
A Deep-Learning-Based Method for Real-Time
Barcode Segmentation on Edge CPUs

Enrico Vezzali1,2, Lorenzo Vorabbi2,
Costantino Grana1, and Federico Bolelli1B

1 University of Modena and Reggio Emilia, Modena, Italy
{name.surname }@unimore.it

2 Datalogic, S.p.A, Bologna, Italy
{name.surname }@datalogic.com

Abstract. Barcodes are a critical technology in industrial automation,
logistics, and retail, enabling fast and reliable data capture. While deep
learning has significantly improved barcode localization accuracy, most
modern architectures remain too computationally demanding for real-
time deployment on embedded systems without dedicated hardware ac-
celeration. In this work, we present BaFaLo (Barcode Fast Localizer),
an ultra-lightweight segmentation-based neural network for barcode lo-
calization. Our model is specifically optimized for real-time performance
on low-power CPUs while maintaining high localization accuracy for both
1D and 2D barcodes. It features a two-branch architecture—comprising
a local feature extractor and a global context module—and is tailored
for low-resolution inputs to improve inference speed further. We bench-
mark BaFaLo against several lightweight architectures for object de-
tection or segmentation, including YOLO Nano, Fast-SCNN, BiSeNet
V2, and ContextNet, using the BarBeR dataset. BaFaLo achieves the
fastest inference time among all deep-learning models tested, operating
at 57.62ms per frame on a single CPU core of a Raspberry Pi 3B+. De-
spite its compact design, it achieves a decoding rate nearly equivalent to
YOLO Nano for 1D barcodes and only 3.5 percentage points lower for
2D barcodes while being approximately nine times faster.

Keywords: Barcodes · Embedded Systems · Object Detection.

1 Introduction

Barcodes are a pivotal technology for automated data capture and identification,
relying on simple visual codes to convey complex information cost-effectively.
Their versatility has led to widespread adoption across numerous domains: from
inventory tracking and logistics [8,19] to automated warehouse operations [7],
manufacturing [19], retail product recognition [9], and even robot navigation [13].
Recognizing the vital role of barcodes, both academia and industry have increas-
ingly focused on enhancing barcode localization techniques [20].

B Corresponding author: federico.bolelli@unimore.it



2 E. Vezzali et al.

The first attempts at barcode localization in 2D images, dating back to the
1990s, relied on traditional computer vision techniques such as edge detection,
Hough transforms, and texture direction analysis [5,10,18]. While computation-
ally efficient, these approaches were sensitive to noise, lighting variations, and
perspective distortions. The methods proposed by Sörös et al. [14] and Zamber-
letti et al. [23] improved the robustness of traditional techniques by incorporat-
ing structural analysis and learning-based refinement, but remained limited by
resolution sensitivity and focused primarily on 1D barcodes.

The shift toward deep-learning-based methods began in the mid-2010s with
the application of convolutional neural networks (CNN) [1,3]. Object detectors
such as YOLO and Faster R-CNN were adapted for barcode localization, achiev-
ing significant improvements in accuracy and robustness. More recently, dedi-
cated architectures for barcode segmentation have been proposed, such as the
method introduced by Zharkov et al. [24], to achieve faster inference while re-
maining quite reliable. Recent work by Vezzali et al. [17] introduced the BarBeR
benchmarking suite alongside a dataset of 8 748 images of barcodes, revealing
that deep-learning models significantly outperform hand-crafted methods. How-
ever, these models often incur high computational costs, limiting deployment on
low-power hardware such as the Raspberry Pi CPU, where even compact net-
works such as YOLO V8 Nano [6] can exceed one second of inference time [17],
making real-time processing impractical.

In this paper, we introduce BaFaLo (Barcode Fast Localizer), an ultra-
lightweight architecture for barcode localization and segmentation. By selec-
tively reducing model complexity while preserving critical performance, BaFaLo
achieves real-time inference on embedded CPUs for both 1D and 2D barcodes,
with less than a 3.5% drop in decoding rate compared to more computationally
demanding models like YOLO Nano. Furthermore, BaFaLo significantly out-
performs other lightweight segmentation models, such as the one proposed by
Zharkov et al. [24], as well as traditional hand-crafted approaches from Yun et al.
and Sörös et al., while maintaining superior speed. This advance opens the door
to cost-efficient solutions for industrial, retail, and robotics applications requiring
rapid barcode scanning in the field. To support reproducibility and further re-
search, we release all source code for BaFaLo, along with the training and valida-
tion scripts and the trained models: https://github.com/Henvezz95/BarBeR.

2 Proposed Method

In this work, we propose a deep learning framework to localize 1D and 2D bar-
codes on edge devices in real time (processing time < 60ms). In particular,
we want to show that deep-learning-based localization of barcodes is possible
even without accelerators and that an ARM CPU is enough for the task (in
our case, a Raspberry PI 3B+). Rather than relying on traditional detection
networks (e.g., YOLO), our method employs a segmentation-based architecture
that offers several distinct advantages. First, segmentation networks can lever-
age local texture information and, therefore, function effectively with a smaller

https://github.com/Henvezz95/BarBeR


Real-Time Barcode Segmentation on Edge CPUs 3

receptive field, whereas detection networks require having the entire object in
view. Second, because segmentation operates on pixel-level classifications using
convolutional blocks, the network more naturally adapts to different input reso-
lutions and handles scale variations without relying on fixed-size anchor boxes.
Finally, the segmentation output contains richer, pixel-wise information—such
as orientation or region boundaries—potentially benefiting the downstream de-
coding phase, though we do not explore this in the current paper.

Our design takes inspiration from Fast-SCNN [12], an architecture known for its
real-time performance on embedded devices. However, the original Fast-SCNN
design remained too slow for the use case targeted in this paper. Our proposed
approach is organized into four modules: (i) a Learning to Downsample module
that quickly reduces spatial resolution while preserving low-level features; (ii) a
Coarse Feature Extraction module that uses bottleneck residual blocks to cap-
ture a broader context. This component is a streamlined, lightweight adaptation
of the Global Feature Extractor from Fast-SCNN; (iii) a Feature Fusion module
to merge the high-resolution details from the downsample path with the global
context extracted at lower resolution; and (iv) a lightweight Classifier that up-
samples the fused features to produce the final segmentation map. This pipeline
provides a strong balance of local detail and global context.

2.1 Balancing Low-Resolution and High-Resolution Features

To achieve the necessary speed, we reduced the number of layers and chan-
nels in the architecture. Vezzali et al. [17] demonstrated that even very low-
resolution images can provide sufficient information to localize barcodes. For
instance, YOLO Nano achieved a high mAP@50 (0.961) when localizing bar-
codes in the BarBeR dataset [15,16] using a 320 × 320 resolution. Inspired by
these findings, we adopted a similar target resolution, which is much lower than
the high-resolution Cityscapes dataset [2] originally used to train Fast-SCNN.
Consequently, our first major modification was to significantly streamline the
Global Feature Extraction module—reducing its nine linear bottleneck layers to
three, lowering the output channels from (64, 64, 64, 96, 96, 96, 128, 128, 128)
to (32, 32, 32), and decreasing the expansion ratio of each bottleneck from six
to two. We also removed the Pyramid Pooling module at the end, as it offered
no tangible benefit in our application. Since this branch now provides a more
limited receptive field and captures coarser context, we refer to it as the Coarse
Feature Extractor rather than a Global Feature Extractor. In contrast, the Learn-
ing to Downsample module plays a pivotal role in feeding subsequent layers with
sufficiently low-level features; therefore, reducing it too aggressively would com-
promise overall network capacity. We preserved its three convolutional layers
but lowered their channel counts from (32, 48, 64) to (12, 24, 32). Furthermore,
we opted for regular 3 × 3 convolutions in the second and third layers rather
than depthwise separable convolutions. Our tests showed that the latter would
diminish the model capacity too much for a very modest speed improvement.
As a result, this new module contains 9 828 parameters—compared to 6 192 in



4 E. Vezzali et al.

the original Fast-SCNN—yet still operates more efficiently under our real-time
constraints.

2.2 Pixel Shuffle

In the original Fast-SCNN design, the classifier produces a segmentation map
at 1

8 of the input resolution and then uses linear upscaling to match the input’s
dimensions. However, working with low-resolution images makes it difficult to
preserve the fine details of small objects at such a low output resolution. To
address this, we replace the linear upscaling step with a pointwise convolution
followed by a pixel shuffle operation. First, the pointwise convolution expands
the feature maps from 32 to 128 channels. Then, the pixel shuffle layer rearranges
these channels spatially by a factor of eight, restoring the original input resolu-
tion. This process also reduces the final channel count to two—one channel for
1D barcodes and another for 2D barcodes—thereby enabling clear segmentation
of both barcode types in a low-resolution setting.

2.3 Training

Fig. 1 illustrates our final proposed architecture. We trained this network on the
BarBeR dataset for 300 epochs with a batch size of 16. Each image was resized
during preprocessing so that its longest side measured 320 pixels while preserving
the original aspect ratio. We then zero-padded the shorter dimension until the
input reached 320× 320. The Adam optimizer was used with an initial learning
rate of 1×10−3, which we decayed exponentially to 1×10−5 by the final epoch. To
increase robustness, we applied random scaling (from 0.6× to 1.4×), random flips
(horizontal and vertical), and random adjustments to saturation and contrast.
We used a pixel-wise binary cross-entropy as a loss function without adding any
additional auxiliary loss.

2.4 Inference

During inference, the proposed neural network processes the input image and
generates a two-channel heatmap of the same dimensions as the input. The first
channel corresponds to 1D barcode regions, while the second corresponds to
2D barcode regions. Although the network produces pixel-level outputs and can
be used for segmentation, in this work, we employ it exclusively for detection.
To convert the heatmap into detection boxes, each channel is thresholded inde-
pendently (we use a fixed threshold of 0.4 in all experiments). We then apply
blob detection to the binarized map, and a bounding box is computed for each
identified blob.



Real-Time Barcode Segmentation on Edge CPUs 5

Datalogic PUBLIC

+

Input Conv2D 3x3 DWConv PWConv DSConv BottleNeck PixelShuffle Upscale Output

Learning to Down-Sample
Coarse Feature 

Extractor Feature Fusion Classifier

1D Heatmap

2D Heatmap

3x320x320

12x160x160

24x80x80
32x40x40

32x20x20

32x10x10

32x10x10

32x40x40

32x40x40

32x40x40 64x40x40

64x40x40

128x40x40

32x40x40

64x40x40

Concat

1x320x320

1x320x320

Fig. 1. Architecture of our proposed model. DWConv stands for depthwise convolution,
PWConv for pointwise convolution, and DSConv for depthwise separable convolution.
We indicate the size of the output tensor for each block, considering an input RGB
image of size 320×320.

3 Results

3.1 Experimental Setup

All experiments were conducted on the BarBeR dataset,3 and the full evaluation
pipeline is available on our GitHub repository.4 We used 5-fold cross-validation
to ensure robust evaluation. The dataset was split into five equal subsets; each
subset was used once as the test set, with the remaining four used for training.
All images were resized so that the longest side measured 320 pixels before being
processed in any test.
Localization Accuracy. We evaluated all deep-learning-based localization mod-
els, including ours, on the complete dataset of 8 748 images. For each method, we
computed the average precision scores, AP@0.5 and AP@[0.5:0.95], separately
for 1D and 2D barcodes. For segmentation models, region-level confidence scores
were computed as the mean of the predicted pixel confidences within each de-
tected region. We also included three traditional methods tailored to 1D barcode
localization (Sörös et al. [14], Yun et al. [22], and Zamberletti et al. [23]), which
are part of the BarBeR benchmark. Since these methods only support 1D bar-
codes, we excluded 2D barcodes from this evaluation. Moreover, as the method
by Sörös et al. detects only one barcode per image, we restricted this evaluation
to the 6 811 images containing a single 1D barcode.
Time Benchmark. For each localization method, we measured the inference
time per image. Each image was processed three times, and the minimum infer-
ence time was recorded to minimize the impact of background processes. The
final timing for each method was computed as the average over all images. We
3 https://ditto.ing.unimore.it/barber
4 https://github.com/Henvezz95/BarBeR

https://ditto.ing.unimore.it/barber
https://github.com/Henvezz95/BarBeR


6 E. Vezzali et al.

Table 1. Performance Comparison of Deep-Learning-Based Barcode Localization
Methods. The table reports average precision (AP@0.5 and AP@[0.5:0.95]), decod-
ing rate (% Dec), and single-threaded inference time on two platforms: a high-end PC
and a Raspberry Pi 3B. Results are provided separately for 1D and 2D barcodes. All
input images were resized such that the longest side measures 320 pixels.

1D barcodes 2D barcodes Times
Model AP@0.5 ↑ AP@[.5:.95] ↑ % Dec ↑ AP@0.5 ↑ AP@[.5:.95] ↑ % Dec ↑ PC (ms) ↓ Rasp Pi (ms) ↓

YOLO Nano 0.976 0.860 59.3% 0.947 0.872 63,5% 21.55 509.1
Zharkov et al. 0.530 0.254 50.9% 0.571 0.382 55.9% 4.521 180.4

ContextNet 0.25x 0.808 0.592 55.5% 0.413 0.295 33.0% 5.359 209.9
BisenetV2 0.25x 0.909 0.725 58.8% 0.834 0.657 60.9% 5.877 193.4
BisenetV2 0.125x 0.880 0.673 58.3% 0.681 0.479 49.2% 2.943 84.73
Fast SCNN 0.5x 0.863 0.629 57.9% 0.702 0.486 53.7% 3.313 120.0
Fast SCNN 0.25x 0.783 0.523 55.7% 0.534 0.354 42.1% 2.235 64.56

Ours 0.898 0.694 58.5% 0.822 0.628 60.0 % 1.635 57.62

conducted benchmarks on both a Raspberry Pi 3B+ (representing low-power
embedded devices) and a high-end workstation equipped with an AMD Ryzen
Threadripper Pro 5965WX CPU (24 cores) and 128 GB of DDR4 RAM. All
deep-learning architectures have been converted to ONNX to accurately mea-
sure their maximum speed in possible real-world applications.
Decoding Test. To assess practical usability, we measured the decoding rate
using a virtual barcode reader composed of two stages: localization and decoding.
In the first stage, the tested localization method outputs bounding boxes. Each
box defines a region, which is then passed to the pyzbar library for decoding.
Before cropping, each box is extended by 20 pixels on each side since barcode
readers usually require a quiet zone around the code. Since pyzbar supports only
a subset of barcode formats (QR Code, EAN-13, EAN-8, UPC-E, Interleaved 2 of
5, Code 39, and Code 128), we restricted this test to those types. The decoding
rate is defined as the proportion of images in which at least one barcode is
successfully decoded. If decoding fails at the base resolution (320 pixels on the
longest side), we attempt decoding again on a 4× larger version of the image
(longest side = 1280 pixels) to accommodate barcodes that cover a small area
of the overall image.

3.2 Experimental Results

We first evaluated our model against several deep-learning-based localization
methods. As baselines, we included YOLO Nano and the architecture proposed
by Zharkov et al., both of which are integrated into the BarBeR benchmark. Ad-
ditionally, we selected three real-time segmentation networks commonly used in
lightweight vision tasks: ContextNet [11], BiSeNet V2 [21], and Fast-SCNN [12].

To ensure a fair comparison on embedded hardware, we tested reduced ver-
sions of these models using uniform channel-width scaling. This technique, com-
monly known as a width multiplier [4], uniformly reduces the number of filters
in each convolutional layer by a fixed ratio. For example, a 0.25× configuration



Real-Time Barcode Segmentation on Edge CPUs 7

Table 2. Comparison with traditional methods for 1D barcode localization. Each
model is evaluated using the Precision (P), Recall (R), and F1 score at an IoU threshold
of 0.5, decoding rate (% Dec), and single-threaded inference time on a PC and a
Raspberry Pi 3B. All input images were resized such that the longest side measures
320 pixels.

1D barcodes Times
Model P@0.5 ↑ R@0.5 ↑ F1@0.5 ↑ % Dec ↑ PC (ms) ↓ Rasp Pi (ms) ↓

Sörös et al. 0.429 0.429 0.429 51.4% 2.782 92.07
Yun et al. 0.918 0.436 0.591 39.9% 2.171 52.83

Zamberletti et al. 0.103 0.125 0.113 11.0% 17.42 855.7
Ours 0.976 0.947 0.962 66.0% 1.635 57.62

reduces all channels to 25% of their original count, significantly lowering compu-
tational complexity. Based on this, we evaluated different variants: ContextNet
(0.25×), Fast-SCNN (0.5× and 0.25×), and BiSeNet V2 (0.25× and 0.125×).

The performance of all deep-learning models is reported in Tab. 1, in terms of
AP@0.5, AP@[0.5:0.95], processing times on both PC and Raspberry Pi (single-
threaded), and decoding rate using pyzbar. Our method achieves the fastest
inference time across all platforms, requiring only 57.62ms per image on a single
CPU core, making it capable of near real-time operation even on embedded
devices. Despite its simplicity, our method ranks third among all models in both
AP@0.5 and AP@[0.5:0.95] and in decoding rate.

The second-best decoding rate is achieved by BiSeNet V2 (0.25×), which
outperforms our model by just 0.3 percentage points for 1D barcodes (58.8% vs.
58.5%) and 0.9 for 2D barcodes (60.9% vs. 60.0%), while being approximately
3.5 times slower. YOLO Nano achieves the highest accuracy overall, as expected,
but its inference time of 509.1ms per image makes it impractical for many real-
time embedded applications. Notably, despite being over 9 times slower than our
model, it achieves only a marginal improvement of 0.8 percentage points in 1D
barcode decoding and 3.5 points in 2D barcode decoding.

Our method also outperforms several slower models, including Zharkov et al.,
ContextNet (0.25×), Fast-SCNN (0.5× and 0.25×), and BiSeNet V2 (0.125×),
making it the only approach to achieve such high accuracy at this speed. This
result underscores that our architectural choices offer a substantial advantage
over Fast-SCNN, from which we drew inspiration. Tab. 2 compares our method
to three classical, hand-crafted approaches: Sörös et al., Yun et al., and Zamber-
letti et al.. Our method is the fastest on PC and the second-fastest on Raspberry
Pi 3B+, with only a slight difference from the fastest traditional model (Yun et
al.). However, it achieves significantly higher Precision, Recall, F1 scores, and
decoding rates. Traditional methods are highly sensitive to resolution and require
higher pixel density for accurate decoding [17]. Operating at a higher resolution
could improve the results a bit but would make these methods around 4× times
slower. Additionally, these methods are limited to 1D barcode detection, whereas
our model supports both 1D and 2D barcode localization.



8 E. Vezzali et al.

Table 3. Pipeline timing breakdown for barcode detection, comparing localization
plus decoding (Loc + Decoding) against running pyzbar alone (No Localization). The
table lists per-image processing times on a PC and a Raspberry Pi 3B, with all input
images resized so their longest side is 320 pixels. Total time is the sum of localization
and decoding.

Times PC (ms) Times Raspberry Pi (ms)
Model Loc ↓ Decoding ↓ Total ↓ Loc ↓ Decoding ↓ Total ↓

No Localization - 35.944 35.944 - 299.22 299.22
YOLO Nano 21.558 5.369 27.197 509.16 31.17 540.33

Zharkov 4.521 13.056 17.577 180.41 66.29 246.70
ContextNet 0.25x 5.359 12.223 17.582 209.93 28,02 237.95
BisenetV2 0.25x 5.877 10.685 16.562 193.41 30.54 223.95
BisenetV2 0.125x 2.943 9.118 12.061 84.73 29.80 114.53
Fast SCNN 0.5x 3.313 4.935 8.248 120.00 30,09 150.09
Fast SCNN 0.25x 2.235 5.190 7.425 64.56 40.39 104.95

Ours 1.635 5.431 7.066 57.62 37.54 95.16

3.3 Decoding Time

In addition to measuring localization speed in isolation, we also evaluated the
time required to run the entire detection pipeline, including both localization and
decoding. This serves two main purposes. First, it reveals how effectively each
model limits false positives and unnecessarily large bounding boxes. A model
with overly generous detections may achieve high recall but will suffer increased
decoding overhead, as the pyzbar library would process more (or larger) crops.
Second, it clarifies how much overall latency is reduced by speeding up the
localization step.

As shown in Tab. 3, running pyzbar directly on the entire image (No Local-
ization) at a maximum scale of 1280 pixels for the longest edge, takes 35.94ms
on PC and 299.22ms on Raspberry Pi. With our localization approach, the to-
tal pipeline time drops to 7.07ms on PC and 95.16ms on the Pi—the fastest
among the methods tested on both platforms. For reference, YOLO Nano re-
quires 27.20ms on PC and 540.33ms on the Raspberry Pi, highlighting that a
higher-accuracy model can become bottlenecked by slow inference on edge de-
vices. Notably, our method does not inflate decoding times with excess bounding
boxes, indicating few false positives.

Finally, although 95.16ms per image on the Pi is not yet real-time on a single
CPU core, we anticipate that basic parallelization or multithreading could push
the pipeline into real-time territory. Anyway, for most applications, a reading
rate of 10 FPS is enough. On PC, the decoding phase appears to be more time-
consuming relative to localization, suggesting that further optimizations should
focus more on the decoding component than the localizer.



Real-Time Barcode Segmentation on Edge CPUs 9

Table 4. Ablation study on key architectural components of our model. We report
AP@0.5, AP@[0.5:0.95], decoding rate (% Dec), and single-threaded inference time on
PC and Raspberry Pi 3B. All images were resized to have a longest side of 320 pixels.
Variants include the removal of pixel shuffle and the re-introduction of the pyramid
pooling module.

1D barcodes 2D barcodes Times
Model AP@0.5 ↑ AP@[.5:.95] ↑ % Dec ↑ AP@0.5 ↑ AP@[.5:.95] ↑ % Dec ↑ PC (ms) ↓ Rasp PI (ms) ↓

With PPM 0.897 0.691 58.8% 0.783 0.568 56.2% 2.518 74.87
No PixelShuffle 0.893 0.681 58.5% 0.817 0.622 59.6% 1.829 57.93

Ours 0.898 0.694 58.5% 0.822 0.628 60.0 % 1.635 57.62

3.4 Ablation Studies

We evaluated the impact of two architectural modifications that differentiate our
model from the original Fast-SCNN design, beyond the already reduced depth
and channel width. Specifically, we assess (i) the use of a pixel shuffle module for
upsampling and (ii) the removal of the pyramid pooling module (PPM) from the
global feature extractor. Results are shown in Tab. 4. All tests were conducted
at a resolution where the longest image side was set to 320 pixels.

Our full configuration achieves the best overall performance, with the fastest
inference time (57.62ms on Raspberry Pi 3B+) and the highest accuracy across
most metrics. The version without pixel shuffle shows slightly lower performance
on both AP and decoding rate, particularly on 2D barcodes (60.0% vs. 59.6%),
suggesting that pixel shuffle contributes positively to precise localization.

Reintroducing the PPM results in a significant slowdown (74.8ms vs. 57.6ms)
and mixed accuracy changes: a small improvement in 1D decoding rate (58.8% vs.
58.5%), but noticeably worse performance on 2D barcodes, with lower AP scores
(0.783 vs. 0.822) and decoding rate (56.2% vs. 60.0%). These results confirm that
removing the PPM and adopting pixel shuffle leads to a better overall balance
between speed and performance in our final model.

4 Conclusion and Future Research

In this paper, we introduced BaFaLo, an ultra-lightweight neural network archi-
tecture for barcode localization and segmentation. Designed for real-time perfor-
mance on embedded CPUs, BaFaLo achieves real-time speed while resulting in
a similar decoding rate to much slower architectures. Unlike many deep-learning
models that require powerful GPUs or accelerators, BaFaLo can localize both
1D and 2D barcodes in real time on a Raspberry Pi 3B+, requiring only 57.62ms
per image on a single CPU core.

Looking ahead, now that a high-speed and accurate localization framework
is available, future research should explore the optimization of the decoding
step. While pyzbar provides broad format compatibility, it is not optimized
for speed and can become a bottleneck in real-time systems. Developing a fast,



10 E. Vezzali et al.

lightweight decoder—potentially using deep-learning techniques—could signifi-
cantly improve end-to-end performance. Moreover, additional tests could evalu-
ate various multithreading strategies that leverage multiple cores on embedded
CPUs, and further speed-ups may be achieved through model quantization (e.g.,
8-bit or lower).

In parallel, more extensive testing on video streams would offer insights into
real-world deployment scenarios. In such contexts, fast but slightly less accurate
methods might still yield better results, as higher frame rates provide more
decoding opportunities over time. Understanding the trade-off between speed
and temporal redundancy will be crucial for robust barcode reading in industrial
and retail applications.

Finally, because our network excels at pixel-level texture segmentation, BaFaLo
can potentially address other challenges that hinge on subtle textural cues, rang-
ing from surface defect detection in manufacturing to AR marker recognition or
fast pattern analysis for robots and drones. This opens the door to a broad
spectrum of applications beyond barcode localization.

Acknowledgments. This work was supported by the University of Modena and Reg-
gio Emilia and Fondazione di Modena through the “Fondo di Ateneo per la Ricerca -
FAR 2024” (CUP E93C24002080007).

Disclosure of Interests. The authors have no conflicts of interest to declare.

References

1. Chou, T.H., Ho, C.S., Kuo, Y.F.: QR code detection using convolutional neural
networks. In: International Conference on Advanced Robotics and Intelligent Sys-
tems (ARIS) (2015)

2. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes Dataset for Semantic Urban
Scene Understanding. In: Computer Vision and Pattern Recognition (2016)

3. Hansen, D.K., Nasrollahi, K., Rasmussen, C.B., Moeslund, T.B.: Real-Time Bar-
code Detection and Classification using Deep Learning. In: International Joint
Conference on Computational Intelligence (2017)

4. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv preprint arXiv:1704.04861 (2017)

5. Hu, H., Xu, W., Huang, Q.: A 2D Barcode Extraction Method Based on Texture
Direction Analysis. In: International Conference on Image and Graphics (2009)

6. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023)
7. Kubáňová, J., Kubasáková, I., Čulík, K., Štítik, L.: Implementation of Barcode

Technology to Logistics Processes of a Company. Sustainability 14(2) (2022)
8. McCathie, L.: The advantages and disadvantages of barcodes and radio frequency

identification in supply chain management. PhD Thesis, School of Information
Technology and Computer Science (2004)

9. Melek, C.G., Battini Sönmez, E., Varlı, S.: Datasets and methods of product recog-
nition on grocery shelf images using computer vision and machine learning ap-
proaches: An exhaustive literature review. Engineering Applications of Artificial
Intelligence 133 (2024)



Real-Time Barcode Segmentation on Edge CPUs 11

10. Muniz, R., Junco, L., Otero, A.: A Robust Software Barcode Reader using the
Hough Transform. In: International Conference on Information Intelligence and
Systems (1999)

11. Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: Contextnet: Exploring context and
detail for semantic segmentation in real-time. arXiv preprint arXiv:1805.04554
(2018)

12. Poudel, R.P., Liwicki, S., Cipolla, R.: Fast-SCNN: Fast Semantic Segmentation
Network. arXiv preprint arXiv:1902.04502 (2019)

13. Soliman, A., Al-Ali, A., Mohamed, A., Gedawy, H., Izham, D., Bahri, M., Erbad,
A., Guizani, M.: AI-based UAV navigation framework with digital twin technology
for mobile target visitation. Engineering Applications of Artificial Intelligence 123
(2023)

14. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for
smartphones. In: International Conference on Mobile and Ubiquitous Multimedia
(2013)

15. Vezzali, E., Bolelli, F., Santi, S., Grana, C.: Barber: A Barcode Benchmarking
Repository. In: International Conference on Pattern Recognition. Springer (2025)

16. Vezzali, E., Bolelli, F., Santi, S., Grana, C.: BarBeR-Barcode Benchmark Repos-
itory: Implementation and Reproducibility Notes. In: International Workshop on
Reproducible Research in Pattern Recognition (2025)

17. Vezzali, E., Bolelli, F., Santi, S., Grana, C.: State-of-the-art Review and Bench-
marking of Barcode Localization Methods. Engineering Applications of Artificial
Intelligence (2025)

18. Viard-Gaudin, C., Normand, N., Barba, D.: A bar code location algorithm using
a two-dimensional approach. In: International Conference on Document Analysis
and Recognition (1993)

19. Weng, D., Yang, L.: Design and Implementation of Barcode Management Infor-
mation System. In: International Conference on Information Engineering and Ap-
plications (2012)

20. Wudhikarn, R., Charoenkwan, P., Malang, K.: Deep Learning in Barcode Recog-
nition: A Systematic Literature Review. IEEE Access 10 (2022)

21. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N.: BiSeNet V2: Bilateral
Network with Guided Aggregation for Real-Time Semantic Segmentation. Inter-
national Journal of Computer Vision 129 (2021)

22. Yun, I., Kim, J.: Vision-based 1D Barcode Localization Method for Scale and
Rotation Invariant. In: TENCON - IEEE Region 10 Conference (2017)

23. Zamberletti, A., Gallo, I., Albertini, S.: Robust Angle Invariant 1D Barcode De-
tection. In: 2013 2nd IAPR Asian Conference on Pattern Recognition (2013)

24. Zharkov, A., Zagaynov, I.: Universal Barcode Detector via Semantic Segmentation.
In: International Conference on Document Analysis and Recognition (2019)


	A Deep-Learning-Based Method for Real-Time Barcode Segmentation on Edge CPUs

