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Abstract. The synthesis of missing MRI modalities has emerged as a
critical solution to address incomplete multi-parametric imaging in brain
tumor diagnosis and treatment planning. While recent advances in gen-
erative models, especially GANs and diffusion-based approaches, have
demonstrated promising results in cross-modality MRI generation, chal-
lenges remain in preserving anatomical fidelity and minimizing synthesis
artifacts. In this work, we build upon the Hybrid Fusion GAN (HF-
GAN) framework, introducing several enhancements aimed at improv-
ing synthesis quality and generalization across tumor types. Specifically,
we incorporate z-score normalization, optimize network components for
faster and more stable training, and extend the pipeline to support multi-
view generation across various brain tumor categories, including gliomas,
metastases, and meningiomas. Our approach focuses on refining 2D slice-
based generation to ensure intra-slice coherence and reduce intensity
inconsistencies, ultimately supporting more accurate and robust tumor
segmentation in scenarios with missing imaging modalities. Our source
code is available at https://github.com/AlImageLab-zip/BraSyn25.
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1 Introduction

In recent years, deep learning has significantly advanced medical image analy-
sis, particularly for tasks such as segmentation and classification across various
imaging modalities [8}/10}/20,[23},/39},/41]. Moreover, generative models have also
emerged as a powerful technique to produce fully synthetic datasets or expand
existing ones, thereby increasing data variability, mitigating class imbalance,
and supporting the development of more robust and generalizable deep learn-
ing models [11}/17},/24}/33}|38]. In this context, while certain applications involve
distinct anatomical structures that can be accurately analyzed using a single
image modality [7}|29], many clinical scenarios require multi-modal imaging to
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effectively capture complex anatomical and pathological variations, lesion het-
erogeneity, and enhance tissue contrast [37]. Among the latter, the diagnosis and
monitoring of brain tumors rely on multi-parametric Magnetic Resonance Imag-
ing (MRI), considered the standard due to its superior capability in delineating
tumor boundaries, quantifying tumor volumes, and guiding therapeutic deci-
sions [4}/7]. Specifically, clinical practice typically employs four complementary
MRI sequences: T1-weighted images (T1), T1-weighted images with contrast
enhancement (T1lc), T2-weighted images (T2), and Fluid-Attenuated Inversion
Recovery (FLAIR). Each modality highlights distinct tumor sub-regions, facili-
tating comprehensive analysis. However, acquiring all four MRI modalities is not
always feasible in clinical practice due to constraints such as differing acquisition
protocols, scanner limitations, or patient-specific issues like allergies to contrast
agents (in the case of Tlc modality). This absence of modalities, which can
compromise the accuracy of diagnostic tasks, in particular tumor segmentation,
has motivated extensive research into synthesizing missing MRI modalities from
available ones. Recently, generative approaches spanning from Generative Ad-
versarial Networks (GANSs) to diffusion models, have been proposed to preserve
the informative characteristics of each modality [22].

GAN-based modality synthesis. GANs have been widely used for cross-modal-
ity MRI translation, yielding promising results in producing realistic missing
scans. Early works focused on paired image-to-image translation, adapting state-
of-the-art general frameworks, such as Pix2Pix |6}{141/401/45], to the MRI domain.
Several other works demonstrated that GANs can produce anatomically plausi-
ble MRI sequences, if integrated with specific losses, such as a cycle-consistency
loss [12,[28], an edge-aware loss [45], a frequency loss 6], or masked versions of
common losses to penalize more the errors in tumor regions [6]. Authors proved
that synthetic modalities produced by GAN methods retain critical tumor in-
formation, leading to improved segmentation performance [34,42].

Diffusion models. Diffusion models have recently emerged as a strong alter-
native to GANSs for cross-modality MRI synthesis, offering higher fidelity via ex-
plicit likelihood modeling and gradual denoising [35|. Approaches include latent-
space diffusion [21,/46], which conditions on compressed representations to save
memory, and modality-masked diffusion, like M2DN [30], which treats missing
channels as noise for inpainting. The second and third place teams in the BraSyn
2024 challenge [16,/18] used wavelet-domain diffusion, showing that denoising in
wavelet space improves full-volume reconstruction and reduces 3D artifacts.

Hybrid and Multi-Stage Methods. Recent work explored hybrid architectures
and cascades to improve synthesis quality [19,22,[35/136]. Hybrid Fusion GAN
(HF-GAN) |22], the basis of our model, uses a hybrid generator with attention-
based fusion to integrate modality-specific features, which are then mapped to
the target sequence via a modality infuser. The BraSyn 2024 winner [22] ex-
tended HF-GAN with an intensity encoder for global context and a 3D Refiner
to reduce artifacts and improve tumor segmentation.

In this work, we refine the HF-GAN framework by adding z-score normal-
ization, optimizing network components, and adapting the training pipeline for
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multiview generation of tumors such as gliomas, metastases, and meningiomas.
We focus on improving 2D generation to produce coherent slices and reduce
intra-slice artifacts like intensity discrepancies.

2 Method

2.1 Preliminaries

We adopted HF-GAN [22] as our baseline model, using a lighter 2D pipeline
to improve training and inference performance. The framework consists of a
generator that synthesizes 2D brain slices from preprocessed 3D volumes and a
discriminator for GAN-style adversarial learning. To enable the synthesis using a
unified network independently from the missing modality scenario, the generator
is composed of 4 modality-specific late-fusion encoders (one for each modality),
an early fusion encoder that takes as input all the available modalities, a channel
attention feature fusion module, a modality infuser, and a decoder. The encoder-
decoder architecture is based on a U-Net structure.

The late fusion encoders, composed of residual convolutional blocks, with

SiLU activation |15] and group normalization [44], are used for modality-specific
feature extraction. The early-fusion encoder, architecturally identical to the spe-
cific encoders, accepts a stacked 4-channel image to extract complementary in-
formation from all the modalities, masking the missing ones.
Then, a feature fusion module integrates global and modality-specific infor-
mation, with channel attention using global average pooling and softmax. A
modality-infuser, made of Transformer blocks [43], infuses information about
the missing modality into the hidden space. The decoder expands the feature
maps using upsampling blocks characterized by a nearest neighbor interpolation
layer followed by a 3x3 2D-convolution layer to smooth the image.

As for the standard U-Net architecture, the model incorporates skip con-
nections between corresponding layers of the encoder and decoder to preserve
spatial information and facilitate gradient flow.

2.2 Dataset & Preprocessing

Data. The Brain Tumor Segmentation (BraTS) challenge series has been or-
ganized annually since 2012, providing standardized multimodal MRI datasets
and benchmarks that have driven progress in Al-based brain tumor analy-
sis [3,/27,[31]. The BraSyn-2025 dataset is based on datasets containing differ-
ent tumor cases, i.e., the BraTS-GLI 2023 (Glioma, GLI), BraTS-METS 2023
(Metastasis, MET) [32], and BraTS-MEN (Meningioma, MEN) [26]. The result-
ing dataset contains a retrospective collection of brain tumor mpMRI (multi-
parametric MRI) scans acquired from multiple institutions under standard clini-
cal conditions but with different equipment and imaging protocols, resulting in a
vastly heterogeneous image quality reflecting diverse clinical practice across dif-
ferent institutions. The training set is composed of 1,251 complete sequences from
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Table 1: MRI intensity values of the training set before and after applying the
99.5th percentile clipping and normalization strategies.

Value Clipp. Norm. Tlc Tln T2f T2w
Max. X X 2,120,538 155,724 612,368 4,563,634
Max. v X 8,664 7,315 8,842 8,233
Avg. v X 1,066.34 781.22 510.99 673.44
Std. v X 1,301.70 944.34 769.42 804.39
Min. v v -0.8192 -0.8273 -0.6641 -0.8372
Max. v v 5.8367 6.9189  10.8277 9.3979

the BraT'S-GLI dataset and 238 complete sequences from the BraTS-METS. All
samples are annotated with a segmentation mask with 3 tumor structures: En-
hancing Tumor (ET), Non-Enhancing Tumor Core (NETC), and peritumoral
EDema (ED) [5]. The evaluation is always performed on an aggregation of these
classes, namely Whole Tumor (WT) = ET + NETC + ED and Tumor Core (TC)
= NETC + ET, as well as on the Enhancing Tumor (ET) region individually.
The validation set is composed of 219 complete sequences from the BraTS-GLI
dataset and 31 complete sequences from the BraTS-METS. Finally, the test set
is composed of 219 complete sequences from the BraTS-GLI dataset, 59 complete
sequences from the BraTS-METS, and 283 sequences from BraTS-MEN.

In contrast to previous editions, this year’s challenge subtask introduces MET
cases into both the training and validation sets and includes GLI, MET and
MEN cases in the test set. This design aims to evaluate the models’ ability to
generalize across different tumor types. During the validation and test phases,
ground-truth segmentation masks are not provided, and one of the four imaging
modalities is randomly withheld (“modality dropout”) for each subject.

Data Preprocessing. Our contribution begins by modifying the original HF-
GAN data preprocessing pipeline. Since MRI intensities are unbounded and
often contain extreme outliers, we first applied intensity clipping at the 99.5th
percentile after setting all negative values to zero and excluding zero-valued
background pixels from the calculation. This step helps mitigate the influence of
outlier voxels while preserving the meaningful dynamic range of the brain tissue.
The original maximum values across modalities in the training before and after
the clipping are reported in Tab.

Moreover, instead of linearly projecting the data into the [—1, 1] range as done
in the original work [22|, we adopt dataset-wise z-score normalization, comput-
ing the global mean (Avg.) and standard deviation (Std.) across all training
volumes from both the GLI and MET datasets. These statistics are computed
after applying a 99.5th percentile intensity clipping and are reported in Tab.
along with the resulting voxel intensity ranges post-normalization.

To maintain compatibility with the original HF-GAN framework, we stan-
dardized background voxel values across all modalities. Specifically, all back-
ground voxels (i.e., those originally equal to zero) were reassigned a constant
value of -1, which also serves as the placeholder for masked input slices.
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Fig. 1: Architecture of the proposed model.

To adapt our 2D framework to the dataset’s 3D nature, we extracted axial,
sagittal, and coronal slices, discarding those with fewer than 2,000 foreground
pixels per modality (< 3.47% brain tissue). Sagittal and coronal slices were
symmetrically padded to 240 x 240; padding was precomputed for training and
applied on-the-fly at inference.

2.3 The Proposed Solution

As a GAN-based architecture, our framework consists of a Generator and a
Discriminator, with the addition of a 2D Segmenter to guide the generation
process. The generator receives three available modalities and a masked place-
holder to reconstruct the missing one; this synthetic image is then combined
with the originals to form a four-channel input for the tumor segmenter, which
performs tumor segmentation. The resulting segmentation is used to compute a
task-specific loss to enhance segmentation metrics on the reconstructed volumes.
Following the typical GAN setup, the reconstructed modality is also passed to
the Discriminator, which distinguishes between real and generated images, but
also classifies the modality type to enforce modality-specific feature learning.
The details regarding each module are reported below.
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Fig.2: Full inference pipeline. The input is split into slices, processed by the
generator, then stacked to form the 3D volume. Padding and cropping are applied
only to non-square sagittal slices.

Generator. Our model incorporates four modality-specific encoders and a shared
fusion encoder. Each encoder consists of five downsampling stages with channel
dimensions of [64, 128,256,512, 640]. Each stage includes a convolutional resid-
ual block, composed of normalization, SiLU activation, and a 3x3 convolution
(stride 1, padding 1), followed by a downsampling block implemented as a 3x3
convolution with stride 2 and no padding. The fusion encoder is implemented
using grouped convolutions to parallelize modality processing, replacing the pre-
vious sequential approach. Feature fusion, performed by the channel attention
module is followed by a FlashAttention-compatible multi-head attention mod-
ule, composed of four stages, replacing the previous custom implementation.
This module is responsible for infusing modality information into the hidden
space and can optionally incorporate view-specific information for multi-view
generation tasks. Due to the use of z-score normalization, which preserves inten-
sity structure while improving robustness to inter-slice variation, the intensity
encoding modules were removed. The decoder mirrors the encoder with five up-
sampling stages, each comprising a convolutional residual block (as above) and
an upsampling block using nearest-neighbor interpolation followed by a 3x3 con-
volution. Skip connections link each encoder stage to its corresponding decoder
stage, merged by a weighted sum of the feature vectors: encoders corresponding
to available modalities share the contribution equally, so that the total sum of co-
efficients is 1; encoders of missing modalities contribute 0, while the early-fusion
encoder always contributes with full weight (1). The complete architecture of
the generator is represented in Fig.

Segmenter. To guide the generation process and improve segmentation ac-
curacy, we trained a lightweight 2D segmentation model to segment brain tu-
mor subregions. Specifically, we adopted a nnU-Net-based architecture with four
downsampling-upsampling stages and feature dimensions of [32, 64, 128, 256],
employing SiLU as the activation function.

The model was trained on a subset of the training data consisting exclusively
of slices containing at least 0.1% tumor tissue, thereby focusing the learning
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process on informative regions. To enhance generalizability, the segmenter was
trained across all anatomical views (axial, coronal, and sagittal) and tumor types
(GLI, MET), with the view and tumor type information incorporated into the
input via one-hot encoding. This design enabled a compact yet effective model
comprising only 1.79 million parameters. The resulting model achieved robust
performance, with validation Dice scores of 0.74, 0.80, and 0.82 on the NETC,
ED, and ET classes, respectively. The model was trained using the Focal Tver-
sky loss [1], due to its ability to provide better performance in contexts where
the different classes are highly imbalanced. The segmenter was independently
trained, and then frozen during the training of the generation pipeline.

Discriminator. The discriminator, shown in Fig. [T} is based on the PatchGAN
architecture [13], which classifies local image patches rather than the whole im-
age. It uses three downsampling layers and starts with 32 filters. Each block
includes a 4x4 convolution with stride 2 (except the last, which uses stride 1),
group normalization, and LeakyReLU activations. The final convolution outputs
a single-channel map for real/fake classification. An auxiliary classifier branch
predicts 4 class logits per image, one for each modality.

Final Generation. To correctly reconstruct a volume from 2D slices, the gen-
erator processes batches of slices, and then the outputs stacked (Fig. . Af-
ter stacking, the image is de-normalized, and background pixels are set to zero.
Padding is removed for 3D volumes generated from the sagittal view.
To enable a faster pipeline for

training and evaluation, we rely Table 2: List of loss components.
on efficient GPU implementations
of image processing algorithms |2,
9]. The entire process, includ- Lrecon Ixel-leve
: X ? . Ladv Encourages realistic outputs.
ing data loading, preprocessing, Lecss Encourages modality specific features.
and saving requires on average Lteat Promotes consmtency in the latent space.

? ’ ? Leycle Promotes cycle consistency.
13.4 seconds per sample on an Lssiv  Improves structural fidelity.
RTX5000 16CB. Lryersky Promotes better downstream segmentation.

Term Role

Enforces pixel-level accuracy.

2.4 The loss

Our model leverages a combination of different loss functions used to guide
the architecture toward learning more robust and balanced representations. The
overall loss function is:

Ltotal =10- Erecon +0.25- Eadv +0.25- Lclass + Efeat + ﬁcycle +5- ESSIM +5- LTversky

Each loss targets a specific aspect of the task: a summary is reported in
Tab. |Z| and detailed in the following. The reconstruction loss Lyecon, based on
the mean absolute error (MAE), serves as the dominant loss term, prioritizing
pixel fidelity between the synthesized and ground-truth images. To enhance per-
ceptual quality, we incorporate Structural Similarity Index (SSIM) losses Lssi,
computed as 1-SSIM on a per-pixel basis, and aggregated only over the regions
of interest. We implement two variants of this loss: one that considers the entire
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Table 3: Characterization of settings employed in different experiments.
Unmentioned losses are always present.

Losses Train View
RunID

Leycle Lteat LSSIM_whole L£8SIM_dual Lrversky GLI MET Axial Sagit.

R1 v X X
R2
R3
R4
R5
R6
R7
R8A
R8S
R9
R10

ENEN

AN N N N N NN
NN N N N N NN
XX XX XX XN XXX
AN N N N N R
XN X X NN X X XXX
NN N N N N ENENEN

WX AN X X X X X XX
AN N N NN NENENEN
NSNS SN X X X X%

volume, and another that produces two separate terms, one for healthy brain
tissue and one for tumor tissue, which are equally weighted during training. The
adversarial loss L.q4y is used to encourage realism in the generated outputs and
to suppress common synthesis artifacts. Cycle consistency is enforced through a
two-step generation process. In the first step, the generator synthesizes a miss-
ing modality using ground truth modalities. In the second step, this previously
generated output replaces the corresponding placeholder, one of the available
modalities is randomly masked (selected from a uniform distribution, so each
maskable modality has equal probability of being chosen), and the generator is
applied again using the two remaining ground truth modalities along with the
generated one. The cycle loss Lcycle is defined as the MAE between the output
of the second generation and the ground truth of the corresponding modality.
To further promote consistency at the representational level, a feature loss Lgeat
is included, defined as the cosine similarity between the hidden features of the
bottleneck layer extracted during the first and second generation passes. Finally,
the Tversky-focal loss |1] Lrversky is introduced to guide the generator to produce
outputs that are easier to segment, particularly in the presence of class imbal-
ance. As in the default HF-GAN framework, forward propagation is performed
twice, for cycle consistency, to generate each modality, resulting in a total of 8
forward passes on the same network (not along different paths). Gradients from
these multiple forwards are aggregated by combining the corresponding losses
into a single scalar and performing backpropagation once.

3 Experiments & Results

3.1 Assessment Metrics

Different algorithms are assessed using a combination of image quality and seg-
mentation metrics. The evaluation relies on multiple quantitative metrics.
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Table 4: Experimental results obtained combining different losses, leveraging
different training sets and 2D views. The Run IDs are explained in Tab. @
Run ID

) o o

n
o <
S B 2 2 2 2 2 £ =2 3 2 Z

Metric

SSIM
ALL |MET| GLI | ALL| Val.Set
=
—

WT 99.73 99.77 99.76 99.74 99.71 99.76 99.75 99.76 99.77 99.75 99.76
HT 93.31 94.07 94.05 93.82 93.15 94.09 93.91 93.79 93.89 94.07 93.79

99.72 99.76 99.76 99.74 99.70 99.75 99.74 99.75 99.75 99.74 99.75
HT 93.69 94.47 94.44 94.22 93.52 94.49 94.28 94.10 94.20 94.47 94.11

WT 99.79 99.81 99.82 99.80 99.78 99.82 99.82 99.84 99.84 99.82 99.84
HT 90.62 91.23 91.23 90.94 90.52 91.29 91.27 91.59 91.73 91.27 91.59

ET 53.62 57.13 54.16 54.16 52.43 57.02 57.70 55.98 57.86 57.00 56.42
TC 73.86 76.49 7548 75.48 73.89 76.88 75.11 7528 77.55 76.88 75.28
WT 71.74 73.63 71.89 71.89 70.41 74.07 74.97 73.57 74.45 74.07 73.58

52.94 56.67 53.82 53.82 51.87 56.58 57.40 55.90 57.14 56.58 55.90
72.28 7527 74.24 T74.24 72.55 75.59 73.55 73.88 76.16 75.58 73.85
WT 69.75 71.91 70.01 70.01 68.47 72.25 73.26 71.79 72.50 72.25 71.79

ET 58.44 60.36 56.51 56.51 56.40 60.11 59.77 56.52 62.92 59.98 60.09
85.03 85.06 84.28 84.28 83.35 86.05 86.14 85.17 87.38 86.00 85.33
WT 85.78 85.83 85.15 85.15 84.16 86.93 87.03 86.13 88.26 86.92 86.18

ET 54.06 56.48 57.66 54.38 52.55 56.96 58.03 56.81 57.92 56.96 56.81
63.27 66.80 68.55 65.83 63.06 67.46 65.73 65.79 68.30 67.48 65.79
WT 52.80 55.54 56.51 53.02 51.32 56.11 57.30 55.41 56.64 56.11 55.41

ET 52.68 55.41 56.86 53.43 51.34 55.84 57.08 55.51 56.40 55.85 55.51
61.11 65.04 66.94 64.22 61.26 65.32 63.42 63.65 66.25 65.35 63.65
WT 49.19 52.17 53.20 49.60 47.90 52.35 53.79 51.78 52.88 52.36 51.78

ET 63.82 64.05 63.25 61.12 61.10 64.87 64.74 66.00 68.64 64.81 66.00
78.47 79.24 79.88 77.22 75.73 82.62 82.08 80.89 82.82 82.58 80.89
WT 78.30 79.34 79.91 77.15 75.48 82.65 82.13 81.12 83.23 82.64 81.12

DICE

GLI
==
aHA

MET
H
Q

ALL
=
Q

NSD
GL

H

Q

MET
H
Q

Structural Similarity Index Measure (SSIM), as an image quality metric,
it is employed to measure the realism of the reconstructed volume. It is indepen-
dently computed on the Whole Tumor (WT) area and on the Healthy Tissue
(HT) part of the brain, resulting in two scores for each test subject.

Dice score and Normalized Surface Distance (NSD) are used to evalu-
ate the effect of reconstructed volumes on segmentation masks and boundaries.
Metrics are computed for three tumor structures: Enhancing Tumor (ET), Tu-
mor Core (TC), and Whole Tumor (WT). Segmentation pseudo-labels for the
validation set are generated using state-of-the-art algorithms from the BraTS
python package 25|, then compared to segmentations from sequences where one
modality was masked and reconstructed.

3.2 Results

All experimental results from our analysis, on the validation set, are summarized
in Tab. 4] where each run is identified by a unique identifier (e.g., R1, R2) and
corresponds to a specific configuration of the generator’s training process. The
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Table 5: Quantitative results on the hidden test set for the submitted
best-performing run (R8S), as provided by the challenge organizers.
DICE NSD SSIM

Dataset
ET TC WT ET TC WT  Whole
GLI Mean 74.06 80.86 90.46 53.44 46.97 47.63  93.37
Std. 31.13 27.79 12.04 29.52 29.36 20.16 5.43
MEN Mean 72.26 73.95 78.42 56.65 56.87 53.54 93.41
Std. 38.54 37.14 32.28 34.75 34.54 28.02 2.05
ALL Mean 72.34 77.50 85.29 53.47 49.54 48.34 93.33

Std. 33.97 31.87 2283 31.17 31.28 23.43 4.49

details of each configuration are provided in Tab. [3] All runs are trained for an
equivalent number of steps, corresponding to 10 epochs on the GLI dataset, with
the exception of R6 and R7. Notably, R1, R2, R4, and R6 differ from the others
in how the input modalities are provided to the network, since the number of
available modalities varies between 1, 2, or 3, whereas in the other runs it is fixed
to 3. Runs R6 and R7 resume training from the checkpoint of R3 and are further
optimized for 3 additional epochs, adding the Tversky loss. Runs R8A, R8S,
and R10 share the same model, which is trained on multiple views and on the
combined GLI+MET dataset, but are evaluated under three different settings:
R8A generates axial views, R8S generates sagittal views, and R10 combines both
views by averaging the outputs. Similarly, R9 aggregates the axial predictions
from R6 and the sagittal predictions from R7. All models were evaluated on the
combined GLI+MET validation set to assess their generalization capabilities
across different tumor types. Tab. [f] reports the results on the hidden test set,
provided by the challenge organizers. Additionally, Fig. [8]reports a comparison of
the original and reconstructed slices sampled from all four modalities of random
patients. The figure shows that although no 3D refinement was used, the slices
show little to no striping artifacts, which are typical of 2D generation approaches.

3.3 Discussion

All of our experiments demonstrate strong MRI synthesis performance and good
generalization to unseen data. In particular, models trained exclusively on the
GLI dataset still perform reasonably well when tasked with generating MET
volumes, highlighting the robustness of the framework. R1, even without the
SSIM loss term, achieves strong perceptual quality. Subsequent runs focus on in-
cremental improvements. Introducing the SSIM loss on R2, split into two terms
for healthy and tumor tissue, improves structural similarity metrics. In contrast,
R3 applies the SSIM loss over the entire volume without differentiating between
tissue types, which leads to worse performance, highlighting the importance of
spatially targeted perceptual losses. The original framework supports cases with
1, 2, or 3 missing modalities. By always providing three known modalities as
input, convergence is faster, but final scores showed minimal variation, as ev-
idenced by the comparison between R2, which used variable input modalities,
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Fig. 3: Comparisons of real (left) and reconstructed (right) for two different pa-
tients sampled from the GLI validation dataset.

and R3, where three known modalities were always provided. We also experi-
ment with removing the cycle consistency and feature losses on R5. This leads
to performance degradation, confirming their contribution to training stability
and reconstruction quality. However, the inclusion of cycle consistency roughly
doubles training time and memory utilization. Incorporating the Tversky loss,
intended to improve segmentation quality, did not yield significant gains. Simi-
larly, using a simple mean of multiview predictions did not enhance performance.
Our best-performing model, R8S, is trained using both axial and sagittal views
and does not include the Tversky loss. It produces slices in the sagittal plane
and benefits from the increased diversity of input representations.

4 Conclusion

We proposed an enhanced 2D MRI synthesis framework based on HF-GAN,
introducing z-score normalization, architectural optimizations, and multi-view
training to improve synthesis quality and generalization across tumor types.
Our method achieves high structural fidelity and supports robust tumor seg-
mentation, even with missing modalities. Results show strong cross-dataset per-
formance, confirming the effectiveness of our design.
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