processing. IEEE, pp. 1595–1599.

Chang, S.-K., Yang, C.-C., 1983. Picture information measures for similarity retrieval.
Comput. Vis. Graph. Image Process. 23 (3), 366–375.

Chou, T.-H., Ho, C.-S., Kuo, Y.-F., 2015. QR code detection using convolutional
neural networks. In: International Conference on Advanced Robotics and Intelligent
Systems. ARIS, IEEE, pp. 1–5.
16
Dice, L.R., 1945. Measures of the amount of ecologic association between species.
Ecology 26 (3), 297–302.

Do, T., Kim, D., 2021. Quick browser: A unified model to detect and read simple object
in real-time. In: 2021 International Joint Conference on Neural Networks. IJCNN,
IEEE, pp. 1–8.

Do, H.-T., Pham, V.-C., 2021. Deep learning based goods management in supermarkets.
J. Adv. Inf. Technol. 12 (2).

Dubská, M., Herout, A., Havel, J., 2016. Real-time precise detection of regular grids
and matrix codes. J. Real- Time Image Process. 11, 193–200.

Duda, R.O., Hart, P.E., 1972. Use of the Hough transformation to detect lines and
curves in pictures. Commun. ACM 15 (1), 11–15.

Dutta, A., Zisserman, A., 2019. The VIA annotation software for images, audio and
video. In: Proceedings of the 27th ACM International Conference on Multimedia.
pp. 2276–2279.

Etude, P.J., 1901. Comparative de la distribution florale dans une portion des Alpes et
des Jura. Bull. Soc. Vaud. Sci. Nat 37, 547.

Galamhos, C., Matas, J., Kittler, J., 1999. Progressive probabilistic Hough transform
for line detection. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 1, IEEE, pp. 554–560.

Gallo, O., Manduchi, R., 2010. Reading 1D barcodes with mobile phones using
deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 33 (9), 1834–1843.

Girshick, R., 2015. Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 1440–1448.

Gonzalez, R.C., Woods, R.E., 2002. Digital image processing. Digit. Image Process..
Hansen, D.K., Nasrollahi, K., Rasmussen, C.B., Moeslund, T.B., 2017. Real-time barcode

detection and classification using deep learning. In: International Joint Conference
on Computational Intelligence. SCITEPRESS Digital Library, pp. 321–327.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37 (9),
1904–1916.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

Hildebrand, A.P., 1977. Laser scanning of the new standardized bar code. In: Practical
Applications of Low Power Lasers. Vol. 92, SPIE, pp. 61–65.

Hu, H., Xu, W., Huang, Q., 2009. A 2D barcode extraction method based on texture
direction analysis. In: 2009 Fifth International Conference on Image and Graphics.
IEEE, pp. 759–762.

Hussain, M., 2023. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary
nature toward digital manufacturing and industrial defect detection. Machines 11
(7), 677.

Jain, A.K., Karu, K., 1996. Learning texture discrimination masks. IEEE Trans. Pattern
Anal. Mach. Intell. 18 (2), 195–205.

Jocher, G., 2020. Ultralytics YOLOv5. http://dx.doi.org/10.5281/zenodo.3908559, URL
https://github.com/ultralytics/yolov5.

Jocher, G., Chaurasia, A., Qiu, J., 2023. Ultralytics YOLOv8. URL https://github.com/
ultralytics/ultralytics.

Kalinov, I., Petrovsky, A., Ilin, V., Pristanskiy, E., Kurenkov, M., Ramzhaev, V.,
Idrisov, I., Tsetserukou, D., 2020. Warevision: Cnn barcode detection-based UAV
trajectory optimization for autonomous warehouse stocktaking. IEEE Robot. Autom.
Lett. 5 (4), 6647–6653.

Kamnardsiri, T., Charoenkwan, P., Malang, C., Wudhikarn, R., 2022. 1D barcode
detection: Novel benchmark datasets and comprehensive comparison of deep
convolutional neural network approaches. Sensors 22 (22), 8788.

Kapsambelis, C., 2005. Bar codes aren’t going away!.

https://ditto.ing.unimore.it/barber
https://www.tensorflow.org/
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb2
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb2
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb2
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb3
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb3
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb3
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb3
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb3
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb4
http://arxiv.org/abs/2004.10934
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb6
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb6
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb6
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb7
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb7
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb7
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb8
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb8
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb8
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb8
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb8
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb9
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb9
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb9
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb10
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb10
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb10
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb10
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb10
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb11
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb11
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb11
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb12
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb12
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb12
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb12
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb12
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb13
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb13
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb13
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb14
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb14
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb14
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb15
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb15
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb15
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb16
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb16
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb16
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb16
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb16
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb17
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb17
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb17
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb18
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb18
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb18
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb18
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb18
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb19
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb19
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb19
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb20
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb20
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb20
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb21
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb22
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb22
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb22
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb22
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb22
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb23
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb23
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb23
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb23
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb23
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb24
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb24
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb24
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb24
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb24
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb25
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb25
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb25
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb26
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb26
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb26
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb26
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb26
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb27
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb27
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb27
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb27
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb27
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb28
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb28
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb28
http://dx.doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb31
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb32
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb32
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb32
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb32
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb32
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb33

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Katona, M., Nyúl, L.G., 2013. Efficient 1D and 2D barcode detection using mathematical
morphology. In: Mathematical Morphology and Its Applications To Signal and
Image Processing: 11th International Symposium, ISMM 2013, Uppsala, Sweden,
May 27-29, 2013. Proceedings 11. Springer, pp. 464–475.

Kingma, D.P., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klimek, G., Vamossy, Z., 2013. QR code detection using parallel lines. In: 2013
IEEE 14th International Symposium on Computational Intelligence and Informatics.
CINTI, IEEE, pp. 477–481.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25.

Kubáňová, J., Kubasáková, I., Čulík, K., Štítik, L., 2022. Implementation of barcode
technology to logistics processes of a company. Sustainability 14 (2), 790.

Li, J., Zhao, Q., Tan, X., Luo, Z., Tang, Z., 2018. Using deep ConvNet for robust 1D
barcode detection. In: Advances in Intelligent Systems and Interactive Applications:
Proceedings of the 2nd International Conference on Intelligent and Interactive
Systems and Applications (IISA2017). Springer, pp. 261–267.

Liao, H.-Y., Liu, S.-J., Chen, L.-H., Tyan, H.-R., 1995. A bar-code recognition system
using backpropagation neural networks. Eng. Appl. Artif. Intell. 8 (1), 81–90.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft coco: Common objects in context. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13. Springer, pp. 740–755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. SSD:
Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part
I 14. Springer, pp. 21–37.

Lv, W., Xu, S., Zhao, Y., Wang, G., Wei, J., Cui, C., Du, Y., Dang, Q., Liu, Y., 2023.
DETRs beat YOLOs on real-time object detection. arXiv preprint arXiv:2304.08069.

McCathie, L., 2004. The advantages and disadvantages of barcodes and radio frequency
identification in supply chain management.

Melek, C.G., Battini Sönmez, E., Varlı, S., 2024. Datasets and methods of prod-
uct recognition on grocery shelf images using computer vision and machine
learning approaches: An exhaustive literature review. Eng. Appl. Artif. Intell.
133, 108452. http://dx.doi.org/10.1016/j.engappai.2024.108452, URL https://
www.sciencedirect.com/science/article/pii/S0952197624006109.

Monfared, M., Koochari, A., Monshianmotlagh, R., 2021. QR-DN1.0: A new distorted
and noisy QRs dataset. Data Brief 39, 107605.

Muniz, R., Junco, L., Otero, A., 1999. A robust software barcode reader using the
Hough transform. In: Proceedings 1999 International Conference on Information
Intelligence and Systems (Cat. No. PR00446). IEEE, pp. 313–319.

Neyroud, J., Metayer, P., Danel, F., 1980. Laser beam scanning for remote control.
In: 2nd European Congress on Optics Applied To Metrology. Vol. 210, SPIE, pp.
107–115.

Niu, Y., Wang, L., Yu, Z., Huang, J., Huang, B., Su, Y., 2023. Vision-based automatic
order check method for online medicine dispensing cabinet under incomplete data.
Eng. Appl. Artif. Intell. 123, 106204.

Norman J. Woodland, S.B., 1949. Classifying apparatus and method. (2612994A), URL
https://patents.google.com/patent/US2612994A/en.

OpenMP Architecture Review Board, 2008. OpenMP application program interface
version 3.0. URL http://www.openmp.org/mp-documents/spec30.pdf.

OpenVINO, 2024. OpenVINO™ Toolkit, https://github.com/openvinotoolkit/openvino,
Accessed: [Date Accessed].

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9 (1), 62–66.

Ottaviani, Pavan, Bottazzi, Brunelli, Caselli, Guerrero, 1999. A common image process-
ing framework for 2D barcode reading. In: Image Processing and Its Applications,
1999. Seventh International Conference on (Conf. Publ. No. 465). Vol. 2, IET, pp.
652–655.

Padilla, R., Passos, W.L., Dias, T.L.B., Netto, S.L., da Silva, E.A.B., 2021. A comparative
analysis of object detection metrics with a companion open-source toolkit. Elec-
tronics 10 (3), http://dx.doi.org/10.3390/electronics10030279, URL https://www.
mdpi.com/2079-9292/10/3/279.

Quenum, J., Wang, K., Zakhor, A., 2021. Fast, accurate barcode detection in ultra high-
resolution images. In: 2021 IEEE International Conference on Image Processing.
ICIP, IEEE, pp. 1019–1023.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 779–788.
17
Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7263–7271.

Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Reich, S., 1977. The use of electro-mechanical mirror scanning devices. In: Laser
Scanning Components and Techniques: Design Considerations/Trends. Vol. 84,
SPIE, pp. 47–56.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28.

Shah, S., Tembhurne, J., 2023. Object detection using convolutional neural networks
and transformer-based models: a review. J. Electr. Syst. Inf. Technol. 10 (1), 54.

Soliman, A., Al-Ali, A., Mohamed, A., Gedawy, H., Izham, D., Bahri, M., Er-
bad, A., Guizani, M., 2023. AI-based UAV navigation framework with digital twin
technology for mobile target visitation. Eng. Appl. Artif. Intell. 123, 106318.

Sörös, G., Flörkemeier, C., 2013. Blur-resistant joint 1D and 2D barcode localization
for smartphones. In: Proceedings of the 12th International Conference on Mobile
and Ubiquitous Multimedia. pp. 1–8.

Szentandrási, I., Herout, A., Dubská, M., 2012. Fast detection and recognition of QR
codes in high-resolution images. In: Proceedings of the 28th Spring Conference on
Computer Graphics. pp. 129–136.

Taveerad, N., Vongpradhip, S., 2015. Development of color QR code for increasing
capacity. In: 2015 11th International Conference on Signal-Image Technology &
Internet-Based Systems. SITIS, IEEE, pp. 645–648.

Tekin, E., Coughlan, J., 2012. BLaDE: Barcode localization and decoding engine. Tech.
Rep. 2012-RERC. 01.

Vaishnavi Shyamsundar Mate, S.M., 2023. Barcode reader market size, share, competi-
tive landscape and trend analysis report by type, by application: Global opportunity
analysis and industry forecast, 2023–2032.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Ventsov, N., Podkolzina, L., 2018. Localization of barcodes using artificial neural
network. In: 2018 IEEE East-West Design & Test Symposium. EWDTS, IEEE, pp.
1–6.

Viard-Gaudin, C., Normand, N., Barba, D., 1993. A bar code location algorithm using
a two-dimensional approach. In: Proceedings of 2nd International Conference on
Document Analysis and Recognition. ICDAR’93, IEEE, pp. 45–48.

Voulodimos, A., Doulamis, N., Bebis, G., Stathaki, T., 2018. Recent developments in
deep learning for engineering applications. Comput. Intell. Neurosci. 2018.

Wachenfeld, S., Terlunen, S., Jiang, X., 2008. Robust recognition of 1-d barcodes using
camera phones. In: 2008 19th International Conference on Pattern Recognition.
IEEE, pp. 1–4.

Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., 2022. YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.
02696.

Weng, D., Yang, L., 2012. Design and implementation of barcode management informa-
tion system. In: Zhu, R., Ma, Y. (Eds.), Information Engineering and Applications.
Springer London, London, pp. 1200–1207.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., Girshick, R., 2019. Detectron2. https://github.
com/facebookresearch/detectron2.

Wudhikarn, R., Charoenkwan, P., Malang, K., 2022. Deep learning in barcode
recognition: A systematic literature review. IEEE Access 10, 8049–8072.

Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122.

Yuan, B., Li, Y., Jiang, F., Xu, X., Guo, Y., Zhao, J., Zhang, D., Guo, J., Shen, X., 2019.
MU R-CNN: A two-dimensional code instance segmentation network based on deep
learning. Futur. Internet 11 (9), 197.

Yun, I., Kim, J., 2017. Vision-based 1D barcode localization method for scale and
rotation invariant. In: TENCON 2017-2017 IEEE Region 10 Conference. IEEE, pp.
2204–2208.

Zamberletti, A., Gallo, I., Albertini, S., 2013. Robust angle invariant 1D barcode
detection. In: 2013 2nd IAPR Asian Conference on Pattern Recognition. IEEE, pp.
160–164.

Zamberletti, A., Gallo, I., Carullo, M., Binaghi, E., 2010. Neural image restoration for
decoding 1-D barcodes using common camera phones. In: VISAPP (1). pp. 5–11.

Zhang, L., Sui, Y., Zhu, F., Zhu, M., He, B., Deng, Z., 2021. Fast barcode detection
method based on ThinYOLOv4. In: Cognitive Systems and Signal Processing: 5th
International Conference, ICCSIP 2020, Zhuhai, China, December 25–27, 2020,
Revised Selected Papers 5. Springer, pp. 41–55.

Zharkov, A., Zagaynov, I., 2019. Universal barcode detector via semantic segmentation.
In: 2019 International Conference on Document Analysis and Recognition. ICDAR,
IEEE, pp. 837–843.

Zong, Z., Song, G., Liu, Y., 2023. Detrs with collaborative hybrid assignments training.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
6748–6758.

Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J., 2023. Object detection in 20 years: A survey.
Proc. IEEE.

http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb34
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb36
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb36
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb36
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb36
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb36
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb37
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb37
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb37
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb38
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb38
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb38
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb39
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb40
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb40
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb40
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb41
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb41
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb41
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb41
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb41
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb42
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb42
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb42
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb42
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb42
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb43
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb44
http://arxiv.org/abs/2304.08069
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb46
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb46
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb46
http://dx.doi.org/10.1016/j.engappai.2024.108452
https://www.sciencedirect.com/science/article/pii/S0952197624006109
https://www.sciencedirect.com/science/article/pii/S0952197624006109
https://www.sciencedirect.com/science/article/pii/S0952197624006109
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb48
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb48
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb48
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb49
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb49
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb49
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb49
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb49
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb50
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb50
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb50
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb50
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb50
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb51
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb51
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb51
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb51
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb51
https://patents.google.com/patent/US2612994A/en
http://www.openmp.org/mp-documents/spec30.pdf
https://github.com/openvinotoolkit/openvino
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb55
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb55
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb55
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb56
http://dx.doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb58
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb58
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb58
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb58
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb58
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb59
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb59
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb59
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb59
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb59
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb60
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb60
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb60
http://arxiv.org/abs/1804.02767
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb62
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb62
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb62
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb62
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb62
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb63
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb63
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb63
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb64
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb64
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb64
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb65
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb65
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb65
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb65
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb65
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb66
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb66
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb66
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb66
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb66
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb67
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb67
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb67
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb67
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb67
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb68
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb68
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb68
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb68
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb68
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb69
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb69
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb69
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb70
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb70
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb70
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb70
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb70
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb71
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb71
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb71
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb72
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb72
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb72
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb72
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb72
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb73
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb73
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb73
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb73
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb73
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb74
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb74
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb74
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb75
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb75
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb75
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb75
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb75
http://arxiv.org/abs/2207.02696
http://arxiv.org/abs/2207.02696
http://arxiv.org/abs/2207.02696
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb77
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb77
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb77
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb77
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb77
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb79
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb79
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb79
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb81
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb81
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb81
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb81
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb81
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb82
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb82
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb82
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb82
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb82
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb83
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb83
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb83
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb83
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb83
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb84
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb84
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb84
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb85
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb86
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb86
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb86
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb86
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb86
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb87
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb87
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb87
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb87
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb87
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb88
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb88
http://refhub.elsevier.com/S0952-1976(25)00259-3/sb88

E. Vezzali et al. Engineering Applications of Artiϧcial Intelligence 147 (2025) 110259
Enrico Vezzali received both B.Sc. and M.Sc degrees in
Electrical Engineering from Università degli Studi Bologna,
Italy. He is currently pursuing an Industrial Ph.D. at Univer-
sità degli Studi di Modena e Reggio Emilia in Italy granted
by Datalogic while working as a Machine Learning Engineer
in the same company. His main research interests are In-
dustrial applications of Artificial intelligence and Computer
Vision, with particular emphasis on Image Enhancement.

Federico Bolelli received the B.Sc. and M.Sc. degrees
in Computer Engineering from Università degli Studi di
Modena e Reggio Emilia, Italy. He pursued a Ph.D. degree
from the same university where he is currently working as
a Tenure Track Assistant Professor within the AImageLab
group at Dipartimento di Ingegneria ‘‘Enzo Ferrari’’. His
research interests include image processing, algorithms and
optimization, and medical imaging. He is currently involved
in a H2020 European Project.
18
Stefano Santi, Ph.D., is a senior technology advisor to
the CTO at Datalogic. He previously led the company’s
North American advanced research in new technology and
deep learning. His interests range from machine learning
and deep learning technology applied to the state-of-the-art
barcode decoding methods, to code optimization for strict
real-time performance on embedded systems. Stefano Santi
holds nine patents and several other publications related to
acquisition systems and computer vision applied to barcode
technology.

Costantino Grana graduated from Università degli Studi
di Modena e Reggio Emilia, Italy in 2000 and achieved a
Ph.D. in Computer Science and Engineering in 2004. He
is currently a Full Professor at Dipartimento di Ingegneria
‘‘Enzo Ferrari’’ of the same university. His research inter-
ests are mainly in medical imaging, optimization of image
processing algorithms, and computer vision applications.
He published 6 book chapters, 47 papers in international
peer-reviewed journals, and more than 130 papers at
international conferences.

	State-of-the-art review and benchmarking of barcode localization methods
	INTRODUCTION
	Datasets
	Algorithms history
	Early Barcode Localization Efforts
	Evolution and Recent Approaches
	The Deep Learning Era

	Available algorithms
	Gallo and Manduchi
	Soros and Florkemeier
	Zamberletti
	Yun and Kim

	Deep-learning models
	Zharkov and Zagaynov
	Faster R-CNN
	RetinaNet
	YOLO
	RT-DETR

	Evaluation metrics
	Metrics that do not Require Confidence
	Intersection over Union
	Precision and Recall
	F1 Score
	Curves

	Metrics that Require Confidence
	Average Precision
	Mean Average Precision
	AP@TIoU
	AP@[0.5:0.05:0.95]
	AP Across Scales

	Benchmark description
	Repository Content
	Methodology

	Single-class benchmarks
	Single 1D Barcode
	Single 2D barcodes

	Multi-class benchmarks
	Time measurements
	Time on PC
	Time on Embedded Device

	Concluding remarks and future research directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

