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Abstract

Cone-beam computed tomography (CBCT) is a standard
imaging modality in orofacial and dental practices, provid-
ing essential 3D volumetric imaging of anatomical struc-
tures, including jawbones, teeth, sinuses, and neurovascu-
lar canals. Accurately segmenting these structures is fun-
damental to numerous clinical applications, such as sur-
gical planning and implant placement. However, manual
segmentation of CBCT scans is time-intensive and requires
expert input, creating a demand for automated solutions
through deep learning. Effective development of such al-
gorithms relies on access to large, well-annotated datasets,
yet current datasets are often privately stored or limited
in scope and considered structures, especially concerning
3D annotations. This paper proposes ToothFairy2, a com-
prehensive, publicly accessible CBCT dataset with voxel-
level 3D annotations of 42 distinct classes corresponding to
maxillofacial structures. We validate the dataset by bench-
marking state-of-the-art neural network models, includ-
ing convolutional, transformer-based, and hybrid Mamba-
based architectures, to evaluate segmentation performance
across complex anatomical regions. Our work also explores
adaptations to the nnU-Net framework to optimize multi-
class segmentation for maxillofacial anatomy. The pro-
posed dataset provides a fundamental resource for advanc-
ing maxillofacial segmentation and supports future research
in automated 3D image analysis in digital dentistry.

1. Introduction

Medical imaging is currently employed in the clinical
practice of dental treatments. Different modalities are avail-
able to assist in diagnosis, treatment planning, and surgery:
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Figure 1. Fully annotated sample from the proposed dataset.

2D panoramic X-rays, 3D Intra-Oral Scans (IOS), and 3D
Cone-Beam Computed Tomography (CBCT) [29]. Among
the available modalities, CBCT is the only one provid-
ing comprehensive 3D volumetric information on all the
anatomical structures in the orofacial area, including jaw-
bones, complete teeth, sinuses, and neurovascular canals,
becoming a standard modality for maxillofacial image anal-
ysis. Segmenting individual structures from CBCT images
to reconstruct a precise 3D model is essential in digital den-
tistry for various clinical applications, including surgical
planning and implant placement [16, 53].

Manual segmentation of CBCT scans is a time-
consuming and labor-intensive process that requires spe-
cialized expertise. For this reason, automated algorithms
using deep learning techniques offer a promising solution
to alleviate this burden, enhance efficiency, and improve the
consistency of segmentation results [41]. However, devel-
oping robust deep learning models heavily depends on the
availability of large, annotated datasets. Unfortunately, ex-
isting datasets often focus on a limited number of anatom-
ical structures —i.e., teeth or alveolar canal— and usually
lack 3D annotations. The few available methods trained on



Table 1. Datasets used in literature to segment maxillofacial anatomical structures. Our analysis is limited to 3D imaging modalities, i.e.,
CBCTs and IOS. ✥ means that only a portion of the data is available to the research community, i.e., 148 over 4 531. Among these, only
97 are effectively usable for the training of automatic algorithms.

Anatomical
Structure(s)

Image
Modality Authors Year Country # Train &

Validation # Test
Label Type

Public
Train Test

Inferior Alveolar
Canal (IAC) CBCT

Jaskari et al. [28] 2020 Finland 509 128 2D 128 2D, 15 3D ✗
Lahoud et al. [33] 2022 Belgium 205 30 3D 3D ✗
Usman et al. [48] 2022 South Korea 510 500 3D 3D ✗

Cipriano et al. [11] 2022 Italy 332 15 332 2D, 76 3D 15 2D, 15 3D ✓
Chun et al. [10] 2023 South Korea 32 18 3D 3D ✗
Bolelli et al. [6] 2023 Italy, Netherlands 443 50 443 2D, 153 3D 3D ✓

Teeth Crown,
Teeth Root CBCT

Cui et al. [16] 2022 China 4 531 407 3D 3D ✥
Cui et al. [13] 2022 China 22 ∼ 3D ∼ ✓
Dou et al. [17] 2022 China 35 5 3D 3D ✗

Tae Jun Jang et al. [26] 2022 China 66 7 66 3D, 31 2D 7 3D, 4 2D ✗

Teeth Crown IOS Ben-Hamadou et al. [3] 2022 Tunisia 1 200 600 3D 3D ✓
Shankeeth et al. [49] 2023 Netherlands 1 400 350 3D 3D ✗

IACs, Teeth, Others CBCT Ours 2024 Italy, Netherlands 480 50 3D 3D ✓

3D datasets leverage very small-sized training and testing
sets (< 50 CBCTs) [10, 13, 17], most of the time unavail-
able to the research community, limiting their generalizabil-
ity to scans acquired with other imaging protocols and their
applicability to diverse patient populations.

In this paper, we introduce a novel and unique dataset
with 3D annotations of 42 distinct anatomical classes on
maxillofacial CBCTs. The classes include jawbones, left
and right Inferior Alveolar Canals (IACs), left and right
maxillary sinus, pharynx, upper and lower teeth, including
wisdom teeth, bridges, crowns, and dental implants. The
proposed comprehensive dataset provides a rich resource
for developing and benchmarking segmentation algorithms
that require 3D anatomical annotations, providing a strong
basis for the future development and evaluation of auto-
mated methods for maxillofacial image analysis (Fig. 1).

To validate the dataset, we further explore the perfor-
mance of various state-of-the-art neural networks used in
the literature for medical image segmentation: classical
Convolutional Neural Networks (CNNs) like nnU-Net and
its variants [24], transformer-based models such as TransU-
Net [7] and UNETR++ [47], and hybrid Mamba-based ar-
chitectures like UMamba [38], Swin-UMamba [34], and
VMamba [35].

Specifically, we explore how to adapt and optimize
the nnU-Net framework [24], a state-of-the-art, self-
configuring segmentation method, to enhance the segmen-
tation of all 42 anatomical structures in our dataset, by ad-
justing hyperparameters and augmentation strategies.

By leveraging our comprehensive dataset, we aim to ad-
vance the development of segmentation algorithms that can
handle the complexities of 3D maxillofacial imaging. Our
work not only contributes a valuable dataset to the research
community but also provides insights into the optimization
of neural network architectures for improved segmentation
performance in complex anatomical regions.

In summary, our contributions are:
• The largest publicly available CBCT dataset with de-

tailed 3D annotations covering 42 distinct maxillofacial
anatomical structures, addressing a critical gap in exist-
ing research resources;

• A comprehensive comparative evaluation of state-of-the-
art neural network architectures, encompassing convolu-
tional networks, transformers, and hybrid models, to es-
tablish performance benchmarks using our dataset;

• Adaptation and optimization of the nnU-Net framework
to target multi-class segmentation in complex maxillofa-
cial anatomy, highlighting the impact of customized aug-
mentation and hyperparameters tuning.

2. Related Works

2.1. Existing datasets
In maxillofacial analysis, existing research predominantly
emphasizes developing AI applications that demonstrate
high accuracy on carefully selected datasets; however, lim-
ited consideration has been given to examining the datasets
employed in the training and evaluation phases of AI model
development [45]. Current research has primarily used aca-
demic databases, which may not fully address AI-specific
data needs, including the FAIR (Findability, Accessibility,
Interoperability, and Reusability) principles [52]. Only a
few dental studies make datasets available to the research
community [6, 12, 13, 16], making it essential to seek alter-
native data sources to mitigate these limitations and to pri-
oritize the creation of high-quality, medically validated, and
AI-ready datasets. All of these datasets are confined to spe-
cific anatomical structures, particularly the IAC [12] or the
teeth complex [16], and others provide binary segmentation
classes only, without considering tooth-level labels [16].

Tab. 1 presents a comprehensive comparison of datasets
used in state-of-the-art research.



2.2. Teeth segmentation
Multiple approaches to segmenting teeth in 3D data have
been proposed, each introducing different challenges in
clinical and computational applications [8].

Binary segmentation. When employing a simple binary
semantic segmentation, the primary goal is to separate teeth
from surrounding tissues without any distinction between
individual teeth. While it is useful for basic assessments, its
clinical utility is limited, especially when dealing with ad-
jacent or closely spaced teeth. To improve accuracy, recent
methods have utilized CNN-based architectures with cus-
tom modules, hybrid loss functions [21], a combination of
2D and 3D networks [20], and post-processing techniques,
such as posterior probability maps and dense conditional
random fields [42].

Instance segmentation. By contrast, when performing
instance segmentation, teeth are segmented as separate in-
stances, though they have not yet been assigned specific
labels. Instance segmentation methods usually leverage a
two-stage approach consisting of detection followed by seg-
mentation. The detection stage locates individual tooth in-
stances through various techniques, including bounding box
detection [14, 18], heatmap prediction [54], or offset re-
gression [15–17]. Once identified, localized regions around
each tooth instance can be extracted to perform binary seg-
mentation and identify precise boundaries.

Multi-class segmentation. With this approach, each
tooth must be identified and assigned a specific label [32,
46] according to the FDI (Fédération Dentaire Interna-
tionale, also known as World Dental Federation) nota-
tion [25]. This is the most challenging of the three ap-
proaches, especially in cases with a complex anatomy, such
as missing and impacted teeth, and will likely continue to
benefit from more robust datasets and enhanced model ar-
chitectures, motivating once again our proposed dataset.

Current literature can be split into single- and multi-stage
methods. While the former leverages a single framework
to produce the final classification, multi-stage methods in-
corporate additional steps. The more commonly employed
strategy consists of downsampling the original CBCT or
splitting it into multiple regions (e.g., the four dental arch
quadrants) to generate a coarse multi-class segmentation,
later refining individual tooth segments by isolating vol-
umes of interest and enhancing local details [46, 50].

2.3. IAC segmentation
Since the advent of CBCT technology in the early 2000s,
substantial effort has been dedicated by the scientific com-
munity to developing automated systems for segmenting the
inferior alveolar canal from 3D scans [44]. With the rise
of deep learning in medical diagnosis, learning-based net-
works [23, 27, 28] have outclassed traditional computer vi-
sion techniques [1, 4, 30, 31, 40, 51].

Early work by Jaskari et al. [28] applied the U-Net [43]
architecture on a coarsely annotated dataset, achieving
promising results compared to traditional methods, though
limited by the lack of dense annotations.

Lahoud [33] advanced this line of research by training
a 3D U-Net with both interpolated control points and finer
voxel-level annotations, though, again, access to data and
code was restricted. Significant progress in the segmen-
tation of the IAC came with the release of the first pub-
lic CBCT dataset containing 2D and 3D annotations of the
mandibular canal [11, 12]. Contextually, authors introduced
PosPadUNet3D, a modified 3D U-Net that segments IAC in
stages by expanding sparse 2D labels into 3D annotations,
thus generating additional synthetic labels and using such
generated data in combination with expert-labeled 3D voxel
data to train the final U-Net based model.

Usman et al. [48] proposed a two-stage U-Net approach
to address class imbalance between the mandibular canal
and background, using CNNs to isolate regions of inter-
est (ROIs) before segmentation, while Zhao et al. [55] in-
troduced a Frenet frame-based method to better capture
mandibular topology and maintain canal structure during
segmentation. More recently, Lv et al. [37] developed a
transformer-based model with adaptive image processing
and a “deep label fusion” technique to enhance label con-
sistency across sparse public data, building on Cipriano’s
label expansion methodology.

Finally, Lumetti et al. [36] tackled issues with patch-
based learning by using a memory-augmented transformer
encoder to improve spatial coherence in the U-Net bottle-
neck, enriching patch context and improving segmentation.

IAC segmentation remains a challenging area with room
for further advancements, largely dependent on access to
comprehensive, high-quality 3D datasets.

3. The ToothFairy2 Dataset

The proposed dataset, ToothFairy2, represents the most ex-
tensive publicly available and fully annotated collection of
dental CBCT scans. It comprises 530 3D volumes, of which
480 are entirely accessible for training purposes1 while the
remaining 50 are reserved exclusively for evaluation. Al-
though these 50 scans are not directly accessible for model
training, researchers can evaluate their models on this test
set via the grand-challenge platform,2 which automatically
runs the submitted models and provides performance re-
sults. In this way, we ensure that researchers will not incur
the risk of mixing training and testing data and that the re-
ported results will not suffer from the random choice of the
testing data subset selection.

The training data (480 scans) were acquired by the Af-

1https://ditto.ing.unimore.it/toothfairy2/.
2https://toothfairy2.grand-challenge.org/.



Figure 2. Dataset samples, one patient per line. For each view, i.e., left, frontal, and right, both raw CBCT data and labels are provided.

fidea Center, a pan-European healthcare group that spe-
cializes in advanced diagnostics, laboratory analyses, reha-
bilitation, and cancer diagnosis and treatment. The scans
were obtained through Cone Beam Computed Tomography
(CBCT) via a NewTom/NTVGiMK4, operating at 3 mA, 110
kV, and offering 0.3 mm isotropic voxels (Fig. 2). The test
data (50 scans) were provided by the Department of Oral
and Maxillofacial Surgery at Radboud University Medical
Centre, Nijmegen, obtained using a standard CBCT scan-
ning protocol with the i-CAT 3D Imaging System. The scans
were performed with a field of view measuring 16 cm in di-
ameter and 22 cm in height. The scanning process involved
two scans of 20 seconds each, resulting in an isotropic voxel
size of 0.4 mm. These were later rescaled to match the voxel
size of the training data before annotation.

Every patient was anonymized and we only kept a few
personal details —namely gender, age, and year of the scan.
Specifically, 58.30% of the patients are female (58.54% in
the training set, 56.00% in the test set), all the scans were
performed between 2019 and 2024, and volumes belong to
patients with ages in range (10-100] with the highest fre-
quencies in ranges (20-30] and (60-70] for the training set
and (50-70] for the test set.

3.1. Annotation protocol and tools
The inclusion of densely labeled 3D data is necessary in
order to achieve the full potential of CNNs [22]. 3D anno-
tations refer to the annotation process carried out by medi-
cal professionals directly at the voxel level on CBCT scans.
This annotation approach involves detailed markings ap-
plied to the individual voxels, providing a more precise de-
piction of the structures involved.

As often happens in medical image annotation, accurate
delineation of individual teeth and maxillofacial structures
is a complex and time-consuming process, which requires

expert eyes to be achieved. To reduce the burden of the an-
notators while ensuring high-quality labels, we employed a
semi-automated approach that was fully supervised by clin-
icians. The annotation process was performed by 7 differ-
ent maxillofacial experts. To prevent models trained on our
dataset from being rewarded for learning annotator-specific
biases and to allow for the understanding of their generaliz-
ability, 5 of the annotators focused on the training set only,
while the remaining 2 handled the test cases only.

Since labeling voxels directly on 3D views is ambiguous
and prone to errors, our annotations have been performed on
2D slices. Moreover, to reduce the jagged effect that usually
occurs when annotating 3D objects on 2D, the annotation is
performed with multiple iterations, starting from the axial
(or transversal) view and later refined by analyzing the scan
from the sagittal and coronal (or frontal) planes.

For each patient, a single annotation is provided, includ-
ing the following classes: upper and lower jawbone, left
and right inferior alveolar canal, maxillary sinuses, phar-
ynx, and upper and lower teeth, including wisdom teeth,
bridges, crowns, and dental implants. The annotation was
produced by a single expert only but validated by a second
one to reduce possible mistakes.

In our work, we leverage five different base models built
on the nnU-Net framework to provide an initial annotation
that is later adjusted and refined by expert clinicians. Each
of the models has been trained on a specific (group of)
classes, including the jawbone (upper and lower), inferior
alveolar canal (left and right branches), maxillary sinus (left
and right), pharynx, and teeth. Regarding inferior alveolar
canal branches and teeth, we leverage two datasets avail-
able in the literature, [12] and [16], respectively. Even when
annotating the first volumes of our dataset, clinicians were
provided with an initial segmentation of teeth and canals
and were required to modify, update, or remove wrongly an-



(a) Dense Point Set (b) Voxelized Teeth

Figure 3. Annotations post-processing. The annotations produced
as described in Sec. 3 are dense and jagged (a). For this reason,
we compute a concave α-shape, which, after voxelization, pro-
duces the volumes in (b). Such an approach is applied to all of
the anatomical structures involved in our dataset but the jawbones,
whose annotations contain multiple holes.

(a) Point Set (b) Triangulation (c) α-complex (d) α-shape

Figure 4. α-shape construction process for the point set of (a).
In the Delaunay triangulation (b), triangles with circumradius ≤
− 1

α
form a simplicial subcomplex known as α-complex (c), whose

border is the α-shape (d).

notated voxels. Following an iterative approach, as soon as
20 more annotated volumes were available, the base mod-
els were retrained from scratch by including the new data.
Following such an approach, clinicians are provided with
better annotation proposals at each iteration, reducing the
annotation effort and time at the increase of annotated vol-
umes. Since jawbone, maxillary sinus, and pharynx classes
were not available in any public dataset, these classes have
been annotated from scratch in the first 20 volumes without
leveraging any automatic proposal.

3.2. Annotation refinement
Even though the annotation process is performed on multi-
ple planes, one after the other, artifacts due to 3D annota-
tions performed on 2D views remain a challenge, albeit re-
duced (Fig. 3a). In order to obtain a smooth polygonal mesh
out of expert-produced annotations, we compute a concave
α-shape. The α-shape [19] is a generalization of the con-
vex hull aimed at representing the intuitive concept of the
shape of a point set. The only parameter of the algorithms
is α ∈ R, which regulates the “crudeness” of the result.
Let’s defines a generalized disk of radius 1

α as Dα:

Dα


The complement of a disc of radius − 1

α
, if α < 0

A halfplane, if α = 0

A disc of radius 1
α
, if α > 0

(1)

Given a point set S and a value for α, the α-shape is con-

structed in this way: an edge is put between two points pi
and pj whenever there exists a Dα with pi and pj lying on
its boundary, and which contains the entire S. When α = 0,
this procedure constructs the convex hull; instead, cruder or
finer shapes can be respectively obtained using positive or
negative α values. Because of the geometrical nature of the
alveolar nerve, we are specifically interested in concave α-
shapes, achievable when α < 0.

The most common method for computing a concave α-
shape consists of taking the border of a simplicial subcom-
plex extracted from the Delaunay triangulation, containing
only triangles with circumradius ≤ − 1

α . An example of the
process is depicted in Fig. 4.

The above concepts can be extended to the three-
dimensional case by substituting disks and triangles with
spheres and tetrahedra, respectively. After creating an α-
shape polygonal mesh starting from dense annotations, it is
converted into a binary raster volume by means of voxeliza-
tion: the final result is given in Fig. 3b.

3.3. Accessibility
The resulting annotated volumes have been packed follow-
ing the nnU-Net dataset format, which comprises three dif-
ferent components: raw images, corresponding segmenta-
tion maps, and a dataset.json file specifying the meta-
data. The class IDs are an extension of the FDI notation and
include a total of 42 classes. Final 3D volumes and labels
are provided in the .mha format.

Ethics approval. The training data received ethical com-
mittee approval from Comitato Etico dell’Area Vasta Emilia
Nord (Approval Number 1374/2020/OSS/ESTMO SIRER
ID 1275 - NAICBCT-D) and can be downloaded under the
CC BY-SA license after user registration.

4. Experiments
In order to validate the effectiveness of the proposed dataset,
experiments have been performed considering two different
datasets: the one proposed with this paper and the publicly
released subset of the dataset proposed by Cui et al. [15],
which is the only dataset publicly available in the literature
for multi-class tooth instance segmentation. Many of the
dental-related scientific papers promising the release of the
dataset upon request [2, 9] have ignored our emails.

4.1. Evaluation metrics
In our experiments, two widely accepted metrics for the
segmentation task [39] have been employed, namely Dice
Similarity Coefficient (DSC in %) and the 95th percentile
Hausdorff Distance (HD95 in mm).

The DSC has the same meaning as the IoU (Intersection
over Union), but DSC is better suited when the region of
interest is significantly smaller than the background. In such



Table 2. Results on the test set of the proposed dataset. Classes are grouped by the main anatomical structure to which they belong. Default
nnU-Net plan is employed. The best results are in bold, while the second best are underlined.

Model
Average L/R IAC L/R Sinus Teeth Jawbones Pharynx Others

DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC HD95

C
N

N
s nnU-Net [24] 70.92 17.86 71.34 29.11 64.81 28.39 73.17 18.32 90.31 12.53 95.66 19.23 29.50 20.95

nnU-Net ResEnc [24] 74.16 14.48 73.01 27.81 65.71 29.99 76.48 14.26 91.77 12.53 95.26 17.75 37.10 16.32

Tr
an

sf
. TransU-Net [7] 70.32 20.17 81.96 11.99 59.69 59.76 72.46 15.04 90.33 49.02 87.89 42.87 27.68 22.65

nnFormer [56] 76.79 5.45 72.28 10.06 75.11 8.22 79.37 2.94 91.50 20.09 90.85 24.53 18.95 13.67
UNETR++ [47] 71.43 17.23 68.87 15.10 74.51 15.48 73.70 17.91 92.38 5.44 91.60 18.96 26.21 19.70

M
am

ba UMamba [38] 85.05 5.28 85.26 16.23 77.02 4.35 86.58 2.23 90.05 22.17 92.18 25.25 43.89 13.97
VMamba [35] 73.13 5.17 60.62 9.94 73.20 9.89 75.99 3.39 90.75 7.17 88.23 23.95 14.86 14.63
Swin-UMamba [34] 79.64 2.94 72.64 2.02 87.75 2.38 80.71 2.59 94.29 4.25 93.05 2.79 25.30 14.93

a context, more weight is given to the correctly identified
region, making the DSC more robust and informative than
IoU. The relationship between DSC and IoU is expressed
by the following formula:

DSC(P,GT) =
2× |P ∩GT |
|P |+ |GT |

=
2× IoU

1 + IoU
(2)

where P is the model prediction and GT is the ground truth.
On the other hand, the HD95 computes the maximum

distance between two sets of points, considering the 95th
percentile of these distances. In general, the 95th percentile
of the distances between boundary points in A and B is de-
fined as follows:

d95(A,B) = x95a∈A

{
min
b∈B

d(a, b)

}
(3)

where x95
a∈A{} denotes the 95th percentile of the elements

in the set enclosed within the brackets. Given the set formed
by the pixels in the predicted mask (P ) and the set of pixels
belonging to the ground truth (GT ), the Hausdorff distance
is determined as the maximum value of the two distances
between P and GT and GT and P at the 95th percentile:

HD95(P,GT) = max

{
d95(P,GT ), d95(GT,P )

}
(4)

By using the 95th percentile, this metric provides a robust
evaluation that is less sensitive to outliers or extreme differ-
ences between the sets of points.

4.2. Compared algorithms
Experimental analysis has been conducted on recently pro-
posed general-purpose state-of-the-art algorithms for seg-
menting medical 3D volumes, considering all of the top-
notch architecture (i.e., CNNs, Transformers, and Mamba-
based hybrid solutions). For what concerns CNNs, we in-
clude the original nnU-Net [24] configuration making use of
the U-Net architecture (nnU-Net), and its variations lever-
aging residual connections in the encoder (nnU-Net Res-
Enc). The considered Tranformer-based architectures are
TransU-Net [7], UNETR++ [47], and the recently pub-
lished nnFormer [56]. Finally, we include UMamba [38],
VMamba [35], and Swin-UMamba [34] as the representa-
tives of solutions based on state-space models.

4.3. Experimental setting
In all of the experiments carried out, we adopted a stan-
dardized scheme for hyperparameters configuration. More
specifically, we leverage the planning provided by the nnU-
Net framework. For intrinsically 3D algorithms, i.e., nnU-
Net, TransU-Net, nnFormer, UNETR++, and UMamba, the
nnU-Net planning applied to the training set of the proposed
dataset suggests a patch size of 80× 160× 160, and a batch
size of 2. The only exception is the nnU-Net ResEnc, which
adopts a patch size of 122× 224× 256. On the other hand,
models that produce 3D segmentations working slice-by-
slice, i.e., VMamba and Swin-UMamba, have a suggested
patch size of 384× 384 and a batch size of 19.

All the images in the training set of the proposed dataset
have the same spacing (0.3mm isotropic), so no resampling
is required. The volumes from the secondary dataset em-
ployed in our experiments, Cui et al. [16], have a mixed
voxel spacing instead, so they have been resampled to
match 0.3mm× 0.3mm× 0.3mm.

Models are trained from scratch without any pre-training
data. The nnU-Net three-fold cross-validation schema has
always been employed for model selection. All the models
have been trained for a total of 1000 epochs on a 48GB A40
Nvidia GPU using CUDA 11.8 and PyTorch 2.1.2.

4.4. Results
To fully explore the capabilities of state-of-the-art mod-
els on the proposed comprehensive dataset, Tab. 2 is pro-
vided. For space constraints, results are grouped by
anatomical structures by averaging single-class results. The
“others” column includes implants, artificial crowns, and
bridges. Surprisingly, 2D models, i.e., VMamba and Swin-
UMamba, outperform intrinsically 3D ones in many scenar-
ios. Although performance is satisfying, 2D models lack
the ability to fully capture and learn the spatial relation-
ships between the 3D structures in the maxillofacial region
due to a loss of contextual information and a limited capac-
ity to learn effective representations of complex structures.
This is also confirmed by the qualitative results discussed in
Sec. 4.7, where it is evident that predictions are more noisy
and seem fragmented. Anyway, their local ability to dis-



Table 3. Results on the test set of the proposed dataset when using
variations of the nnU-Net ResEnc.

Model DSC HD95

Default 74.16 14.48
w/o l/r mirroring 80.79 12.37
w/o l/r mirroring, increased depth 82.11 11.86
w/o l/r mirroring, increased depth, post-processing 84.99 8.57

criminate among classes ensures high-level performance.
Overall, Mamba-based architectures are the most effec-

tive in this context. Among all, UMamba provides the best
performance. Blending convolutions to model precise spa-
tial information and state-space models to learn long-range
voxel-level interactions ensures high accuracy. Mamba pro-
vides a global context alongside voxel-wise precision, the
former missing in traditional convolutional layers due to
limited receptive fields and the latter absent in Transform-
ers due to computational complexity. Moreover, it requires
less training data to converge, making it more suitable in the
medical field where access to data is limited.

Considering the different classes available in the dataset,
jawbones and pharynx achieved the highest DSC scores, in-
dependently from the considered model. This could be ex-
plained by the consistent anatomical shape those structures
display throughout the entire dataset. Performance drops
when it comes to segmenting classes subject to more vari-
ability, like teeth; their position and orientation change con-
siderably from patient to patient, there might be missing
teeth, or they can be covered by artificial crowns, or com-
pletely replaced by implants or bridges. It is not uncom-
mon for the models to confuse artificial with natural teeth.
Independently from the model employed, the worst per-
formances are obtained when segmenting “others” classes,
which represent all of the artificial structures that restore
or replace natural teeth. One reasonable explanation is that
these classes are underrepresented in the proposed dataset.

4.5. Improving default nnU-Net configuration
To augment the training dataset and improve performance,
the nnU-Net framework applies mirroring along multiple
spatial dimensions. Such an augmentation usually improves
model performance, providing additional useful training
data without compromising the ability to differentiate be-
tween left and right organs. In the maxillofacial context,
however, there is pronounced symmetry between structures:
teeth, nerves, and maxillary sinuses are all symmetrical
w.r.t. to the sagittal plane splitting the face. In such a sce-
nario, ensuring precise orientation is fundamental. The ap-
plication of the left/right mirroring augmentation has ex-
actly the opposite effect: instead of increasing model per-
formance and generalization capabilities, it leads to a drop
in the model’s ability to establish a reliable left/right dis-
tinction, downgrading overall performance (Tab. 3). Addi-
tionally, given the complexity of the proposed dataset, we

Table 4. Results on the test set of the proposed dataset when using
our plan w/o post-processing.

Model
Default Plan Our Plan

DSC HD95 DSC HD95

C
N

N
s nnU-Net [24] 70.92 17.86 78.24 13.36

nnU-Net ResEnc [24] 74.16 14.48 82.11 11.86

Tr
an

sf
. TransUNet [7] 70.32 20.17 75.12 7.17

nnFormer [56] 76.79 5.45 79.12 5.15
UNETR++ [47] 71.43 17.23 83.57 3.04

M
am

ba UMamba [38] 85.05 5.28 85.39 4.70
VMamba [35] 73.13 5.17 74.21 4.37
Swin-UMamba [34] 79.64 2.94 81.95 2.91

enriched the network topology by introducing an additional
layer. Such an enhancement ensures an increased receptive
field in the bottleneck of the network, improving contextual
information and the model’s ability to identify long-range
relationships between structures. Finally, considering the
nature of the structures involved in the dataset, all of the
voxels belonging to the same class should be in a close re-
lationship and connected to each other. For this reason, we
introduce a post-processing technique that computes con-
nected components [5] and filters out predictions that are
below a given threshold or the smallest prediction if multi-
ple objects for the same class are identified by the model.
Thresholds are computed per class using statistics on the
training dataset, i.e., minimum connected component vol-
ume. Such a procedure ensures us an additional gain of
more than 2 DSC points on the proposed dataset.

Finally, in order to confirm the effectiveness of the im-
proved nnU-Net planning on the proposed dataset, i.e., dis-
abling l/r mirroring and the deeper network topology, we
apply the same strategy to all of the considered models. Re-
sults are reported in Tab. 4.

4.6. Comparison with existing datasets

Tab. 5 provides a comparison of state-of-the-art models, one
from each category, trained on either the proposed data or
a subset of it and Cui et al. [16]. To perform a fair com-
parison, we selected 82 random scans from both datasets to
be used for training. Since [16] includes only tooth annota-
tions, we set all non-teeth classes to background. Selected
models are evaluated on our complete test set, the full Cui
dataset, and its 15 volumes not used for training.

A column-wise comparison of the results suggests that
the volume of data has only a marginal impact on overall
tooth segmentation performance but is critical for demo-
graphic generalizability. Additionally, models trained on
our dataset generalize more effectively to the Cui dataset,
while those trained exclusively on Cui experience a dice
score reduction of up to 10 points when evaluated on our
dataset compared to their own test set. Notably, UMamba
demonstrates consistently strong performance across both
datasets, highlighting its robust generalization capabilities.
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Figure 5. Qualitative results obtained with the proposed plan w/o post-processing, one patient per line. Red squares identify relevant errors.

Table 5. Dice comparison between our and Cui [16] datasets con-
sidering only teeth classes and converting others to background.
Our plan w/o post-processing is employed.

Training
Dataset Model

Testing Dataset

Our (test) Cui (all) Cui (15 scans)

Our (all the 480
training scans)

nnU-Net [24] 91.12 81.86 82.13
nnFormer [56] 85.16 79.19 80.25
UMamba [38] 90.97 87.60 87.90

Our (82 scans
from training)

nnU-Net [24] 90.04 79.67 81.12
nnFormer [56] 82.72 74.85 77.42
UMamba [38] 90.18 86.23 87.71

Cui (82 scans
over 97 available)

nnU-Net [24] 78.05 88.52
nnFormer [56] 70.63 ˜ 74.35
UMamba [38] 79.95 89.74

4.7. Qualitative evaluation

Fig. 5 depicts a qualitative comparison of the selected
state-of-the-art segmentation models trained on the pro-
posed dataset when using the previously introduced person-
alized nnU-Net planning. The lack of contextualized 3D
receptive fields of the 2D VMamba is evident, especially
on elongated objects like the inferior alveolar canal (first
line). Transformer-based architectures, UNETR++ and nn-
Former, produce more noisy labels. While some can be
easily removed by employing post-processing techniques,
the majority will remain. Interestingly, all of the 3D mod-
els mistakenly label the plastic chin support used to acquire
the CBCT with a mix of artificial crown (yellow label, sec-
ond line) and pharynx (gray label, second line). This has a
negative impact on the HD95 of both “other” and pharynx
classes. The local discriminative capabilities of 2D mod-
els make them stronger, avoiding this misidentification and
explaining the lower HD95 values.

All of the models except UNETR++ correctly recognize
the first upper premolar implant (red label within the upper
jawbone, second line). However, none of them label the
artificial crown of the same tooth as such.

5. Conclusions and Limitations

In this paper, we presented the largest publicly available an-
notated CBCT dataset with 3D segmentations for 42 dis-

tinct maxillofacial anatomical structures, offering a valu-
able resource for developing and benchmarking automated
segmentation models in digital dentistry and addressing a
significant gap in the literature. Our dataset supports de-
tailed multi-class segmentation across complex maxillofa-
cial anatomy, enabling improved model training, evaluation,
and generalization for clinical applications such as surgi-
cal planning and implant placement. Extensive benchmark
evaluations of state-of-the-art neural network architectures
on our dataset highlight the potential of existing models in
enhancing the accuracy and efficiency of maxillofacial im-
age analysis, also demonstrating the significance of the pro-
posed dataset. Moreover, we demonstrated different tech-
niques that can be adopted w.r.t. the standard nnU-Net plan-
ning to improve the overall performance of state-of-the-art
models when trained on complex CBCT datasets such as
the one proposed in this paper.

Limitations and future work. Despite its significant
contributions, our dataset has limitations that should be fur-
ther addressed in the future. Although training and testing
data come from different machines and acquisition centers,
limiting potential biases in the evaluation, training data was
acquired from a single center, potentially affecting the gen-
eralizability of models trained on this dataset to other clin-
ical environments or patient demographics. Furthermore,
while the dataset includes a wide range of classes, some
—implants, crowns, and bridges— are underrepresented,
affecting the robustness of model performance. Addition-
ally, some components encountered in maxillofacial imag-
ing, such as dental braces and bone plates, are missing due
to their unavailability in the current patient cohort. Fu-
ture work should focus on expanding this dataset to include
multi-center data, ensuring a more representative sample
of anatomical and demographic diversity. Including more
cases with underrepresented and missing classes would fur-
ther enhance the dataset’s utility, supporting more compre-
hensive models. We believe that this dataset provides a
strong foundation for advancing automated maxillofacial
segmentation, and we encourage the research community
to build upon it to address the outlined limitations.
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