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Abstract

Whole Slide Images (WSIs) are crucial in histological diagnostics, providing high-resolution
insights into cellular structures. In addition to challenges like the gigapixel scale of WSIs
and the lack of pixel-level annotations, privacy restrictions further complicate their anal-
ysis. For instance, in a hospital network, different facilities need to collaborate on WSI
analysis without the possibility of sharing sensitive patient data. A more practical and se-
cure approach involves sharing models capable of continual adaptation to new data. How-
ever, without proper measures, catastrophic forgetting can occur. Traditional continual
learning techniques rely on storing previous data, which violates privacy restrictions. To
address this issue, this paper introduces Context Optimization Multiple Instance Learning
(CooMIL), a rehearsal-free continual learning framework explicitly designed for WSI anal-
ysis. It employs a WSI-specific prompt learning procedure to adapt classification models
across tasks, efficiently preventing catastrophic forgetting. Evaluated on four public WSI
datasets from TCGA projects, our model significantly outperforms state-of-the-art meth-
ods within the WSI-based continual learning framework. The source code is available at
https://github.com/FrancescaMiccolis/CooMIL.
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1 Introduction

Whole Slide Images (WSIs) are valuable tools in digital pathology and clinical diagnos-
tics (Bontempo et al., 2023a). In addition to the vast dimensions and lack of precise
pixel-level annotations (Lu et al., 2020; Huang et al., 2022; Javed et al., 2020; Ponzio et al.,
2020)—WSIs are often subject to privacy restrictions, which hinder data sharing and collab-
oration (Bisson et al., 2023; Kanwal et al., 2023; Bandeira et al., 2023). Continual Learning
(CL) offers a solution by allowing models to learn incrementally from data distributed across
multiple healthcare institutions, while respecting patient privacy and data governance poli-
cies. Indeed, fine-tuning even large-scale models on new datasets often leads to catastrophic
forgetting, where the model forgets previously learned information (Robins, 1995). This is-
sue is critical in WSI analysis, where tissue subtypes and treatment protocols evolve rapidly.
CL aims to mitigate this problem and enhance model adaptability to new datasets and tasks.
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Among various CL methodologies such as regularization (Aljundi et al., 2018; Zenke et al.,
2017) and architectural strategies (Rusu et al., 2016), only rehearsal-based models seem to
be effective against catastrophic forgetting in WSI analysis (Huang et al., 2023a). How-
ever, such approaches rely on memory buffers, which are impractical in privacy-sensitive
medical contexts. To address these challenges, we propose a rehearsal-free strategy for WSI
analysis, employing a multimodal multi-resolution classifier with an attribute word bank
that pairs unique identifiers (keys) with prompts enriched with context-derived information.
The classifier is also based on Multiple Instance Learning (MIL) (Carbonneau et al., 2018;
Panariello et al., 2022), which is applied to WSI classification (Li et al., 2021a; Bontempo
et al., 2023b), where each bag of patches is annotated at the slide level.

Contributions. In addressing the outlined challenges and introducing a novel architecture
for the analysis of WSIs within a continual learning framework, our work makes several
significant contributions to the field of medical image analysis: (i) the proposed approach
overcomes the limitations of traditional continual learning strategies on WSIs, which rely
on rehearsing previous data to prevent catastrophic forgetting. Our method offers a more
efficient and privacy-compliant solution for continual learning in WSI analysis. (ii) We
develop a novel prompt-learning-based MIL in WSI analysis. Different from other strategies,
it exploits a MIL approach to contextualize prompts. (iii) Additionally, we introduce a novel
solution of prompt learning tailored to the multi-resolution characteristics of WSIs, enabling
our model to focus effectively on relevant features across different scales.

2 Related Work

Continual Learning (CL) for Histology. Continual learning—the ability to incremen-
tally acquire new knowledge while retaining previously learned information—is vital in medi-
cal image analysis. It is generally categorized into three main approaches: (i) regularization-
based methods, which penalize changes using various regularization terms (Kirkpatrick
et al., 2017; Li and Hoiem, 2017; Zenke et al., 2017); (ii) rehearsal-based strategies, which
retain and replay past data during training (Li and Hoiem, 2017; Chaudhry et al., 2019;
Caccia et al., 2022; Bellitto et al., 2024); and (iii) architectural solutions, which expand the
model’s parameters to accommodate new tasks (Rusu et al., 2016). Notably, some works
have investigated continual learning in pathology (Derakhshani et al., 2022; Veena et al.,
2022; Thandiackal et al., 2024). However, these efforts are primarily limited to patch-level
analysis. Addressing these challenges at the slide level, ConSlide (Huang et al., 2023a)
introduces a continual learning framework specifically designed for WSI classification. Con-
Slide employs a rehearsal-based strategy by maintaining a memory buffer of representative
slide-level features from previous tasks. During training, it replays this stored data to miti-
gate catastrophic forgetting, effectively balancing the learning of new and old tasks. While
ConSlide advances continual learning in digital pathology, its reliance on rehearsal methods
introduces concerns related to data storage and potential privacy issues, critical factors in
medical applications where data security is crucial. In contrast, our work is the first to
propose a rehearsal-free continual learning framework for WSI classification.

Continual Prompt Learning. Vision-Language Models (Jia et al., 2021; Radford et al.,
2021) showcased remarkable capabilities in learning versatile visual representations on stan-
dard benchmarks (Radford et al., 2021) and histological data (Huang et al., 2023b). Building
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Figure 1: WSIs are decomposed into regions and patches, from which multi-resolution
embeddings are extracted using a frozen image encoder (top left). These features are ag-
gregated using a MIL module (top right) to produce a context-aware bag embedding. The
context is injected into learnable soft prompts which are processed by a frozen text encoder
(center). Classification logits at the slide level are obtained by computing the cosine simi-
larity between the visual and textual embeddings (bottom left).

on these advancements, recent research has focused on optimizing training methodologies
for specific classification tasks, moving beyond conventional model fine-tuning to prevent a
degradation of the representation space (Gao et al., 2023; Wortsman et al., 2022; Yao et al.,
2024; Zhang et al., 2021; Dong et al., 2019; He et al., 2016). In particular, recent efforts
in continual learning have introduced visual prompt tuning (Wang et al., 2022a,b), inte-
grating a minimal set of adaptable parameters directly into the input, thereby furnishing
the pre-trained models with additional guidance for enhanced performance on downstream
tasks (Li et al., 2021b). L2P (Wang et al., 2022b) bridges visual prompting with continual
learning, utilizing a shared prompt pool for task sequence adaptation. In this regard, recent
works (Menabue et al., 2024; Frascaroli et al., 2024) apply prompt-tuning to multi-modal
architectures in order to learn a sequence of classification tasks without forgetting. Recent
works (Ranem et al., 2024) explore continual learning in medical imaging, focusing on vol-
umetric data. However, none of the aforementioned prompting strategies can be directly
applied to the gigapixel nature of WSIs.

3 Method

Overview. To address the challenges of continual WSI classification preserving privacy, we
propose a solution that integrates rehearsal-free continual learning techniques with multi-
instance learning. The proposed model comprises several components designed to enable
effective classification in a continual learning setting. The pipeline (Fig. 1) starts with an
image encoder that fuses features extracted from patches at multiple resolutions (Sec. 3.1).
Subsequently, a context-aware MIL module provides a bag-level representation, which is
injected into learnable soft prompts that are then processed by a text encoder (Sec. 3.2).
Classification logits are obtained by computing cosine similarities between the visual and
textual embeddings (Sec. 3.3). In addition, a continual word bank (Fig. 2) facilitates the
dynamic retrieval of the most relevant prompts over time, as detailed in Sec. 3.4.
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3.1 Multi-scale Slide Representation

We compute a multi-scale representation for each WSI employing the image encoder f(·)
of a foundation model pre-trained on histological images (Lu et al., 2024). Each slide is
represented as a multi-resolution embedding B (green box in Fig. 1) of instances xi:

B = {x1, ..., xn}; xi =
⋃

∀pj∈ri;
{f(pj) + f(ri)

2
}; (1)

where ri denotes the i-th region at a coarser resolution, and pj are the patches at a finer
resolution within ri. The notation pj ∈ ri indicates that patch pj is contained within region
ri. Averaging features from finer patches pj and their corresponding coarser regions ri
captures both macro and micro details, yielding robust representations.

3.2 Context-aware Prompt Learning

Textual prompts often generalize poorly (Zhou et al., 2022). To address this, we draw
inspiration from DSMIL (Li et al., 2021a) and CoCoOp (Zhou et al., 2022), and propose
a mechanism to inject image-derived contextual information directly into the prompts,
enhancing their relevance and adaptability.

Specifically, in this MIL module, the instance-level representation xi is transformed into
two vectors, corresponding to query qi and value vi, computed as: qi = Wqxi, vi = Wvxi
with i = 0, . . . , N − 1, where Wq and Wv are learnable weight matrices. We use a distance
measurement U to quantify the similarity between an arbitrary instance and the critical
instance xcrit, selected using max pooling, as in Eq. (2):

U(xi, xcrit) =
exp(⟨qi, qcrit⟩)∑n

k=1 exp(⟨qk, qcrit⟩)
; (2) b =

n∑
i=1

U(xi, xcrit) vi. (3)

For constructing the bag embedding b in Eq. (3), we perform an element-wise weighted
sum of the value vector vi across all instances using U(xi, xcrit) as weights. To facilitate the
information flow from the MIL module to the learnable prompts, we employ a MLP denoted
as M . The context to be injected in the prompt, denoted as π (yellow box in Fig. 1) is
obtained as π = M(b) (4).

In the proposed model, we introduce two distinct prompts with complementary func-
tions, i.e., localization and classification. Each prompt is composed of a static template
(“An H&E image of”), a learnable word embedding vector V , and a given class name CLS:

P tumor,normal =
[
TEMPLATE, V +,−, CLStumor,normal

]
. (5)

The Pnormal is designed to distinguish normal tissues from pathological anomalies, thus
localizing areas of interest. The P tumor, on the other hand, is used to classify the identified
instances based on the type of tumor. This two-step process ensures that the system not
only detects areas of concern but also provides a precise classification. Having defined both
the context π, Eq. (4), and the base prompt P tumor,normal, Eq. (5), the final prompt after

context injection is obtained as P tumor,normal
π = P tumor,normal+π and processed by the text

encoder e(·).
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Figure 2: Cosine Similarity Aggregation (left) and Continual Word Bank (right). On the
left, multi-resolution embeddings are matched against specific tumor and normal textual
prompts. The comparison with normal tissue prompts allows for modulating tumor scores
for the final prediction. On the right, a query representing the average instance embedding
is compared with keys to select the corresponding set of parameters.

3.3 Cosine Similarity Aggregation

For each multi-scale instance feature xi, Eq. (1), class c and tissue t, we compute the
cosine similarity between the visual and textual features as Stumor

xi,c = ⟨xi, e(P tumor
c )⟩ and

Snormal
xi,t = ⟨xi, e(Pnormal

t )⟩. To make a single prediction Sc for the whole image, we aggregate
the relevance scores Stumor

xi,c modulated by the corresponding magnitude of the critical scores

Snormal
xi,t (Fig. 2, left):

Sc =
∑
xi

1
c∈t

(
exp(−Snormal

xi,t ) · Stumor
xi,c

)
. (6)

In a nutshell, we compute the aggregated slide-level representation by summing the sim-
ilarity score of the tumor regions weighted by the inverse of their degree of “normality”.

3.4 Continual Word Bank

To work effectively within a continual learning framework, we introduce the Continual Word
Bank (Fig. 2, right). This dynamic repository accumulates and refines task-specific prompts
over time, each tailored to a tissue type and its associated classes. By selectively retrieving
these prompts, the model can process a sequence of tasks without catastrophic forgetting.
At each task ti, we compute the average patch representation for each bag Bh as in Eq. (7);
then we apply the K-Means clustering algorithm to partition them into k clusters. Each
cluster Gj is associated with a centroid gj , Eq. (8), representing the mean feature vector of
the points belonging to that cluster:

b̄h =
1

|Bh|
∑

xi∈Bh

xi; (7) gj =
1

|Gj |
∑

b̄h∈Gj

b̄h. (8)

For each new task, centroids are computed on-the-fly and used as transient keys to select the
most relevant prompts. In this key-value system, the stored values are the prompts and the
MIL modules, which are lightweight components that ensure scalability and efficiency across
tasks, without retaining identifiable patient information. During inference, the average
instance representation for each new slide is computed as it was during training, and it
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Table 1: Comparison of continual learning methods across different dataset orders.

(a) NSCLC → BRCA → RCC → ESCA (b) ESCA → RCC → BRCA → NSCLC

CL Type Method ACC (↑) Task-
ACC (↑) Fgt.(↓) ACC (↑) Task-

ACC (↑) Fgt.(↓)

Joint (Upper) 91.6 ± 2.4 91.5 ± 3.2 91.6 ± 2.4 91.5 ± 3.2
Näıve (Lower) 21.7 ± 3.0 38.4 ± 9.2 51.0 ± 12.9 32.6 ± 1.3 38.1 ± 5.6 75.7 ± 7.4

Regularization-
based

LwF 19.7 ± 4.3 28.9 ± 0.9 44.2 ± 5.3 32.9 ± 1.6 39.8 ± 11.7 81.7 ± 15.6
EWC 28.1 ± 2.6 56.0 ± 1.4 64.5 ± 4.1 46.6 ± 5.0 55.1 ± 1.8 77.9 ± 6.1

Rehearsal-
based

GDumb 48.4 ± 12.2 18.1 ± 3.6 1.1 ± 2.3 42.8 ± 15.1 17.6 ± 7.7 6.0 ± 4.9
ER-ACE 86.8 ± 2.9 87.8 ± 1.8 2.8 ± 1.4 88.8 ± 2.1 90.6 ± 2.7 7.3 ± 5.0
DER++ 88.4 ± 1.2 90.3 ± 1.2 3.7 ± 0.7 89.6 ± 1.1 91.2 ± 3.1 5.6 ± 4.3
DER++ w/o buf. 29.9 ± 3.8 57.9 ± 2.1 62.9 ± 5.2 48.6 ± 4.3 58.0 ± 2.1 79.2 ± 4.1
ConSlide 66.3 ± 3.7 80.3 ± 1.5 25.8 ± 3.4 69.0 ± 3.8 81.8 ± 2.7 49.2 ± 5.4
ConSlide w/o buf. 26.5 ± 4.2 54.8 ± 1.9 66.5 ± 5.5 37.6 ± 4.5 53.1 ± 2.6 89.2 ± 3.7

Prompt-based CooMIL (Ours) 88.6 ± 2.7 90.7 ± 2.5 3.6 ± 1.4 89.9 ± 3.4 91.3 ± 2.4 5.1 ± 3.8

serves as a query to retrieve the most pertinent entries from the continual word bank via a
nearest-neighbor search. During training, we minimize the Cross-Entropy loss:

L(B, y, ti) = E
∀(B,y)∈ti

(y · log(softmax(yc))), (9)

where yc represents the predicted class scores. For the text prompts, yc = Sc, while for the
MIL module, yc = Wcls · b, where Wcls is a learnable weight and b is defined in Eq. (3).
Finally, the loss is computed as L = LMIL+Ltext. In a continual context, a set of parameters
(including V +, V −, and the MIL module) is instantiated for each task ti. Only parameters
corresponding to the current task are optimized during training.

4 Experiments

4.1 Datasets

Continual WSI benchmark. To validate our proposed architecture in a class-incremental
learning setting, we conducted experiments using an improved version of the benchmark
introduced by ConSlide (Huang et al., 2023a). Class-incremental learning requires models
to recognize new classes without forgetting previously learned ones. In this context, the
order of the datasets plays a crucial role, particularly with datasets of varying sizes and
complexities. Unlike the original ConSlide benchmark, our version explicitly accounts for
dimensionality differences, class imbalance, and presentation order. Tab. 1 reports the mean
and standard deviation of a 10-fold cross-validation performed on two task orders: one from
the most to the least numerous (Tab. 1a), and its reverse (Tab. 1b). The data include four
tumor types, each defining separate binary subtype classification tasks—NSCLC, BRCA,
RCC, ESCA.

Preprocessing. Each slide is processed with CLAM (Lu et al., 2021) to extract non-
overlapping regions r of dimensions 4 096 × 4 096 sampled at a resolution of up to 0.5
µm/pixel. Tiles are partitioned into 64 non-overlapping 512 × 512 patches p, resized to
224× 224, and encoded with CONCH’s vision encoder (Lu et al., 2024).
Experimental Setting. Our model employs CooMIL as the backbone, while all continual
learning baselines adopt HIT, the architecture from ConSlide (Huang et al., 2023a). To
ensure fairness, all methods rely on the same CONCH-based embeddings. Models are
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Table 2: (a) Task accuracy with varying numbers of centroids. (b) Impact of context
and multi-scale on classification performance. (c) Impact of context type, here V denotes
injecting context only into the learnable part of the prompt, and P refers to appending the
context to the entire prompt. Tumor and Normal indicate where injection is performed.

(a) Clusters per Task (b) Context and Multi-scale (c) Context Type

# Centroids Task-ACC Context
Multi-
scale

ACC V/P Tumor Normal ACC

1 85.7 ± 2.3 V ✓ ✓ 87.2 ± 3.2
4 86.5 ± 1.0 ✗ ✗ 84.6 ± 2.8 V ✓ ✗ 85.2 ± 3.1
8 87.5 ± 1.9 ✗ ✓ 86.6 ± 2.0 V ✗ ✓ 84.2 ± 3.6
12 87.2 ± 2.0 ✓ ✗ 86.9 ± 3.0 P ✓ ✓ 88.6 ± 2.7
14 90.7 ± 2.5 ✓ ✓ 88.6 ± 2.7 P ✓ ✗ 86.2 ± 2.2
16 88.5 ± 2.4 P ✗ ✓ 85.0 ± 2.9

trained for 50 epochs using the Adam optimizer with a learning rate of 0.0003, employing
a 10-fold cross-validation approach.
Evaluation Metrics. Besides Accuracy (ACC), we report CL metrics (De Lange et al.,
2021) such as Task Accuracy (Task-ACC), i.e., performance on the current task only, and
Forgetting (Fgt.), the decline in accuracy on earlier tasks (Boschini et al., 2022). Metrics
reported in Tab. 1 were saved at the end of the final task in a ten-fold validation fashion.

4.2 Experimental Results

Continual Comparison We evaluated our proposed model against several leading con-
tinual learning baselines, covering regularization and rehearsal approaches in Tab. 1. Regu-
larization-based methods, such as LwF (Li and Hoiem, 2017) and EWC (Kirkpatrick et al.,
2017), aim to mitigate forgetting by constraining updates to important parameters for
previously learned tasks. On the other hand, rehearsal-based methods, including GDumb
(Prabhu et al., 2020), ER-ACE (Caccia et al., 2022), DER++ (Buzzega et al., 2020), and
ConSlide (Huang et al., 2023a), rely on storing and replaying a subset of past data to help
retain knowledge. These models were evaluated with a fixed buffer size of 5 WSIs. Specif-
ically, our model boosts overall accuracy by over 20% and task-specific accuracy by 10%
compared to ConSlide, in both normal and reverse task orders. Although ConSlide relies on
a memory buffer, it still suffers a high forgetting rate (25.8% in normal order, nearly dou-
bling in reverse). By contrast, our model—without any buffer—achieves substantially lower
forgetting rates of just 3.6% in normal order and 5.1% in reverse order. The only methods
with metrics comparable to ours in both the order settings are ER-ACE and DER++. How-
ever, they rely on a memory buffer and require significantly higher computational resources
than our model. These results underscore the superior performance of our approach, which
avoids storing past data while still achieving better overall metrics.

4.3 Further Analysis

What is the optimal number of centroids? In Tab. 2(a), we explore how the number
of centroids per task influences the performance of the task predictor. A large number of
clusters can better represent the entire task variability. If too high, the centroids overfit
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the training representation. A good balance is obtained considering 14 centroids per task,
which achieves 90.7% in task identification accuracy.
Are multi-scale and context effective? In Tab. 2(b), multi-scale representations

Task 1
Lung

Task 2
Breast

Task 3
Kidney

Task 4
Esophagus

1.0

0.0

Time

Figure 3: Patch-level attention maps
over four consecutive tasks.

consistently enhance performance. Without context,
incorporating multi-scale features leads to a 2% in-
crease in accuracy. When context is included, the
addition of multi-scale representations yields a fur-
ther 1.7% improvement. Similarly, adding context
improves accuracy by 2.3% when multi-scale features
are not used, and by 2% when they are. These results
confirm the effectiveness of both multi-scale and con-
textual features, independently and in combination.
Tab. 2(c) investigates the impact of different context
injection strategies. Results show that appending
context to the full prompt (P) generally outperforms
partial injection (V). The best accuracy (88.6% ±
2.7) is achieved when both tumor and normal con-
text are used with full-prompt injection. Removing
either context source results in a consistent perfor-
mance drop, confirming the complementary value of
tumor and normal contextual signals.
Is localization stable over time? In Fig. 3 we present a qualitative analysis showing the
model’s ability to maintain consistent attention to relevant image regions across sequential
tasks. Visualizations reveal stable localization for both current and past tasks (green and
violet, respectively), highlighting the model’s capacity for knowledge retention. This is
especially important in medical contexts, where consistent and interpretable localization
across resolutions and tasks enhances clinical trust and decision-making.

5 Conclusion

This work addresses key challenges in continual learning for WSI classification, including
catastrophic forgetting, large-scale image analysis, multi-resolution processing, and privacy
concerns. By integrating critical information into learnable prompts, CooMIL enhances
classification performance and context awareness. Evaluations on four WSI datasets show
improved accuracy and reduced forgetting. Despite these advantages, limitations remain.
Although aligned with the existing literature, the benchmark tasks are relatively simple, and
future work should incorporate more diverse imaging conditions and classification scenar-
ios. While our approach involves incremental parameter growth, the overhead is minimal.
Exploring prompt learning within the vision encoder also offers promising future directions.
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