
1

A State-of-the-Art Review with Code about
Connected Components Labeling on GPUs

Federico Bolelli, Member, IEEE , Stefano Allegretti, Luca Lumetti, and Costantino Grana, Member, IEEE

Abstract—This article is about Connected Components Labeling (CCL) algorithms developed for GPU accelerators. The task itself is
employed in many modern image-processing pipelines and represents a fundamental step in different scenarios, whenever object
recognition is required. For this reason, a strong effort in the development of many different proposals devoted to improving algorithm
performance using different kinds of hardware accelerators has been made. This paper focuses on GPU-based algorithmic solutions
published in the last two decades, highlighting their distinctive traits and the improvements they leverage. The state-of-the-art review
proposed is equipped with the source code, which allows to straightforwardly reproduce all the algorithms in different experimental
settings. A comprehensive evaluation on multiple environments is also provided, including different operating systems, compilers, and
GPUs. Our assessments are performed by means of several tests, including real-case images and synthetically generated ones,
highlighting the strengths and weaknesses of each proposal. Overall, the experimental results revealed that block-based oriented
algorithms outperform all the other algorithmic solutions on both 2D images and 3D volumes, regardless of the selected environment.

Index Terms—Parallel Image Processing, Connected Components Labeling, State-of-the-Art Review, GPU, CUDA.

✦

1 INTRODUCTION

CONNECTED Components Labeling (CCL) is an image
processing algorithm that plays a central role in ma-

chine vision, whenever object recognition and measurement
are required. The task itself can be easily defined as the
procedure of assigning to each pixel of a connected compo-
nent (object) a unique identifier, typically an integer number.
Starting from a binary input, a CCL algorithm generates
the output symbolic image where pixels belonging to an
object are given the same label. Once computed, the labeled
image can be used to extract object(s) and further calculate
its features such as area, perimeter, circularity, centroids,
bounding boxes, etc. The process of extracting features is
usually referred to as Connected Components Analysis, or
CCA in short, and has been addressed by different authors
in the past, both for CPU and GPU architectures [1], [2].

Multiple modern computer vision pipelines employ CCL
as a pre- or post-processing algorithm when tracking [3],
[4], segmenting [5], [6], [7], localizing [8], generating [9], or
counting [10] objects inside images and videos, in differ-
ent medical imaging applications ranging from skin lesion
segmentation and classification [11], [12], [13] to Whole-
Slide Image (WSI) analysis [14], [15], for document restora-
tion [16], [17], and graph analysis [18], [19]. All the afore-
mentioned applications benefit from efficient CCL imple-
mentations and this is why the algorithmic proposals of the
last decades have focused on performance optimization [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30].

It is worth mentioning that given the input and selected
pixel connectivity, the final result of CCL and CCA is
uniquely defined and the main differences among existing
algorithmic solutions are the execution time and memory

The authors are with the Dipartimento di Ingegneria “Enzo Ferrari,”
Università degli Studi di Modena e Reggio Emilia, Italy. E-mail:
{name.surname}@unimore.it

requirements. Moreover, given that the object geometry
and shape may be extremely complex, the task is known
to be more time-consuming than any other binary image
operator, e.g., filtering, thresholding, interpolation, edge de-
tection [31]. Most importantly, the labeling procedure cannot
be completed by mere parallel local operations, requiring
intrinsically sequential procedures [32].

However, the fast advance of Graphics Processing Units
(GPUs) in the last years encouraged the development of
algorithms specifically designed to work in data parallel
environments. Indeed, along with sequential solutions [31],
[33], [34], many algorithms exploiting hardware parallelism
have been proposed [1], [25], [26], [35], [36], [37], [38], [39].

Most of the improvements introduced for sequential
implementation have been sooner or later ported to GPU
algorithms, or inspired for additional optimizations on such
architectures. An example is the forest-based implementa-
tion of the union-find data structure, originally applied to
CCL in [40] to solve equivalences between labels, and later
employed for implementing GPU algorithms [36], [41]. The
block-based approach is another noticeable example: intro-
duced in [42] and subsequently employed in different CPU-
based proposals [43], [44], [45] has been recently ported to
GPU-based algorithms [36], [46], [47].

This article aims to provide a state-of-the-art review of
GPU-based algorithms, highlighting innovative and com-
mon traits of each proposal, and discussing their strengths
and weaknesses. Whenever possible, the union-find tech-
nique will be used as the common denominator. All the
algorithms are evaluated under different perspectives (e.g.,
total and step-level execution time using both real and
synthetically generated images and memory usage) us-
ing different experimental settings (e.g., operating systems,
compilers, and GPUs). Moreover, the implementations used
for the evaluation are publicly released in the YACCLAB
benchmark [48], allowing other research to reproduce the

2

0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 1 1 0 0 0 0 1 1 0 0 1
1 1 0 0 1 1 1 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0

(a)

0 0 0 1 0 0 0 0 0 0 2 0 0 0
0 0 0 0 3 0 0 0 0 3 0 0 0 0
0 0 0 3 3 3 3 3 3 3 3 0 0 0
0 0 3 3 0 0 3 3 0 0 3 3 0 0
0 3 3 3 3 3 3 3 3 3 3 3 3 0
4 0 0 3 3 0 0 0 0 3 3 0 0 5
4 4 0 0 3 3 3 3 3 3 0 0 5 5
4 4 0 3 3 3 0 0 3 3 3 0 5 5
0 0 0 3 0 0 0 0 0 0 3 0 0 0

(b)

0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 1 1 0 0 0 0 1 1 0 0 1
1 1 0 0 1 1 1 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0

(c)

Fig. 1. Example of the labeling procedure applied on the input binary image (a), which depicts a fantasy character inspired by Space Invaders. (b)
and (c) are the symbolic images produced by the labeling procedure when using 4- and 8-connectivity respectively.

experiments and verify our claims. All the code is taken
from the original publication or implemented carefully fol-
lowing the description provided in the corresponding paper.
We strongly believe in reproducible research and our effort
is heading in this direction, letting everybody compare with
existing solutions in the fairest possible way.

The rest of the article is organized as follows. Sec. 2
introduces a formal definition of the task, defining all the
concepts that will be later employed in the discussion,
including the union-find data structure. All the major GPU-
based CCL proposals will be categorized and later described
in Sec. 3. To better understand algorithms’ details, the
pseudo-code is often included. In Sec. 4, the benchmark
used for the evaluation is detailed, providing a specific
description of the datasets and evaluation criteria employed.
Performance analysis and discussion are then provided in
Sec. 5. Finally, Sec. 6 draws conclusive remarks and future
research directions.

2 PROBLEM FORMALIZATION

This Section formalizes all the core elements related to the
connected components labeling task, laying out the founda-
tions for the rest of the discussion.

Let us start from the concept of image. A binary image Id is
a function defined over a d-dimensional rectangular lattice
Ld, where Id(x) is the value of pixel (or voxel) x ∈ Ld, with
x identified by its coordinates in the lattice, (x1, ...xd). We
are specifically interested in 2 and 3-dimensional images,
i.e., volumes.

The distance between pixels x and y can be defined in
two different ways, D1 and D∞, also known as Manhattan
and chessboard or Chebyshev distance, respectively:

D1(x, y) =
d∑

i=1

|xi − yi| (1)

D∞(x, y) = max
i=1..d

|xi − yi| (2)

Each distance has an associated neighborhood:

V i
1(x) = {y | D1(x, y) ≤ i} (3)

V i
∞(x) = {y | D∞(x, y) ≤ i} (4)

We can now use these generic definitions to describe the
different connectivities employed for 2D and 3D. In 2D
images, there are two possibilities:

• 4-connectivity. Two pixels of the lattice, p and q, are
said to be 4-connected if they share a side. Formally,
N4(p) = V 1

1(p). We can say that p and q are 4-connected
if q ∈ N4(p), which implies p ∈ N4(q). The name of the
connectivity is intuitively derived from the number of
sides a square has: four (Fig. 2a).

• 8-connectivity. If pixels are considered connected also
when they share only a vertex, four more neighbors
appear, obtaining the 8-connectivity. In other words,
two pixels are said to be 8-connected if they share at
least one vertex. We can define N8(p) = V 1

∞(p) and
say that p and q are 8-connected if q ∈ N8(p), implying
that p ∈ N8(q) (Fig. 2b).

Similar definitions can be provided for 3D volumes. In this
context, pixels are often called voxels, and can be visualized
as cubes; since two of them can share a face (with at most
6 different cubes), an edge (with at most 12 cubes), or
a vertex (with at most 8 cubes), three different kinds of
connectivity can be defined, i.e., 6-, 18-, and 26-connectivity,
whose formal definition is reported below:

N6(v) = V 1
1(v) (5)

N18(v) = V 2
1(v) ∩ V 1

∞(v) (6)

N26(v) = V 1
∞(v) (7)

If we want to define a mapping between 2D and 3D worlds,
we can say that 4- and 8-connectivity on 2D images corre-
spond respectively to 6- and 26-connectivity on 3D volumes.
To simplify the discussion and ease the reading, in the
following the word image is used to refer to 3D volumes also.
The generic symbols L and I will be used, when suitable,
for both dimensionalities.

(a) (b)

Fig. 2. Graphical representation of (a) 4-connectivity and (b) 8-
connectivity. The “current” pixel is depicted in dark yellow and its neigh-
borhood (connected pixels) is represented in yellow.

3

As mentioned, the CCL task aims at identifying objects
within a binary image, so it is mandatory to distinguish
meaningful regions from the rest of the image. The formers
are usually called foreground, F , while the latter is identified
as background, B. It is a common convention to assign value
1 (or 255) to foreground pixels, and value 0 to background
ones:

F = {p ∈ L | I(p) = 1} (8)
B = {p ∈ L | I(p) = 0} (9)

Connected components labeling aims at identifying dis-
joint objects composed of foreground pixels. Given a neigh-
borhood definition N and two foreground pixels p, q ∈ F ,
⋄ is the connectivity relation defined as:

p ⋄ q ⇔ ∃{si∈F | s1=p, sn+1=q, si+1∈N (si), i=1, . . . , n}
(10)

Two pixels p and q are said to be connected when condi-
tion p⋄q is satisfied, meaning that a path of connected pixels
from p to q exists or, in other words, you can move from
p to q crossing only foreground pixels connected two by
two. The proposed formalism does not consider background
pixels, which are excluded from the concept of connectivity.
⋄ is an equivalence relation since reflexivity, symmetry and
transitivity are satisfied by pixel connectivity. For this reason,
we can define [p], the equivalence class of a pixel p, as:

[p] = {q ∈ F | p ⋄ q} (11)

Equivalence classes based on ⋄ relationship are called Con-
nected Components (CCs). Every pair of connected compo-
nents [p] and [q] is either equal or disjoint, meaning that the
set of all connected components is a partition of F .

Connected components labeling algorithms aim at as-
signing a different label to every connected component.
When applied to I, the output of such an algorithm is a
symbolic image L where, for every p ∈ F , L(p) is the label
of the connected component that p belongs to ([p]), and for
every q ∈ B, L(q) = 0. Fig. 1 depicts an example of the
labeling procedure applied to a fantasy character inspired
by Space Invaders (Fig. 1a). When using 4-connectivity, the
output will be that of Fig. 1b, while using 8-connectivity will
produce the symbolic image reported in Fig. 1c.

2.1 The Union-Find Data Structure
During the labeling procedure, pixels belonging to the same
connected component may be assigned different provisional
labels; this requires a mechanism to keep track of possible
equivalences and eventually solve them. One of the most
effective strategies to achieve this goal is the forest-based
implementation of the union-find data structure, which
provides a quasi-linear solution to the disjoint-set union
problem. This technique has been applied to sequential CCL
for the first time by Dillencourt et al. [49], and it represents
the basis of most modern approaches for label resolution,
including those involving GPUs. As the name suggests, it
consists of two basic operations —find and union— that
are performed on a forest of anti-arborescences, i.e., directed
rooted trees oriented towards the root. This forest, P , repre-
sents a partition of the set S that corresponds to the lattice
L in our scenario. The two operations can be defined as:

• find takes a node of a tree (a ∈ P) as input and returns
the corresponding root;

• union joins together the trees two given nodes (a, b ∈ P)
belong to, by setting the root of one tree (usually the one
with the smallest value) as the father of the other one.

An implementation intended for GPU architectures is
shown in Alg. 1. To avoid concurrency issues, the union
makes use of atomic operations.

When referring to CCL, all the pixels of the image are
nodes in the data structure. Initially, each foreground pixel
is a standalone tree; then, by means of union operations,
trees of connected pixels are merged together, until a single
tree for each connected component is obtained.

From an implementation point of view, the forest can be
stored in an array P , with one index per pixel: at P [i] we
have the parent of node i. When P [i] = i, the node i is
the root of the tree. In Fig. 3, an example of union and find
operations executed on a P array is reported.

In sequential CCL algorithms, the union-find array is
usually a stand-alone data structure, while most of the GPU
implementations available in the literature store it directly
in the output image, avoiding expensive system calls for
GPU memory allocation and improving performance. Once
a single tree per connected component is obtained, the
flattening operation can be performed to complete the CCL
task. The flattening procedure links each node of the array
directly to the root of its tree, meaning that all the pixels
of each connected component are associated with the same
identifier. A possible GPU implementation of the flattening
operation is represented by the Compress kernel (Alg. 1).
As firstly proposed in [50], the Compress implementation
can be optimized for data-parallel environments and con-
verted into InlineCompression (IC). In this case, the
father of a label a is updated at every step of the tree
traversal, thus making the update available to any possible
concurrent thread that would save memory accesses.

To distinguish between background and foreground pix-
els a common approach is to shift labels, and start counting
from 1 instead of 0. Such an approach ensures that every
foreground pixel has a positive label, while 0 is reserved for
the background.

In the following, we will simply use “union-find” when
referring to its forest-based implementation.

Find(6) -> 1

0 1 11 1 2 72 77P

0 1

2 3 4

5 6

7

8 9

0 1 32 4 5 76 98Indexes

(a)

0 1 11 1 2 12 77
0 1 32 4 5 76 98

Union(9,4) -> 1

0 1

2 3 4 7

5 6 8 9

P

Indexes

(b)

Fig. 3. Visualization of P represented as a forest of trees and stored
in memory as an array. A union(9,4) performed on (a) will produce
(b). Indeed, the root nodes of 9 and 4 are found through the find that
respectively return 7 and 1. The tree with higher root value is then
connect to the root of the other tree by updating P [7] with 1.

4

BUF
BKE

2019

Block-Based
Approach (BBDT)

2010

NP
LNP
DPL
LE

OLE

2011

STAVA

RASMUSSON

2013

2014

8DLS
M8DLS

LBUF

2015 2017

DLPUF KE

2018

UF
KE

HA8

BE

2016

C-SAUF
C-BBDT
C-DRAG

Decision Tree(s)
(SAUF)

2005

BRB ACCL

Tree Comp.
(DRAG)

Fig. 4. Timeline of algorithm publications. Red lines represent CPU algorithms that introduced breakthrough changes in the labeling procedures,
later included in GPU implementations. Blue and green lines are respectively used to identify iterative and direct solutions. Few algorithms appear
twice in the timeline, meaning that the algorithm was initially released for a single connectivity type (e.g. 4-connectivity), and later extended to work
with other types of connectivity (e.g. 8-connectivity) or with 3D volumes.

Algorithm 1 Pseudo-code for Union procedure and Find
function. L is both the union-find array and the output
labeled image, a and b are both array indexes and pixel iden-
tifiers. Compress and InlineCompress are two variations
of the procedure implementing the flattening operation.

1: function FIND(L, a)
2: while L[a] ̸= a do
3: a← L[a]

4: return a

5: procedure COMPRESS(L, a)
6: L[a]← Find(L, a)

7: function INLINECOMPRESS(L, a)
8: id← a
9: while L[a] ̸= a do

10: a← L[a]
11: L[id]← a

12: return a

13: procedure UNION(L, a, b)
14: done← false
15: while done = false do
16: a← Find(L, a)
17: b← Find(L, b)
18: if a < b then
19: old← atomicMin(&L[b], a)
20: done← (old = b)
21: b← old
22: else if b < a then
23: old← atomicMin(&L[a], b)
24: done← (old = a)
25: a← old
26: else
27: done← true

3 ALGORITHMS - CLASSIFICATION AND DESCRIPTION

Now that a common terminology has been defined, we can
dig into different proposals available in the literature. There
are many different ways to categorize GPU CCL algorithms.

Broadly speaking, one of the most common categorizations
distinguishes between iterative and direct solutions. The for-
mer repeats one or more kernels a data-dependent amount
of times. Usually, they iterate until no more changes in
data are detected. These algorithms tend to tolerate race
conditions, demanding the correction of wrong results to
the next iteration. Direct algorithms, on the other hand,
perform a fixed number of kernel executions. Differently
from iterative algorithms, each kernel must produce an
exact result: therefore, most direct algorithms employ hard
concurrency control to avoid race conditions, usually in the
form of atomic operations.

Another possible classification may be based on the
minimal set of pixels (or voxels) that are processed together.
In this sense, pixel-based, run-based, and block-based algo-
rithms can be identified:

• Pixel-based algorithms are the simplest: each foreground
pixel has its own label;

• Run-based algorithms work on runs, i.e., chunks of con-
secutive foreground pixels in the same row, and assign
labels to these runs instead of single pixels. This ap-
proach is beneficial in some scenarios, but performance
significantly drops when foreground objects within im-
ages have elongated shapes on the y-direction;

• Block-based algorithms, originally proposed in [42],
label 2 × 2 blocks of pixels at once. This is possible
because, when considering 8-connectivity, any two fore-
ground pixels in a 2 × 2 block are connected to each
other. When moving to 3D the concept of blocks can
remain at slice level or can be extended to the third
dimension, considering 2× 2× 2 blocks.

In the following of this Section, we will describe state-of-
the-art solutions using the first classification. The timeline
reported in Fig. 4 depicts the temporal release of each
algorithm, providing the reference context. Later in this
Section, a table summarizing all the characteristics of the
algorithms (i.e., publication year, authors, the minimal set
of pixels analyzed, scanning procedure, connectivity, input
supported, data structure(s) required, and space complexity)
is also provided (Tab. 1).

5

Algorithm 2 Neighbour Propagation and Local Neighbour
Propagation kernels. I is the input image, L is the output
label image, id is the thread identifier, corresponding to a
pixel raster index. r and c represent the row and column
index. changed is an output variable to communicate to the
host if any change occurs. If so, the kernel must be re-run.

1: kernel NP(I , L, r, c)
2: label← L(r, c)
3: for all (nr, nc) ∈ N (r, c) do
4: if I(nr, nc) = I(r, c) ∧ L(nr, nc) < label then
5: label← L(nr, nc)
6: changed← true
7: L(r, c)← label

8: kernel LNP(I , L, r, c)
9: label← L(r, c)

10: for all (nr, nc) ∈ N (r, c) do
11: if I(nr, nc) = I(r, c) ∧ L(nr, nc) < label then
12: label← L(nr, nc)
13: changed← true
14: shared sL[blockDim.x× blockDim.y]
15: rs ← threadIdx.y
16: cs ← threadIdx.x
17: loop
18: sL(rs, cs)← label
19: syncthreads()
20: sChanged← false
21: for all (nr, nc) ∈ N (r, c) do
22: if I(nr, nc) = I(r, c)∧sL(nr, nc) < label then
23: label← sL(nr, nc)
24: sChanged← true
25: syncthreads()
26: if sChanged = false then
27: break
28: L(r, c)← label

3.1 Iterative Algorithms

3.1.1 Neighbor Propagation (NP)

The first work that addresses the GPU CCL problem is due
to Hawick et al., and is dated back to 2010 [51]. The authors
deal with the general problem of identifying CCs in graphs
and then propose four specific algorithms for d-dimensional
hypercubic meshes, which include binary images. The first
and simplest of these proposals is Neighbor Propagation.
All foreground pixels are initialized with sequential values,
each equal to the pixel raster index. Then, the provisional
label of each pixel is updated to the minimum of its neighbor
labels. This operation must be repeated until convergence,
i.e., until there are no more changes in the output image. For
this reason, the algorithm is inserted in the iterative group.
The pseudocode for this algorithm is provided in Alg. 2.

3.1.2 Local Neighbor Propagation (LNP)

Local Neighbor Propagation is an optimization of NP that
initializes the output image, splits it into blocks (16 × 16
in the original paper), and performs the update operations
described above on each block separately. The advantage
over the previous solution is that, in this case, the shared
memory inside the block is exploited. As NP, each thread

updates a different pixel. The update kernel is divided into
two steps: during the first step, each thread loads into
shared memory the minimum neighbor label of its pixel,
reading from device memory; then, the second step updates
each label with the minimum of the neighbors, same as
NP, but this time performed locally, in shared memory. This
last operation is repeated until block convergence. Then, the
content of the shared memory is copied into device memory,
and the procedure restarts from the beginning until global
convergence is reached. Alg. 2 details the kernels of the
algorithm.

3.1.3 Directional Propagation Labeling (DPL)
Directional Propagation Labeling (DPL), again proposed in
the same paper as NP and LNP [51], tries to overcome the
limit of the neighborhood-confined propagation. In order
to accomplish this, it assigns to each thread the task of
propagating the minimum label through a row or a column.
This operation is performed alternatively in four directions:
left to right, bottom to top, right to left, and top to bottom.
Unlike the two previous algorithms, this strategy is only
compatible with 4-connectivity.

3.1.4 Label Equivalence (LE)
Label Equivalence is the last and certainly the most inter-
esting proposal of the paper from Hawick et al. [51]. It is
also one of the first iterative algorithms to record and solve
equivalences using an auxiliary data structure.

The paper does not explicitly refer to the union-find, but
the operations performed are the same and can be described
by referring to them. In the first kernel, Init, the output
image L is initialized as usual, with each pixel being given
a provisional label equal to its raster index. Moreover, an
additional data structure with the same size as the output
image, H , is allocated and initialized in the same way.
The algorithm then consists of three more kernels that are
repeated in sequence until convergence: Scan, Analysis,
and Labeling. The first kernel, Scan, is responsible for
updating equivalences between pixels. Each thread works
on a different pixel, finding the smallest of the neighbor
labels and updating the corresponding value in H with the
minimum label found. This operation does not touch L and
only modifies H . The second kernel, Analysis, performs
the compression of the equivalence tree, i.e., each thread is
responsible for replacing a pixel of H with the root of the
tree. This operation corresponds to find. The third and last
kernel, Labeling, updates the labels in the output image
L with the values contained in H . Scan requires atomic
operations to avoid lost updates on H , in the case that two
threads happen to concurrently update the same pixel.

After its appearance, LE has been improved by many
authors. Kalentev et al. [52] noticed that the need for a
separate data structure to store label equivalences could be
removed through the direct use of the output image L. In
this optimization, only two kernels are iterated after the ini-
tialization. Analysis kernel performs the compression of
trees directly on the output image, updating the temporary
label of each pixel. Thus, there is no need for a separate
kernel devoted to copy the labels. In Scan kernel, every
thread finds the smallest neighbor label, nl, and assigns
it to the father (with label fl) iff nl < fl. Kalentev et al.

6

Algorithm 3 Label Equivalence kernels. I is the input image,
L is both union-find array and output label image, id is the
thread identifier, corresponding to a pixel raster index. r and
c represent the row and column index, respectively.

1: kernel INIT(I , L, r, c)
2: if I(r, c) = 1 then
3: L(r, c)← r ∗ w + c+ 1
4: else
5: L(r, c)← 0

6: kernel SCAN(L, r, c, changes)
7: l← L(r, c)
8: if l > 0 then
9: min l← FindMinNeighborLabel(r, c)

10: if min l < l then
11: L[l − 1]← min(L[l − 1],min l)
12: changes← true

13: kernel ANALYSIS(L, r, c)
14: l← L(r, c)
15: if l > 0 then
16: L(r, c)← Find(L, l)

also removed the atomic operations by simply increasing
the number of iterations. The authors claim that atomic
operations slow down computation more than additional
iterations caused by collisions do. Kernels of this optimized
version of Label Equivalence are detailed in Alg. 3. The
optimized version is identified as OLE, which stands for
Optimized Label Equivalence.

3.1.5 Stava and Benes (STAVA)

Stava and Benes [53] proposed a solution that can
be seen as an improvement of LE, obtained with
the use of Tiles Merging. The algorithm is composed
of four kernels: LocalLabeling, GlobalLabeling,
BorderCompression, and PathCompression. In the first
kernel, LocalLabeling, 16 × 16 tiles are labeled with a
light version of LE, which does not require any additional
union-find structure to store label equivalences, similar to
the one proposed by Kalentev et al.. This kernel is detailed
in Alg. 4.

The second kernel, GlobalLabeling, merges the la-
beled tiles, in a hierarchical order: in step n, macro-tiles
are obtained by merging groups of 4 × 4 tiles, the output
of step n − 1. Each group of tiles is processed by a three-
dimensional thread block, where x and y components of
the thread-id locally identify a tile. A union is performed
between each pixel of the South and East border and
its neighbors outside the tile. For each tile, the merging
process is repeated until no more changes are detected.
For optimization purposes, GlobalLabeling is alternated
with BorderCompression, which performs find on border
pixels only: the aim is to shorten union-find trees and
consequently speed up the next round of global merge.

Finally, the last kernel, PathCompression, performs a
find on all pixels of the output image, thus completing the
CCL process.

Algorithm 4 Stava and Benes LocalLabeling kernel. I is
the input image, L is both union-find array and output label
image, id is the thread identifier, corresponding to a pixel
raster index. r and c represent the row and column index,
respectively.

1: kernel LOCALLABELING(I , L, r, c)
2: shared sI[16× 16]
3: shared sL[16× 16]
4: shared changes[1]
5: loc r ← threadIdx.y
6: loc c← threadIdx.x
7: sI(loc r, loc c)← I(r, c) ▷ Load input patch
8: syncthreads()
9: l← loc r ∗ blockDim.x + loc c

10: loop ▷ Pass 1 of the CCL algorithm
11: sL(loc r, loc c)← l
12: if threadIdx.x = 0 ∧ threadIdx.y = 0 then
13: changes[0]← false
14: syncthreads()
15: new l← l ▷ Find the minimal neighbor label
16: for (n r, n c) ∈ N (r, c) do
17: if sI(loc r, loc c) = sI(n r, n c) then
18: new l← min(new l, sL(n r, n c))

19: syncthreads()
20: if new l < l then ▷ Merge the equivalence trees
21: atomicMin(sL[l], new l)
22: changes[0]← true
23: syncthreads()
24: if changes[0] = false then
25: break ▷ Local solution has been found
26: l← Find(sL, l) ▷ Pass 2
27: syncthreads()
28: g l← convertLabelToGlobal(l)
29: L(r, c)← g l ▷ Store result to device memory

3.1.6 Block-Run-Based (BRB)

Block-Run-Based connected components labeling [54], as
the name suggests, combines block-based and run-based
strategies in order to simplify the equivalence label-solving
process. The whole algorithm is implemented in GPU
shared memory, thus minimizing global memory band-
width consumption. The image, of width W (and half-
width HW), is divided into overlapping Block Rows (BR),
composed of two consecutive pixel rows, where the upper
pixel row is shared with the previous block row. Each
thread works on a 2 × 2 block. The algorithm is com-
posed of two scans, and the first scan is divided into three
steps: BlockRunExtraction, PreviousBRUpdate, and
CurrentBRUpdate.

In the first step, the current BR is compressed into one-
pixel row by applying OR operation of its upper and lower
row pixel value. Then, a run of contiguous 1s is detected
from the compressed pixel row and the column index of the
block containing the run starting pixel is assigned to each
block in this run, by means of __ballot_sync1 and __clz

1. __ballot_sync is a warp vote function: it evaluates a predicate
for all the threads in the warp and returns an integer whose n-th bit is
set iff the predicate evaluates to non-zero for the n-th thread.

7

(Count Leading Zeros) instructions. From another perspec-
tive, each block can be considered as a node of a union-
find tree, while the label value represents a linkage address
pointing to the column location of its parent node. The pur-
pose of the following two iterative steps is to merge union-
find trees of current and previous BRs according to the con-
nection relations. The second step, PreviousBRUpdate,
merges union-find trees of pairs of connected blocks in the
current and previous row, by linking one root to the other
one. Then, CurrentBRUpdate is similar to the previous
step, but only updates root nodes in the current BR. These
two steps are iterated until convergence.

The second scan, LabelAssignment, proceeds row-
wise in a reversed direction, and assigns a unique global
label to each block recognized as a tree root. Then, child
blocks get their label from the parent node.

Unfortunately, the implementation available only deals
with specific image dimensions (e.g., 512× 512 and 1024×
1024). Any different size would require a specific imple-
mentation or multiple conditional checks that would signif-
icantly degrade the performance.

3.1.7 8-Directional Label Selection (8DLS)

8-Directional Label Selection [55] is another iterative algo-
rithm in which, at every step, each pixel is assigned the min-
imum label found scanning each of the 8 directions radiating
from it until a background pixel is encountered. Modified 8-
Directional Label Solver (M8DLS) is an improved version
of 8DLS, that avoids processing pixels that already have a
minimum label. After two iterations of 8DLS, pixels that
still have their original label are considered permanent. The
specific amount of iterations, 2, is empirically determined
based on exhaustive tests conducted by the authors. Un-
fortunately, when using such a kind of “optimization”, the
correctness of the output may not be guaranteed.

3.1.8 Rasmusson

Rasmusson et al. [56] proposed a method based on early
calculation of label propagation sizes, from the connectiv-
ity between pixels extracted in a pre-processing step, and
reuse of established label propagation routes. As usual, the
algorithm starts by initializing the output with provisional
labels equal to pixel raster indices. The four most significant
bits of each label store connection information about half
the neighborhood; because of this trick, the algorithm only
works on images with at most 228 ≈ 256M pixels.

The core of the algorithm is the Propagate kernel,
which is repeated until convergence. The image is divided
into 32 × 32 tiles, which are copied into shared memory,
and a thread is created for each pixel. Then, for each of the
8 possible directions starting from a pixel, the maximum
propagation is computed. These propagation sizes are iter-
atively calculated in a parallel manner: each thread stores
the provisional propagation size in a local variable, p, and
increments it at each step by the value of the provisional
propagation size of the pixel distant p positions. In this way,
a maximum propagation of 32 is reached after log2 32 = 5
iterations. Different threads share the respective values of p
by means of shuffle operations, which efficiently exchange
a variable between threads within a warp. The pixel-thread

Algorithm 5 Block Equivalence Init kernel. I is the input
image, L is both union-find array and output label image, id
is the thread identifier, corresponding to a pixel raster index.
r and c represent the row and column index, respectively.

1: kernel INIT(I , bL, bConn, r, c)
2: P ← 0
3: P0← 77716
4: if I[2r, 2c] > 0 then
5: P ← P | P0

6: if I[2r, 2c+1] > 0 then
7: P ← P | (P0≪ 1)

8: if I[2r+1, 2c] > 0 then
9: P ← P | (P0≪ 4)

10: if I[2r+1, 2c+1] > 0 then
11: P ← P | (P0≪ 5)

12: if P > 0 then
13: bL[r, c]← r∗w+c+1
14: if HasBit(P, 0) ∧ I[2r−1, 2c−1] > 0 then
15: SetBit(bConn[r, c], 0)

16: if (HasBit(P, 1) ∧ I[2r−1, 2c] > 0)∨
17: (HasBit(P, 2) ∧ I[2r−1, 2c+1] > 0) then
18: SetBit(bConn[r, c], 1)

19: ...

association must change for each direction, in order for pix-
els aligned in a certain orientation to always be in the same
warp. The label of each pixel is updated to the minimum
of the 8 labels in the maximum propagation sizes, and also
a propagation size of 1 is considered for the correctness of
corner cases. In order to extend the label propagation to
neighbor tiles, actually 33×33 blocks are copied into shared
memory.

3.1.9 Block Equivalence (BE)
Proposed by Zavalishin et al. [46], Block Equivalence (BE
in short) is a block-based version of Label Equivalence
(Sec. 3.1.4), enriched with a novel method for checking
block connectivity in a parallel fashion. The algorithm is
composed of four kernels: Init, Scan, Analysis, and
FinalLabeling, each requiring a thread per block. The
Init kernel is responsible for finding which pairs of neigh-
bor blocks are indeed connected. Decision trees, used by
the original block-based CCL algorithm [42], tend to cause
thread divergence and inefficiency in a GPU environment;
therefore, a different method is proposed, that avoids nested
conditional jumps:

1) Each internal pixel of block X is read, in order to find
out which neighbor blocks could possibly be connected
to X ;

2) Internal pixels of the neighbor blocks selected by the
previous step are read, and the hypothesis of connec-
tivity with X is confirmed or refused.

At the end of Init, block adjacency information is stored
in an ad-hoc matrix BA, to be read again in the subsequent
phases. Each block has 8 adjacent blocks, so one bitmapped
byte per block is sufficient to record the neighbors (ad-
jacent blocks sharing the same value). Kernels Scan and
Analysis behave in the same way as the kernels of Label

8

Algorithm 6 LocalMerge kernel of UF. I is input image,
L is both union-find array and output label image, id is the
thread identifier, corresponding to a pixel raster index. r and
c represent the row and column index, respectively.

1: kernel LOCAL MERGE(I , L, r, c)
2: shared sI[]
3: shared sL[]
4: rs ← threadIdx.y
5: cs ← threadIdx.x
6: sI(rs, cs)← L(r, c)
7: syncthreads()
8: for all (nr, nc) ∈ N (r, c) do
9: if I(r, c) = I(nr, nc) then

10: Union(sL, ids, idsn)
11: l← Find(sL, ids)
12: L[id]← convertLabelToGlobal(l)

Equivalence, in the optimized version of Kalentev et al.;
the only difference is that they work on blocks instead of
pixels, storing block labels in a specific matrix, BL. Scan
and Analysis are iterated until convergence, and then
FinalLabeling copies block labels into pixel labels, thus
composing the output. The pseudo-code is provided in
Alg. 5.

3.2 Direct Algorithms
3.2.1 Union-Find (UF)
Union-Find, by Oliveira and Lotufo [41], is chronologically
the first non-iterative proposal, and also one of the first
GPU CCL algorithms overall. It consists of a parallel ver-
sion of the common union-find algorithm, largely used in
sequential CCL solutions. UF is based on three kernels:
Initialization, Merge, and Compression. Each kernel
is launched on a number of threads equal to the image
size, and each thread is assigned a pixel, x. In order to
save avoidable and time-consuming memory allocations, no
additional memory is reserved for the union-find data struc-
ture. Instead, the equivalences between labels are stored,
during the procedure, in the output image itself, in the sense
that the provisional label assigned to a pixel corresponds to
the linear index of its father node in the union-find forest. In
the Initialization kernel, all foreground pixels in the
output image are initialized with a provisional label equal
to their linear index. From the union-find point of view,
this procedure corresponds to the creation of a separate tree
for every pixel. In kernel Merge, each thread working on a
foreground pixel x checks its neighborhood mask, and for
every foreground neighbor it performs a union with x. Since
union is a symmetric operation, the neighborhood mask
only contains half of the neighbors of a pixel. The union
operation can involve reading and writing operations on
other pixels than x. The possibility that two or more threads
read or modify the same pixel is taken into account through
the use of atomic operations in union, in order not to lose
updates, and avoid the necessity of multiple iterations. After
Merge, every connection between pixels in the image is
reflected in the union-find structure, in the sense that every
separate tree represents a connected component. Finally, the
Compression kernel performs the compression of trees.

This operation makes sure that every pixel is assigned a
label corresponding to the linear index of the root of its
tree. Thus, every pixel in the same CC ends up sharing
the same label, and the labeling task is completed. The
aforementioned basic structure of the algorithm is enhanced
with the addition of another common technique known as
tile merging. This means that the entire algorithm is first
performed on rectangular blocks the image is divided into
in a preliminary phase called Local Merge. This allows
to take full advantage of shared memory. This local phase
is detailed in Alg. 6. Then, the Merge kernel is performed
on border pixels only, and a final Compression is exe-
cuted over the entire image. The original algorithm uses
4-connectivity, but it was extended to 8-connectivity in [57],
by adding in the Merge kernel the diagonal directions to the
neighborhood of a pixel.

3.2.2 Line-Based Union-Find (LBUF)
Line-Based Union-Find [50] is a variation of UF that em-
ploys single lines as tiles for the tile merging strategy.
This choice reduces the neighborhood of every pixel to a
subset containing only the two neighbors belonging to the
same row, and consequently allows to simplify the logic of
Local Merge. In fact, because only half the neighborhood
needs to be checked (see Sec. 3.2.1), each thread only has
to link its pixel to the one on the left, in the case that
both are foreground. The remaining kernels of UF are left
unchanged.

3.2.3 Komura Equivalence (KE)
Komura Equivalence [58] can be seen as a variation of UF,
which involves a more complex initialization in order to
remove the need for one union per pixel later. It consists of
four steps: Initialization, Compression, Reduction,
and Compression again. The main difference between
KE and UF lies in the first kernel: differently from UF,
KE Initialization does not create single-node trees.
Instead, every thread checks the neighborhood of x in
increasing raster index order, and the smallest foreground
neighbor is set as the father node of x. This first phase aims
at creating partial union-find trees right from the beginning,
that are flattened by the subsequent Compression kernel.
The Reduction kernel is a variation of Merge. It only
performs a union between x and foreground neighbors that
were not chosen during Initialization. Analogously
to UF, a final Compression is required for flattening the
forest trees. Same as UF, the original KE is a 4-connectivity
algorithm. It is extended to 8-connectivity in [57], by adding
the supplementary neighbors in both Initialization
and Reduction.

3.2.4 Accelerated CCL (ACCL)
The CUDA compute capability 3.5 introduced several fea-
tures, among which dynamic parallelism and Hyper-Q are
the ones exploited by the Accelerated CCL (ACCL) algo-
rithm, proposed by Paravecino and Kaeli in [59]. ACCL is
configured as a run-based algorithm and is composed of
two phases. In the first phase, a thread is run for each row
of the image, with the aim of finding runs and recording the
first and last indices. During this step, each run is assigned

9

a provisional label L, recorded in a separate matrix. During
the second scan, connected runs from contiguous rows are
joined. This particular operation involves spawning a child
kernel for each merge operation, with one thread per provi-
sional label in L. These threads update the respective labels
of the added segment. The algorithm makes use of texture
memory for read-only memory accesses, which improves
the performance when multiple threads from the same block
access contiguous memory locations. Finally, the Hyper-Q
feature is exploited to process multiple images at the same
time with different CUDA streams, thus increasing the total
throughput.

3.2.5 Distanceless Label Propagation (DLP)
Proposed by Cabaret et al. [25], Distanceless Label Propa-
gation is another algorithm based on union-find, charac-
terized by an uncommon gather-scatter procedure used to
propagate the minimum label of a CC. It includes four
kernels: DLP-I, DLP-SR, DLP-R and DLP-RUF. The first
kernel, DLP-I, initializes foreground pixels as usual, with
a provisional label equal to the raster index. The second
kernel is DLP-SR (SetRoot), and is responsible for a gather-
scatter label propagation procedure. The minimum label
is found in a mask selecting a reduced neighborhood of
x, containing 2 × 2 pixels (x, right, down, and down-
right); then, differently from most algorithms based on
minimum label gathering, the minimum is scattered back
to the whole mask with the SetRoot procedure: for each
involved pixel, the root of its union-find tree is updated
with the minimum label just found, by means of the usual
atomic operation that characterizes direct algorithms. The
third kernel, DLP-R, performs the classical compression of
union-find trees, replacing provisional labels with the root
of their trees. The last kernel is DLP-RUF, named after its
distinctive algorithm, recursive union-find. It is the same as
DLP-SR, but replaces the SetRoot procedure with a recursive
implementation of the union. These four different kernels
are used to build three sequential steps that compose the
CCL algorithm: (i) Tile Labeling - the labeling process is
performed locally on tiles, by running in sequence DLP-I,
DLP-SR, DLP-R, DLP-RUF and finally another DLP-R; (ii)
Border Merging - DLP-RUF is applied to border pixels only,
with the aim of merging union-find trees of different tiles;
(iii) Relabeling - DLP-R is applied to the whole image.

3.2.6 Hardware Accelerated 4/8 (HA4/HA8)
In 2018, Hennequin et al. [24] proposed HA4, a 4-connected
run-based algorithm heavily based on CUDA intrinsics. The
algorithm can be used to perform either connected compo-
nents labeling or analysis; the CCL variation is composed
of three kernels: StripLabeling, BorderMerging, and
FinalLabeling.

The first kernel, which is also the most complex, per-
forms partial labeling on horizontal strips. The block width
is 32, the same as the warp size, and each thread is assigned
a pixel X so that a line of 32 pixels perfectly matches a
warp. The kernel begins with threads reading the values
of their pixels and sharing them with the rest of the line
(warp) with a __ballot_sync instruction, which produces
a 32-bit bitmask of the foreground pixels; then, each thread
checks the start and end position of the run X belongs to,

by means of efficient __ffs (Find First Set) and __clz
intrinsics. The first pixel of each run is given a temporary
label equal to its raster index, while the other pixels are left
uninitialized. Then, in order to merge lines vertically, the
first thread of the line copies the bitmask generated earlier
with __ballot_sync in shared memory, so that it can be
read from the lower line. Each thread performs a union if
X or the pixel above is the start of a run. After this partial
labeling of the block, the same threads shift 32 pixels to
the right and continue labeling the stripe with the same
method, extending runs that overcome the block border.
This technique avoids the need to merge vertical borders
and minimizes thread creation/destruction.

The second kernel merges the horizontal border, per-
forming a union only on the start of runs, same as in
StripLabeling. Finally, the last kernel performs the final
labeling. Only the run-starting-pixel thread retrieves the
final label with a find, and then it propagates it to the other
threads with a shuffle operation; finally, each thread updates
the label image with this value.

Since the original algorithm is 4-connected, we propose
an 8-connected variation, which performance can be com-
pared to the other algorithms in this survey. In order to
make the algorithm 8-connected, it is sufficient to add the
diagonal direction to the horizontal border merging and
perform a union if the rightmost of the two adjacent pixels is
a start. Specifically, each thread must merge X to the upper-
left pixel if X is a start, and to the upper-right pixel if the
latter is a start.

Checking and merging in a diagonal direction gets tricky
at warp borders since the diagonal neighbor pixels can fall
into different warps. To tackle such cases, blocks of the
BorderMerging kernel encompass 1024 pixel-long lines,
where each warp shares the value of the rightmost pixel to
the subsequent warp using shared memory.

3.2.7 Decision Tree-Based Algorithms

C SAUF, C BBDT, and C DRAG, published in [47], are
CUDA adaptations of successful CCL algorithms originally
designed for running sequentially on a single CPU thread.
The general structure of these algorithms is the following:

• First scan: scans the input image using a mask of already
visited pixels, and assigns a temporary label to the
current pixel(s), recording any equivalence between
those found in the mask;

• Flattening: analyzes the registered equivalences and es-
tablishes the definitive labels to replace the provisional
ones;

• Second scan: generates the output image by replacing
provisional labels with final ones.

The first scan is the most complex and time-consuming, and
it has been targeted by several improvements.

Scan Array-based Union-Find (SAUF), proposed by
Wu et al. in [60], reduces the number of neighbors visited
during the first scan using a decision tree. The idea is that if
two already visited pixels are connected, their labels have
already been marked as equivalent in the union-find data
structure, so it is not necessary to check their values.

This algorithm was extended in [42] with the introduc-
tion of 2 × 2 blocks, in which all foreground pixels share

10

the same label. Since the neighboring mask becomes larger,
the authors propose an optimal strategy to automatically
build the decision tree by means of a dynamic programming
approach [61]. The resulting algorithm is known as BBDT.

In [62], authors noticed the existence of identical and
equivalent subtrees in the BBDT decision tree. Identical
subtrees were merged together by the compiler optimizer,
with the introduction of jumps in machine code, but equiv-
alent ones were not. By also taking into account equivalent
subtrees they converted the decision tree into a Directed
Rooted Acyclic Graph, which they called DRAG. The code
compression obtained does not impact neither on the mem-
ory accesses, nor on the number of comparisons, but allows
a significant reduction of the machine code footprint. This
heavily reduces the memory requirements, increasing the
instruction cache hit rate and the overall run-time perfor-
mance.

The adaptation of these algorithms to the CUDA do-
main, as proposed in [47], consists in translating each
step into an appropriate kernel, plus an additional starting
one for initializing provisional labels. Each kernel uses
one thread per pixel (C SAUF) or per block (C BBDT,
C DRAG). The first kernel, Initialization, just sets
the label of X to its raster index, the same as in many
other algorithms. The second kernel, Merge, deals with the
recording of equivalences between labels. During execution,
thread tx traverses a decision tree in order to decide which
action needs to be performed, while minimizing the average
amount of memory accesses. When no neighbors in the
scanning mask are foreground, nothing needs to be done.
In all other cases, the current label must be merged to those
of connected pixels with a union. Then, it is easy to paral-
lelize the flattening step: in the third kernel, Compression,
thread tx performs L[idx]← Find(L, idx) to link each pro-
visional label to the representative of its union-find tree. This
is equivalent to the homonymous kernel in UF (Sec. 3.2.1).

The last step of the sequential algorithms is the second
scan, which updates labels in the output image L. A large
part of the job of second scan is not necessary in the paral-
lel implementations, because Compression already solves
label equivalences in the output image. For C BBDT and
C DRAG, a final processing of L is required to copy the
label assigned to each block into its foreground pixels. This
job is performed by the last kernel, FinalLabeling.

Although branches in the code are known to cause
thread divergence and slow down performances when deal-
ing with CUDA parallel architectures, the authors of [47]
demonstrated that in real case scenarios, where the fore-
ground density of input images is low (< 10%) or high
(> 90%), the benefits introduced by the use of decision trees
do compensate for the cost of thread divergence. Indeed,
when foreground density satisfies such conditions the deci-
sion is usually taken in the first levels of the decision trees
employed for the scanning phase, saving many memory
accesses without breaking the thread execution flow.

3.2.8 Block-based Union-Find (BUF)
Block-based Union-Find (BUF) [36] is the first of the direct
algorithms which employ a block-based approach. It shares
the same kernels as UF (Initialization, Merge, and
Compression), but each phase works on blocks instead

of single pixels, and there is an additional final kernel,
FinalLabeling, to copy block labels into pixels ones.
Until the end of the algorithm, block labels are stored in the
output image, in the upper-left pixel of every block. In this
way, it avoids the allocation of unnecessary device memory.
The method used to check connectivity between 2×2 blocks
is borrowed from BE (Sec. 3.1.9), and is performed in the
Merge kernel.

3.2.9 Block-based Komura Equivalence (BKE)
Block-based Komura Equivalence (BKE), introduced along
with BUF in [36], is another direct block-based algorithm,
this time obtained by modifying KE (Sec. 3.2.3). BKE is quite
similar to BUF in what it does; the major difference between
the two is that BKE, the same as KE, starts linking together
connected blocks directly in the initialization phase. This
means that the task of finding what blocks are connected
to the active one must be anticipated in the first phase.
The method is the same one used for BUF and BE, but
in this case, as in KE, only the connected neighbor block
with the smallest linear index is linked to X . The remaining
connectivity information is stored in a variable to be used
later in Reduce, where the remaining neighbor blocks are
merged to X . The neighbors that can be merged in Reduce
are the ones to the North, North-East, and West. Being it
the first one considered for the linking performed during
Initialization, North-West is excluded. So, 3 bits are
enough to store connectivity information for the Reduce
phase. In order to avoid the allocation of additional mem-
ory, these bits are stored in the output image, in the top-
right pixel label slot, that would otherwise be left unused
until FinalLabeling, when connectivity information is
not necessary anymore. The Reduce kernel then reads this
connectivity information and performs the necessary union
operations.

Both BKE and BUF make use of the inline compres-
sion, an optimization designed for the use of union-find
in data parallel environments. Previously introduced and
described in Sec. 2.1, it aims at reducing the size of equiva-
lence trees created and updated during Initialization
and Merge/Reduction phases. Thus, possible concurrent
threads performing the find on the same node may save
memory accesses.

4 BENCHMARKING

The term reproducible research is usually referred to as the
approach of presenting scientific claims together with all
information needed to reproduce the results, so that oth-
ers may verify the findings and build upon them. As re-
searchers, we strongly believe in and support reproducibil-
ity in scientific research. For this reason, in 2016 we publicly
released the first version of YACCLAB [63] —Yet Another
Connected Components LAbeling Benchmark—, an open-
source benchmarking system that allows to fairly compare
CCL algorithms on different environments. YACCLAB has
been originally described in [48] and later extended in [64]
that included more literature algorithms and additional
evaluation criteria, making it more general and flexible.
In 2019, a new version of the benchmark including the
possibility of evaluating 3D algorithms and GPU-based

11

TABLE 1
Comparison between state-of-the-art algorithms, which considers publication year, authors, minimum block of pixels processed together (i.e,

single pixel, block or run), processing type (i.e., iterative or direct), connectivity, input type (2D or 3D) and data structures employed in addition to
the output image L. For each additional data structure its dimension in bytes is also specified in the form width× height (× depth) × bytes.

These structures have the same name used in the algorithm description. Some of the iterative algorithms require an additional byte (Termination
Byte, TB) to check whether the process is completed or not after each iteration. Please note that bytes are specified considering 32-bit labels. The

space complexity of each algorithm can be easily deduced by summing the last table column (additional data structures) to common output
requirements, i.e., the size in bytes of the output image L.

Name Year Authors Block Size Iterative
vs Direct Connectivity Input Additional Data

Structure(s) [bytes]

NP [51] 2010 Hawick et al. Pixel Iterative 4, 8 2D
LNP [51] 2010 Hawick et al. Pixel Iterative 4, 8 2D
DPL [51] 2010 Hawick et al. Run Iterative 4 2D

LE [51] 2010 Hawick et al. Pixel Iterative 4, 8 2D H = w × h× 4
TB

UF [41] 2010 Oliveira and Lotufo Pixel Direct 4 2D
BRB [54] 2011 Chen et al. Block & Run Iterative 8 2D
OLE [52] 2011 Kalentev et al. Pixel Iterative 8 2D TB

STAVA [53] 2011 Stava and Benes Pixel Iterative 8 2D
RASMUSSON [56] 2013 Rasmusson et al. Pixel Iterative 8 2D

8DLS [55] 2014 Soh et al. Pixel Iterative 8 2D TB
M8DLS [55] 2014 Soh et al. Pixel Iterative 8 2D

ACCL [59] 2014 Paravecino and Kaeli Pixel Direct 4 2D
LBUF [50] 2015 Yonehara and Aizawa Pixel Direct 4, 8 2D

KE [58] 2015 Komura Pixel Direct 4 2D

BE [46] 2016 Zavalishin et al. Block Iterative 8 2D, 3D
BL = w

2
× h

2
× 4

BA = w
2
× h

2
× 1

TB
DLP [25] 2017 Cabaret et al. Pixel Direct 8 2D
HA8 [24] 2018 Hennequin et al. Run Direct 4, 8 2D

KE [57] 2018 Allegretti et al. Pixel Direct 8 2D
UF [57] 2018 Allegretti et al. Pixel Direct 8 2D, 3D

C SAUF [47] 2019 Allegretti et al. Pixel Direct 8 2D
C BBDT [47] 2019 Allegretti et al. Block Direct 8 2D

C DRAG [47] 2019 Allegretti et al. Block Direct 8 2D
BUF [36] 2019 Allegretti et al. Block Direct 8 2D, 3D
BKE [36] 2019 Allegretti et al. Block Direct 8 2D, 3D

implementations has been released [36]. The benchmark
represents nowadays the de-facto standard for evaluating
CCL proposals, being it employed by several authors [33],
[65], [66], [67].

When measuring the performance of an algorithm, many
different subtleties must be taken into account. Although
datasets have been blamed for narrowing the focus of re-
search and reducing it to a single benchmark performance
number, it is clear that the ability to compare different
techniques on the same data is essential to choose which
algorithm suits specific needs best [68]. In order to ensure a
common and standard test set, YACCLAB is provided with
an open-source binary dataset, which covers most of the
CCL application scenarios, including both 2D images and
3D volumes. Since the whole project is open source, anyone
can contribute by increasing and improving the YACCLAB
dataset with different application environments. The cur-
rent set of images available in the benchmark and used to
compare algorithm performance in this survey is described
in Sec. 4.1. Before the publication of YACCLAB, many novel
proposals have been published and almost none of them
compared on the same data [27], [69] making performance
comparison almost impossible.

Benchmarking may be a problem by itself, because mea-
suring performance may not be obvious, but CCL has an

Fig. 5. Samples of the YACCLAB 2D datasets. From left to right, top to
bottom: 3DPeS, Fingerprints, Medical, MIRflickr, Tobacco800, XDOCS,
and Hamlet.

exact result and this reduces the burden of the evaluator
to the measurement of how fast an algorithm is. However,
setting the correct parameters when reproducing other peo-
ple tests may be a problem, changing the final figures by
orders of magnitude. This is why publishing the source
code together with a scientific paper or, at the very least,
an executable should be mandatory. YACCLAB tackles these
aspects by including the source code of all the most signif-
icant proposals of the last twenty years, considering both

12

Fig. 6. Samples of the YACCLAB 3D datasets. From left to right: Hilbert
space-filling curve, OASIS, and Mitochondria medical imaging data.

CPU- and GPU-based algorithms. All the implementations
have been taken from the original publication, whenever
available, or produced by following the paper pseudo-code
and description. Being the code open source, anyone can
check whether implementation details are correctly handled
or not, and test algorithms on their own setting (operating
system, compiler, dataset, etc.), verifying any claim found in
the literature and selecting the algorithm that performs the
best on their specific environment.

With this paper, YACCLAB has been further extended
to include many of the above-described algorithms that
were previously missing in the benchmarking suites. In the
following of this Section, datasets, and evaluation criteria
employed to later compare the algorithms are summarized.

4.1 Evaluation Dataset
Following a common practice in literature [25], [26], [46],
the YACCLAB dataset includes both synthetic and real im-
ages, addressing both 2D and 3D scenarios. All images
are provided in 1 bit per pixel PNG format, with 0 being
background and 1 being foreground. The dataset can be
automatically downloaded during the setup of the YACCLAB
benchmark.

4.1.1 2D Datasets (Fig. 5)

MIRflickr [70]. This is the Otsu-binarized [71] version of
the MIRflickr dataset. It contains a set of 25 000 natural
images taken from Flickr with few connected components
and an average density of 0.4459 foreground pixels.

Medical [72]. This dataset covers applications of CCL
on medical data. It is composed of 343 binary histological
images with an average amount of 1.21 million pixels to ana-
lyze and 484 components to label. This dataset is intended to
cover applications of CCL related to medical image analysis.

Hamlet. A set of 104 images, scanned from the Hamlet
provided by the Gutenberg Project [73]. Images have an av-
erage amount of 1 447 components to label and an average
foreground density of 0.0789.

Tobacco800. Composed of 1 290 document images, it has
been collected and scanned using a wide variety of equip-
ment over time. Image sizes range from 1 200 × 1 600 to
2 500× 3 200 pixels [74], [75], [76].

XDOCS. A collection of Italian civil registries recently
digitalized [17], [77], [78]. This dataset is composed of 1 677
high resolution images with an average size of 4 853× 3 387
and 15 282 components to analyze. The average foreground
density is quite low: 0.0918.

Fingerprints. This dataset counts 960 fingerprint im-
ages taken from three fingerprint verification competitions

Fig. 7. Samples of the YACCLAB 2D synthetic dataset. Example images
have a foreground density of 30% and, from left to right, top to bottom,
granularities are 1, 2, 4, 6, 8, 12, 14, 16.

(FCV2000, FCV2002, and FCV2004) [79]. Images were col-
lected using low-cost optical sensors or synthetically gener-
ated, binarized using an adaptive threshold [80], and finally
negated. Their size varies from 240 × 320 up to 640 × 480
pixels.

3DPes. This is a set of images coming from the surveil-
lance dataset 3DPeS (3D People Surveillance Dataset) [81].
The background models for all cameras are provided by the
authors, so a very basic technique of motion segmentation
has been applied to generate the foreground binary masks,
i.e., background subtraction and Otsu thresholding [71].
The analysis of the foreground masks to remove small
connected components and to match the nearest neighbors
is a common application for CCL.

4.1.2 3D Datasets (Fig. 6)

OASIS. A MRI data collection taken from the Open
Access Series of Imaging Studies (OASIS) project [82]. The
373 volumes of 128× 256× 256 voxels were binarized with
the Otsu threshold [71] calculated over the entire volume.

Mitochondria. This is the Electron Microscopy Dataset
available in [83] and originally published in [84]. The origi-
nal dataset contains sections taken from the CA1 hippocam-
pus region of the brain. All the binary volumes provided by
the authors have been included in YACCLAB, for a total of
three volumes composed of 165 slices with a resolution of
1 024× 768 pixels.

Hilbert. The Hilbert curve is a fractal space-filling curve
described by David Hilbert. This curve represents a chal-
lenging test case for the labeling algorithms, and YAC-
CLAB 3D-dataset includes six volumes filled with the 3D
Hilbert curve obtained at different iterations (1 to 6) of the
construction method. Final binary volumes have a size of
128× 128× 128.

4.1.3 Random Synthetic Images
A set of black and white random noise images to stress how
the behavior of algorithms varies with respect to the density
(percentage of foreground pixels) and granularity (minimum
size of foreground blocks). Specifically, two different test
sets are available in YACCLAB, one for 2D images and one for
3D volumes. The former contains 2 048×2 048 images, while
the latter has 256×256×256 volumes. Images and volumes
have been generated with the Mersenne Twister MT19937

13

random number generator, included in the C++ standard
library [85]. Density ranges from 0% to 100% with a step
of 1%. For every density value, each integer granularity
g ∈ [1, 16] has been considered. Ten images have been
generated for every couple of density-granularity values, for
a total of 16 160 images, both for 2D and 3D. Samples from
the YACCLAB 2D synthetic dataset are reported in Fig. 7,
considering different levels of granularity. In other words,
granularity corresponds to the minimum size of (non-
overlapped) foreground blocks that appear in an image.
When changing the granularity, it also changes the shape
that foreground objects may assume, introducing additional
difficulties (that vary from algorithm to algorithm) in the
labeling procedure.

4.2 Assessment Strategies

The YACCLAB benchmark provides different tests that can
be used to stress algorithm behavior under different per-
spectives. The simplest evaluation mechanism consists of
a direct comparison of execution times, including the time
for allocating data structures. Algorithms are run on all the
available images, and the average execution time per dataset
is recorded.

The benchmark also allows to separately evaluate the
different phases composing the algorithms, separating the
memory allocation time from the core execution of the
labeling procedure. Two-stage algorithms can also distin-
guish between the Local Labeling and the Tiles Merging steps.
The impact of each phase can thus be stressed and ana-
lyzed through such experiments, highlighting strengths and
weaknesses.

Granularity is the last experiment available and consists
of measuring the execution time on synthetic images when
foreground pixel density and granularity change. This ap-
proach allows us to draw additional conclusions, highlight-
ing behaviors that may not emerge from the previous tests.

All the experiments carried out with YACCLAB on GPU
algorithms assume that the input image is already avail-
able in the GPU memory before the algorithm begins. The
rationale behind such an evaluation choice is that the algo-
rithms’ execution time does not depend on the data transfer
between the host and the GPU. Comparing performance
by including the data transfer time will simply introduce
a fixed equal “delay”, distracting from the CCL execution
time. In the same way, YACCLAB assumes that the output
is required in the device memory and no additional data
transfer is needed. The allocation of the output GPU image
and of any other data structure potentially required by the
algorithm itself is instead considered in the total execution
time.

5 EVALUATION

According to the Gestalt psychology of perception, our
senses operate the law of closure, perceiving objects as
a whole even if they are loosely connected as for the 8-
connectivity [42]. This is the reason why many of the lat-
est CCL proposals focus on 8-connectivity. Based on this
observation, and considering the amount of environments
already covered by our analysis, we focus our experiments

on the 8-connectivity for 2D images. On 3D volumes, 8-
connectivity maps to 26-connectivity, which is employed in
our analysis of 3D implementations.

As previously mentioned, many of the literature solu-
tions considered in this survey have no associate public
source code, forcing us to re-implement them. All the al-
gorithms are identified by their acronym already mentioned
in Sec. 3.

5.1 Hardware and Software
The comparative evaluation is carried out on two different
machines, using different experimental setups.
Setup A. This test machine is equipped with an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz (with 4×32 KB L1 cache,
4 × 256 KB L2 cache, 8 MB L3 cache) and two GPUs: an
NVIDIA Quadro P1000 and an NVIDIA Quadro K2200,
both with 4 GB of GDDR5 GPU Memory and 640 CUDA
Cores. The former has a Pascal architecture, while the latter
is based on Maxwell architecture. In such environments, two
different operating systems have been employed: Windows
19.11.25508.2 and Ubuntu 22.04 LTS, respectively com-
bined with MSVC 19.11.25508.2 and GCC 9.3.0 compilers.
In both cases, NVCC 11.0 has been used to compile CUDA
files. NVIDIA Driver versions 522.06 and 450.51 have been
employed on Windows and Linux, respectively.
Setup B. The second experimental setup is a server ma-
chine equipped with 52 Intel(R) Xeon(R) Gold 5320 CPU
@ 2.20GHz (with 48 KB L1d cache, 32 KB L1i cache, 1 280
KB L2 cache, and 40 MB L3 cache) and an NVIDIA A100
80GB PCIe GPU based on Ampere architecture with 80 GB
of HBM2 with ECC GPU Memory and 6 912 CUDA Cores
(NVIDIA Drivers version 525.60.13). In this case, Ubuntu
22.04 LTS has been combined with GCC 8.5.0 and NVCC
12.0 compilers.

The kernel sensitivity to run-time parameters such as
thread block and grid dimensions is not discussed. Al-
though these parameters can significantly affect perfor-
mance in CUDA programs, we stick to those provided in
the original papers by verifying that such configurations
provide the best results also on our environments.

By targeting different operating systems and different
GPU architectures, our analysis aims to demonstrate how
these variations affect algorithm performance.

5.2 Comparative Evaluation
Overall Comparison. To begin with, Tab. 2 and Tab. 3
provide an overall comparison based on the average total
execution time and the average throughput in MPixel/ms,
targeting all the considered environments. Some algorithms
lack a 3D implementation, so results on 3D volumes cannot
be reported.

As previously noticed in [64] for CPU-based CCL im-
plementations, the performance of the same algorithm run
on different operating systems may be drastically different,
especially when memory allocation becomes important, i.e.,
when a dataset contains high-resolution images, or the
algorithm requires larger data structures. There might be
plenty of reasons behind this performance gap, including
the difference in virtual page commits that Windows and
Linux have, or the fact that under Windows it is almost

14

TABLE 2
Results obtained under Windows 10 running a Quadro K2200 and a Quadro P1000 NVIDIA GPUs (Setup A). White columns report average (per

image) run-time results in ms (↓) while gray columns represent the average throughput of each algorithm in MPixel/ms (↑). The bold values
represent the best algorithm on the specific environment/dataset. The ⋆ identifies direct algorithms.

2D Images 3D Volumes

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS Hilbert Oasis Mitochondria

(a
)Q

ua
dr

o
K

22
00

M8DLS 21.757 0.019 14.245 0.010 127.800 0.021 38.200 0.032 20.180 0.009 331.300 0.014 3150.550 0.005
RASMUSS. 5.537 0.074 4.428 0.032 117.100 0.023 9.169 0.132 5.463 0.033 249.293 0.018 2987.948 0.006

8DLS 3.341 0.123 7.139 0.020 37.988 0.071 18.028 0.067 34.826 0.005 185.789 0.025 4732.362 0.003
OLE 0.958 0.428 0.612 0.229 5.215 0.520 2.806 0.431 0.698 0.258 7.985 0.576 34.102 0.484

STAVA 0.829 0.495 0.620 0.226 4.077 0.665 2.682 0.451 0.916 0.197 5.532 0.832 21.853 0.755
LBUF⋆ 0.602 0.681 0.306 0.457 3.214 0.843 1.978 0.612 0.293 0.613 4.423 1.040 18.105 0.911

DLP⋆ 0.662 0.620 0.260 0.538 3.325 0.815 1.807 0.670 0.328 0.549 5.375 0.856 19.542 0.844
HA8⋆ 0.599 0.685 0.228 0.615 2.746 0.987 1.493 0.810 0.223 0.806 4.160 1.106 14.976 1.101

KE⋆ 0.565 0.726 0.254 0.551 2.929 0.925 1.735 0.697 0.260 0.693 4.207 1.093 16.954 0.973
C SAUF⋆ 0.531 0.772 0.234 0.598 2.834 0.956 1.585 0.763 0.254 0.708 3.891 1.182 15.522 1.062
C BBDT⋆ 0.514 0.798 0.224 0.624 2.424 1.118 1.318 0.918 0.240 0.749 3.461 1.329 13.087 1.260

C DRAG⋆ 0.506 0.810 0.215 0.652 2.402 1.128 1.263 0.958 0.209 0.862 3.407 1.350 12.797 1.289

BE⋆ 1.020 0.402 0.694 0.202 3.781 0.717 2.029 0.596 0.924 0.195 5.283 0.871 18.765 0.879 4.786 2.622 9.540 327.982 90.104 4.320
UF⋆ 0.598 0.686 0.307 0.457 3.312 0.818 2.213 0.547 0.391 0.461 4.684 0.982 19.115 0.863 3.492 3.594 17.798 175.803 132.286 2.943

BUF⋆ 0.494 0.830 0.207 0.677 2.252 1.203 1.373 0.881 0.223 0.806 3.300 1.394 12.883 1.280 2.105 5.962 6.481 482.788 67.326 5.782
BKE⋆ 0.487 0.842 0.196 0.714 2.127 1.274 1.216 0.995 0.178 1.010 3.214 1.431 11.688 1.411 2.714 4.624 8.259 378.853 102.297 3.805

(b
)Q

ua
dr

o
P1

00
0

M8DLS 13.109 0.031 8.583 0.016 77.058 0.035 23.067 0.052 12.163 0.015 199.626 0.023 1898.248 0.009
RASMUSS. 3.569 0.115 2.888 0.048 67.363 0.040 5.387 0.225 3.467 0.052 140.871 0.033 1667.878 0.010

8DLS 2.995 0.137 5.361 0.026 30.183 0.090 13.684 0.088 23.522 0.008 149.902 0.031 3888.757 0.004
OLE 0.991 0.414 0.482 0.290 4.390 0.617 2.244 0.539 0.568 0.317 6.718 0.685 28.536 0.578

STAVA 0.689 0.595 0.405 0.346 2.881 0.941 1.966 0.615 0.676 0.266 3.749 1.227 14.483 1.139
LBUF⋆ 0.515 0.796 0.179 0.782 2.386 1.136 1.532 0.790 0.192 0.938 3.077 1.495 12.718 1.297

DLP⋆ 0.544 0.754 0.120 1.167 2.183 1.241 1.228 0.985 0.177 1.017 3.344 1.376 12.023 1.372
HA8⋆ 0.481 0.852 0.107 1.308 1.930 1.404 1.135 1.066 0.133 1.353 2.692 1.709 9.765 1.689

KE⋆ 0.511 0.802 0.137 1.022 2.320 1.168 1.408 0.859 0.169 1.065 3.182 1.446 12.886 1.280
C SAUF⋆ 0.480 0.854 0.131 1.069 2.262 1.198 1.310 0.924 0.182 0.989 2.911 1.580 11.727 1.406
C BBDT⋆ 0.468 0.876 0.106 1.321 1.927 1.406 1.091 1.109 0.145 1.241 2.591 1.775 9.748 1.692

C DRAG⋆ 0.466 0.880 0.102 1.373 1.927 1.406 1.049 1.153 0.130 1.385 2.559 1.798 9.581 1.721

BE⋆ 0.775 0.529 0.465 0.301 2.952 0.918 1.703 0.711 0.481 0.374 4.151 1.108 14.324 1.151 3.459 3.628 7.023 445.529 58.013 6.710
UF⋆ 0.483 0.849 0.156 0.897 2.311 1.173 1.568 0.772 0.237 0.759 3.083 1.492 12.498 1.319 2.379 5.275 13.939 224.474 95.871 4.060

BUF⋆ 0.450 0.911 0.101 1.386 1.766 1.535 1.120 1.080 0.146 1.233 2.433 1.891 9.496 1.737 1.391 9.022 4.656 672.025 43.923 8.863
BKE⋆ 0.442 0.928 0.089 1.573 1.672 1.621 0.997 1.214 0.104 1.731 2.394 1.921 8.595 1.919 1.753 7.159 5.605 558.243 65.939 5.904

impossible to prevent the GUI from accessing the GPU
during tests. A thorough explanation of this phenomenon
would require deep experiments and goes beyond the goal
of the paper. The conclusion that deserves to be raised
is that the execution time ratio Linux/Windows is almost
constant for different algorithms, meaning that changing the
operating system does not impact on algorithm behavior.

When focusing on 2D images, the overall performance of
the algorithms and their mutual ranking are not affected by
dataset intrinsic characteristics. Of course, the total execu-
tion time is deeply influenced by image size and complexity
(i.e., the number of connected components it contains and
their geometry). XDOCS is certainly the hardest dataset to
label and it holds the higher average execution time.

Experimental results also reveal that the advantages of
the “M” variation proposed for 8DLS are negligible on real-
case datasets, unless images are very large and the majority
of connected components is small, as it happens within
XDOCS. In all the other cases, the additional checks required
by M8DLS ruin the overall algorithm performance.

Another conclusion that can be drawn is that (M)8DLS
and RASMUSSON algorithms are significantly slower than
others, so they can be ignored in the rest of the analysis.

Different GPU architectures may also impact algorithm
performance, changing the figures by an order of mag-
nitudes, as it can be appreciated in Tab. 3 when com-
paring algorithms execution on Quadro GPUs with the
newer A100 80GB. Apart from the overall performance,
related to computational capabilities, memory hierarchies,
and bandwidths, each GPU architecture may have specific
optimizations that can be applied to improve performance.

However, none of the implementations analyzed with this
paper and provided in YACCLAB explicitly leverage on GPU
specific optimization and this is confirmed also by our
experiments: selected a dataset, the execution time ratio of
the algorithms run on different GPUs is constant. How-
ever, the performance gap between different algorithmic
proposals is negligible when using newer architecture and
smaller datasets. A deeper analysis is hence provided in the
following of this section.

The abovementioned tables also suggest that, regardless
of the operating system and the GPU architecture (at least
for those considered in our experiments), BKE, currently
the only GPU-based algorithm available in the OpenCV
library [86], is always the best-performing algorithm on
2D datasets. For what concerns 3D volumes, BUF usually
demonstrates better results, except when running on the
A100 GPU where BKE is still competitive. The advantages
provided by the use of a block-based approach, which al-
lows for a considerable reduction in the number of memory
accesses, are clearly demonstrated by the superior perfor-
mance of BKE and BUF.

On the Role of Inline Compression (IC). The better results
obtained by BUF compared to BKE on 3D datasets are
explained by considering the IC optimization both the al-
gorithms make use of (see Sec. 2.1 and Alg. 1 as a reference).
This optimization is intended for reducing the number of
parent nodes a thread has to traverse when searching for
the root of union-find equivalence trees, saving memory
accesses and time. These savings come at the expense of
additional write operations, which could nullify the im-
provement. The net improvement of the IC optimization

15

TABLE 3
Results obtained under Ubuntu 22.04 LTS running a Quadro K2200 and a Quadro P1000 NVIDIA GPUs (Setup A) and a NVIDIA A100 80GB
(Setup B). White columns report average (per image) run-time results in ms (↓) while gray columns represent the average throughput of each

algorithm in MPixel/ms (↑). The bold values represent the best algorithm on the specific environment/dataset. The ⋆ identifies direct algorithms.

2D Images 3D Volumes

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS Hilbert Oasis Mitochondria

(a
)

Q
ua

dr
o

K
22

00

M8DLS 11.841 0.035 7.783 0.018 70.481 0.038 22.600 0.054 12.903 0.014 187.245 0.025 1764.260 0.009
RASMUSS. 5.197 0.079 4.078 0.034 118.739 0.023 9.010 0.134 5.171 0.035 256.770 0.018 3070.204 0.005

8DLS 2.825 0.145 6.616 0.021 37.695 0.072 17.632 0.069 34.233 0.005 185.426 0.025 4829.739 0.003
OLE 0.624 0.657 0.451 0.310 5.062 0.535 2.656 0.456 0.549 0.328 7.527 0.611 35.453 0.465

STAVA 0.620 0.661 0.556 0.252 3.780 0.717 2.393 0.506 0.866 0.208 4.945 0.930 19.490 0.846
LBUF⋆ 0.391 1.049 0.250 0.560 2.910 0.931 1.712 0.707 0.260 0.692 3.855 1.193 15.815 1.043

DLP⋆ 0.443 0.926 0.203 0.690 3.056 0.887 1.573 0.769 0.299 0.602 4.778 0.963 17.118 0.963
HA8⋆ 0.388 1.057 0.170 0.824 2.412 1.124 1.218 0.993 0.187 0.963 3.588 1.282 12.445 1.325

KE⋆ 0.346 1.185 0.198 0.707 2.590 1.046 1.454 0.832 0.228 0.789 3.642 1.263 14.388 1.146
C SAUF⋆ 0.315 1.302 0.180 0.778 2.487 1.090 1.312 0.922 0.222 0.811 3.264 1.409 12.830 1.285
C BBDT⋆ 0.315 1.302 0.182 0.769 2.134 1.270 1.040 1.163 0.218 0.826 2.901 1.586 11.021 1.496

C DRAG⋆ 0.305 1.344 0.171 0.819 2.092 1.295 1.014 1.193 0.187 0.963 2.859 1.609 10.580 1.559

BE⋆ 0.682 0.601 0.431 0.325 3.305 0.820 1.644 0.736 0.563 0.320 4.324 1.064 16.366 1.008 3.703 3.389 7.941 394.025 49.011 7.943
UF⋆ 0.382 1.073 0.252 0.556 3.037 0.892 1.966 0.615 0.364 0.495 4.135 1.112 16.852 0.979 3.868 3.245 23.245 134.607 152.400 2.554

BUF⋆ 0.289 1.419 0.152 0.921 1.936 1.400 1.120 1.080 0.187 0.963 2.709 1.698 10.321 1.598 1.601 7.839 5.300 590.368 29.098 13.378
BKE⋆ 0.279 1.470 0.140 1.000 1.807 1.500 0.947 1.278 0.143 1.259 2.609 1.763 9.153 1.802 2.251 5.575 7.102 440.573 79.816 4.877

(b
)Q

ua
dr

o
P1

00
0

M8DLS 12.077 0.034 7.764 0.018 69.362 0.039 20.556 0.059 11.196 0.016 179.319 0.026 1725.116 0.010
RASMUSS. 3.057 0.134 2.425 0.058 65.936 0.041 4.976 0.243 3.025 0.060 141.906 0.032 1713.080 0.010

8DLS 2.441 0.168 4.754 0.029 28.978 0.094 13.060 0.093 22.715 0.008 148.790 0.031 3938.968 0.004
OLE 0.667 0.615 0.345 0.406 4.159 0.652 2.051 0.590 0.427 0.422 6.330 0.727 29.798 0.553

STAVA 0.498 0.823 0.376 0.372 2.495 1.086 1.648 0.734 0.653 0.276 3.249 1.416 13.140 1.255
LBUF⋆ 0.330 1.242 0.163 0.859 2.016 1.344 1.225 0.988 0.175 1.029 2.638 1.744 11.518 1.432

DLP⋆ 0.359 1.142 0.102 1.373 1.817 1.491 0.942 1.285 0.165 1.091 2.903 1.585 10.804 1.526
HA8⋆ 0.295 1.390 0.085 1.647 1.542 1.757 0.836 1.447 0.110 1.636 2.221 2.071 8.413 1.960

KE⋆ 0.322 1.273 0.118 1.186 1.927 1.406 1.106 1.094 0.150 1.200 2.679 1.717 11.578 1.424
C SAUF⋆ 0.291 1.409 0.112 1.250 1.849 1.466 0.990 1.222 0.163 1.104 2.409 1.910 10.201 1.617
C BBDT⋆ 0.282 1.454 0.092 1.522 1.531 1.770 0.774 1.563 0.130 1.385 2.137 2.153 8.451 1.951

C DRAG⋆ 0.278 1.475 0.087 1.609 1.524 1.778 0.754 1.605 0.115 1.565 2.094 2.197 8.384 1.967

BE⋆ 0.436 0.940 0.277 0.505 2.441 1.110 1.311 0.923 0.304 0.592 3.431 1.341 13.549 1.217 2.853 4.399 6.560 476.974 38.951 9.994
UF⋆ 0.293 1.399 0.140 1.000 1.937 1.399 1.280 0.945 0.224 0.804 2.651 1.735 11.238 1.467 2.950 4.254 21.114 148.193 124.371 3.130

BUF⋆ 0.258 1.589 0.081 1.728 1.356 1.999 0.821 1.474 0.125 1.440 1.978 2.326 8.248 1.999 1.013 12.389 4.094 764.277 25.386 15.334
BKE⋆ 0.253 1.621 0.067 2.090 1.266 2.141 0.689 1.756 0.081 2.222 1.920 2.396 7.204 2.289 1.414 8.876 5.256 595.310 50.803 7.663

(c
)A

10
0

80
G

B

M8DLS 1.950 0.210 1.865 0.075 13.292 0.204 3.386 0.357 2.798 0.064 21.286 0.216 303.517 0.054
RASMUSS. 0.519 0.790 0.600 0.233 5.759 0.471 0.593 2.040 0.732 0.246 15.913 0.289 121.323 0.136

8DLS 0.835 0.491 1.302 0.108 2.997 0.904 0.806 1.501 3.015 0.060 11.397 0.404 161.845 0.102
OLE 0.202 2.030 0.145 0.966 0.628 4.315 0.319 3.793 0.160 1.125 0.885 5.198 2.750 5.996

STAVA 0.211 1.943 0.200 0.700 0.755 3.589 0.552 2.192 0.327 0.550 0.971 4.737 2.404 6.859
LBUF⋆ 0.099 4.141 0.041 3.415 0.377 7.188 0.213 5.681 0.044 4.091 0.533 8.630 0.933 17.674

DLP⋆ 0.103 3.981 0.041 3.415 0.330 8.212 0.198 6.111 0.092 1.957 0.546 8.425 1.378 11.967
HA8⋆ 0.117 3.504 0.051 2.745 0.403 6.725 0.219 5.525 0.068 2.647 0.567 8.113 0.906 18.201

KE⋆ 0.096 4.271 0.038 3.684 0.347 7.810 0.204 5.931 0.048 3.750 0.539 8.534 0.957 17.231
C SAUF⋆ 0.098 4.184 0.038 3.684 0.347 7.810 0.188 6.436 0.056 3.214 0.499 9.218 0.793 20.794
C BBDT⋆ 0.103 3.981 0.041 3.415 0.316 8.576 0.181 6.685 0.056 3.214 0.502 9.163 0.751 21.957

C DRAG⋆ 0.103 3.981 0.040 3.500 0.336 8.065 0.181 6.685 0.053 3.396 0.487 9.446 0.680 24.250

BE⋆ 0.210 1.952 0.165 0.848 0.681 3.979 0.421 2.874 0.170 1.059 0.890 5.169 2.194 7.516 0.731 17.168 0.968 3232.386 4.520 86.124
UF⋆ 0.100 4.100 0.039 3.590 0.381 7.113 0.222 5.450 0.046 3.913 0.551 8.348 1.041 15.841 0.345 36.377 1.339 2336.781 6.500 59.889

BUF⋆ 0.102 4.020 0.041 3.415 0.335 8.090 0.197 6.142 0.061 2.951 0.515 8.932 0.740 22.284 0.209 60.048 0.593 5276.476 2.020 192.713
BKE⋆ 0.094 4.362 0.035 4.000 0.331 8.187 0.184 6.576 0.038 4.737 0.465 9.892 0.621 26.554 0.161 77.950 0.558 5607.437 3.700 105.211

strongly depends on the shape and dimension of the objects
the input images contain, which affect the complexity of the
equivalence trees created and updated during Initialization
and Merge/Reduction phases. As already proven in [36], the
use of IC always improves BUF and BKE performance on
2D datasets. Instead, when dealing with 3D real-case vol-
umes, the nature of the data usually translates into shorter
equivalence trees, causing the IC to hardly save any memory
read. In this scenario, the IC may increase the total execution
time due to the additional writes. Since BKE performs the
Compression kernel twice, this limitation has a greater
(negative) impact on such an algorithm, making it slower
than BUF on the 3D datasets, at least on older GPUs.

The Effects of Memory Allocation. The remaining algo-
rithms have more similar execution times. For this reason,
in order to have a deeper understanding of their behavior,
Fig. 8 and Fig. 9 are reported for 2D and 3D datasets
respectively. In these charts, the time needed for allocating
data structures is separated from the one required by the
global labeling procedure. Moreover, if an algorithm em-
ploys two clearly distinct phases to compute local labeling
and perform tiles merging, the time required by each of

them is displayed separately. The allocation time is the same
for each strategy, except for BE and OLE which require
additional data structures to the output image. OLE requires
an additional byte to check whether the convergence has
been reached or not. The time required by cudaMalloc is
not perfectly linear with respect to the amount of memory
requested: in some cases, the additional allocation required
for this single byte considerably increases the elapsed time.
On the other hand, BE relies on additional matrices to
store block adjacency and labels, always requiring a data-
dependent higher allocation time.

The experiments clearly demonstrate that allocating and
freeing device memory represents a significant portion of
the CCL total elapsed time, and therefore it should be
avoided whenever possible, e.g., in embedded applications
or whenever the input image size is fixed.

Iterative vs Direct Algorithms. The multiple iterations over
the input image required by both OLE and STAVA make
them the worst algorithms in most scenarios. The block scan
approach proposed by BE reduces the operations (and thus
the time) required by the global labeling with respect to
OLE at the expense of a longer allocation step. When the

16

 0

 0.2

 0.4

 0.6

 0.8

 1

OLE
STAVA

LBUF
DLP

HA8
KE C_SAUF

C_BBDT

C_DRAG

BE UF BUF
BKE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

0.57

0.37 0.37 0.36

0.19
0.12

0.28

0.17

0.42

0.20

0.12

0.15

0.67

0.30
0.25 0.21 0.19 0.19

0.50

0.17 0.16

1.04
0.98

0.69
0.77

0.67
0.62

0.58 0.56 0.56

1.07

0.69

0.54 0.52

(a) 3DPeS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

OLE
STAVA

LBUF
DLP

HA8
KE C_SAUF

C_BBDT

C_DRAG

BE UF BUF
BKE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

0.25

0.07 0.07 0.07

0.16

0.08
0.13

0.16

0.44

0.19 0.08

0.11

0.55

0.16
0.19 0.17 0.16 0.15

0.45

0.14 0.13

0.63
0.67

0.34
0.28

0.23
0.26 0.24 0.23 0.22

0.70

0.34

0.21 0.20

(b) Fingerprints

 0

 0.5

 1

 1.5

 2

 2.5

 3

OLE
STAVA

LBUF
DLP

HA8
KE C_SAUF

C_BBDT

C_DRAG

BE UF BUF
BKE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

0.79
0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

1.04

0.60 0.60 0.60

0.82

0.38

0.81
0.97

1.27

1.01
0.40

0.65
2.07

0.87
1.11

0.97
0.70 0.64

1.07

0.75
0.60

2.86
2.69

1.99
1.81

1.47
1.71

1.57

1.30 1.24

2.11
2.22

1.35
1.20

(c) Medical

 0

 1

 2

 3

 4

 5

 6

 7

 8

OLE
STAVA

LBUF
DLP

HA8
KE C_SAUF

C_BBDT

C_DRAG

BE UF BUF
BKE

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

1.94 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68

2.60

1.68 1.68 1.69

1.77

0.93

2.40
1.65

2.12

1.85

1.33

1.39

6.17

2.47 2.52 2.20
1.78 1.72

2.79

1.61 1.53

8.11

5.57

4.46

5.41

4.15 4.20
3.88

3.46 3.40

5.39
4.72

3.29 3.22

(d) Tobacco800

Fig. 8. Average run-time with steps test on 2D datasets under Windows
using NVIDIA QUADRO K2200 (Setup A). Numbers are given in ms.
Lower is better. Best viewed online.

number of connected components is small, as it happens in
3DPeS and Fingerprints, the benefit of using additional data
structures is annihilated by the allocation time.

Direct algorithms, which perform a fixed number of
kernel calls, tend to have better performance than iterative
ones. UF is faster than OLE, STAVA, and BE on all datasets
but Medical, and the same goes for its optimization, LBUF
and KE, the former using better block size and the latter

with a more efficient initialization phase. DLP has a very
similar approach to UF, since it also heavily relies on union-
find, even implementing it slightly differently; unsurpris-
ingly, its performance is comparable to UF.

The block-based approach proposed with BUF and BKE
allows to leverage the advantages of blocks to further im-
prove UF and KE, without introducing allocation draw-
backs, making the two algorithms the fastest available in
literature for both 2D and 3D scenarios. As already men-
tioned, BKE has been available in OpenCV since version
4.6.0 for labeling connected components on GPU devices.

How does Decion Trees Perform on GPUs? The algo-
rithms based on decision trees, i.e., C SAUF, C BBDT, and
C DRAG, have performance close to the state of the art,
with C DRAG always being the best among the three.
Although irregular patterns of execution slow down the
thread scheduling and make the decision tree the worst
thing to use in GPUs, when working with “natural” images
the patterns within blocks are more or less uniform, making
the thread divergence not really frequent. This is also con-
firmed by the granularity experiments reported in Fig. 10.
When granularity is 1, the computational time of both
C BBDT and C DRAG explodes around 50% of density, in
accordance with expectations related to branch divergence.
These algorithms have performance close to state-of-the-art
GPU-specific designs only when density is below 10% or
over 90%. Indeed, when foreground densities are in such
ranges the action to be performed on the current pixel is
selected in the first levels of the decision trees employed
by the algorithms, saving many memory accesses without
ruining the thread execution flow. Since images on which
CCL is usually applied are in that range of densities, the per-
formance of C SAUF, C BBDT, and C DRAG highlighted
in the previous charts are easily explainable taking into
account granularity tests. Additionally, it can be noticed that
as the granularity increases (Fig. 10b, Fig. 10c, and Fig. 10d),
smaller portions of the image have irregular patterns and
require to explore deeper tree levels, while the vast majority
tends to be all white or all black, again minimizing thread
divergence and maximizing the tree performance.

About Foreground Density. Thanks to an efficient combi-
nation of CUDA intrinsics to find runs of foreground pixels
and union-find operations to merge runs of the same CC,
HA8 performs close to state of the art on many datasets,
especially when connected components extend in the hori-
zontal direction (Fingerprints).

Taking into account Fig. 10, we can also notice that
the performance trend of UF and BUF when varying the
foreground density is similar although shifted along the
y-axis since they share the same basic structure. A similar
conclusion can be drawn when comparing KE and BKE.

The disadvantages of iterative approaches that do not
leverage “auxiliary” data structures to record and store label
equivalences are clearly visible with DLP. Independently of
the granularity, the execution time of DLP (almost) expo-
nentially increases with the number of foreground pixels.

For the sake of completeness, Fig. 11 depicts the per-
formance of the 3D algorithms when tested over randomly
generated three-dimensional volumes. The same considera-
tions drawn for the two-dimensional cases can be applied.

17

 0

 20

 40

 60

 80

 100

 120

 140

BE_3D

UF_3D

BUF_3D

BKE_3D

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
All Scans

64.54
39.92 39.91 39.88

24.10
92.45

27.43

62.37

88.64

132.37

67.34

102.25

 0

 1

 2

 3

 4

 5

BE_3D

UF_3D

BUF_3D

BKE_3D

Alloc Dealloc
All Scans

2.51

1.30 1.31 1.32

2.13

2.02

0.69
1.25

4.64

3.32

2.00
2.57

(a) Hilbert

 0

 5

 10

 15

 20

BE_3D

UF_3D

BUF_3D

BKE_3D

Alloc Dealloc
All Scans

5.08
2.82 2.82 2.82

4.45

15.02

3.66
5.43

9.53

17.84

6.48
8.25

(b) Oasis

 0

 20

 40

 60

 80

 100

 120

 140

BE_3D

UF_3D

BUF_3D

BKE_3D

Alloc Dealloc
All Scans

64.54
39.92 39.91 39.88

24.10
92.45

27.43

62.37

88.64

132.37

67.34

102.25

(c) Mitochondria

Fig. 9. Average run-time with steps test on 3D datasets. The experiment ran under Windows with NVIDIA QUADRO K2200 (Setup A). Lower is
better. Best viewed online.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

UF

OLE

STAVA

LBUF

BE

DLP

KE

HA8

C_SAUF

C_BBDT

C_DRAG

BUF

BKE

(a) g = 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100
Ex

ec
ut

io
n

Ti
m

e
[m

s]
Density [%]

UF

OLE

STAVA

LBUF

BE

DLP

KE

HA8

C_SAUF

C_BBDT

C_DRAG

BUF

BKE

(b) g = 2

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

UF

OLE

STAVA

LBUF

BE

DLP

KE

HA8

C_SAUF

C_BBDT

C_DRAG

BUF

BKE

(c) g = 4

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

UF

OLE

STAVA

LBUF

BE

DLP

KE

HA8

C_SAUF

C_BBDT

C_DRAG

BUF

BKE

(d) g = 8

Fig. 10. Granularity tests on 2D randomly generated images. Numbers are given in ms. Lower is better. Best viewed online.

Moreover, it can be highlighted that the previously dis-
cussed negative effects of IC on BKE become less relevant
as density increases. The performance of BKE and BUF are
almost the same above ∼70% and ∼50% of foreground den-
sity, respectively with granularity 1 and 8. When granularity
is 1, storing the block adjacency information in a separate
data structure becomes valuable —i.e., the additional mem-
ory allocation time is compensated by the faster iterative
scan approach— only if foreground density is higher than
90%, making BE slightly faster than both BUF and BKE in
such scenario.

On the Effects of the Input Size. To complete our analysis,
the effect of input size on execution time is depicted in
Fig. 12. In this experiment, each algorithm is tested on
random images with a foreground density of 0.5 and a size
increasing from 103 to 107 pixels. The granularity is set to 1.
In order to simplify the chart, C DRAG has been chosen
as the representative of C BBDT and C SAUF; the three
algorithms employ the same core approach and have com-
parable performances. To focus on interesting algorithms,

the y-axis has been cropped.
Confirming previous conclusions, 8DLS, M8DLS, and

RASMUSSON perform much worse than other algorithms,
regardless of the input dimension. These algorithms require
multiple iterations that are inefficient.

When the input image contains few pixels (e.g., < 105),
the execution time is dominated by the allocation time
of the output image and auxiliary data structures. In this
regard, we can say that all the algorithms have similar
performance, except for BE and OLE, which need to allocate
more memory, degrading the overall performance.

However, with larger input sizes the running time of all
the algorithms grows (almost) linearly. As already noticed in
Fig. 11, BE becomes more competitive as the complexity (the
size in this case) of the input image increases, compensating
for the additional allocation time.

In this experiment, C DRAG is significantly slower than
other direct algorithms, because the input image density
of 0.5 causes the maximum branch divergence, as already
discussed with granularity tests.

18

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

UF_3D

BE_3D

BUF_3D

BKE_3D

(a) g = 1

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Density [%]

UF_3D

BE_3D

BUF_3D

BKE_3D

(b) g = 8

Fig. 11. Granularity tests on 3D randomly generated images (Setup A). Numbers are given in ms. Lower is better. Best viewed online.

 0.01

 0.1

 1

 10

102 103 104 105 106 107 108

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Pixels

M8DLS

RASMUSSON

STAVA

OLE

UF

HA8

DLP

KE

C_DRAG

BE

BUF

BKE

 8DLS

Fig. 12. Correlation between algorithm execution time and the growth of
input size (Setup B). Lower is better. Best viewed online.

6 CONCLUDING REMARKS AND FUTURE WORK

This article reviewed the state-of-the-art connected com-
ponents labeling algorithms designed for GPUs and pub-
lished in the last decade, focusing on the main strategies
adopted and analyzing their performance in different sce-
narios. Experimental results conducted on different operat-
ing systems, using different compilers and GPU architec-
tures revealed that BKE is the best-performing algorithm
for 2D datasets including text images, fingerprints, medical
images, and surveillance datasets. When working on 3D
volumes the performance of BKE is still impressive, but BUF
demonstrates generally better capabilities, especially when
working with hard-to-label volumes such as the Mitochon-
dria dataset. We also showed that algorithms specifically de-
signed for sequential architecture can be extremely effective
when adapted to GPUs.

The source code of all the analyzed algorithms is col-
lected in the YACCLAB benchmark and is provided along
with this article [63]. It is worth mentioning that we have
been forced to re-implement many of the algorithm solu-
tions published in literature since the original implementa-
tion was not publicly available and some authors did not
answer to our explicit requests. In any case, the code is now
public so anyone can verify that our implementations are
aligned with the description in the related publications.

If we consider that the allocation time is “fixed” for a
given environment and that the bare minimum of any CCL
algorithm is the copy of the input into the output image

(an operation that is not enough to complete the task, but
strictly required) the reader can certainly spot that space for
further optimization is really small, extremely so.

Future work should focus on the Connected Compo-
nents Analysis (CCA) by integrating the calculation of con-
nected components statistics in state-of-the-art solutions.

Another open research direction is the optimization of
CCL on embedded systems, including FPGA. Although
specific algorithmic solutions should be devised, reusing the
core innovation of GPU-based solutions could benefit also
such scenarios.

ACKNOWLEDGMENT

This project has received funding from the Department of
Engineering “Enzo Ferrari” of the University of Modena
through FARD-2023 (Fondo di Ateneo per la Ricerca 2023).

REFERENCES

[1] L. Cabaret, L. Lacassagne, and D. Etiemble, “Parallel light speed
labeling: An efficient connected component labeling algorithm
for multi-core processors,” Journal of Real-Time Image Processing,
vol. 15, no. 1, 2018.

[2] P. Asad, R. Marroquim, and A. L. e. L. Souza, “On GPU Con-
nected Components and Properties: A Systematic Evaluation of
Connected Component Labeling Algorithms and Their Extension
for Property Extraction,” IEEE Transactions on Image Processing,
vol. 28, no. 1, 2019.

[3] A. Dubois and F. Charpillet, “Tracking Mobile Objects with Several
Kinects using HMMs and Component Labelling,” in Workshop
Assistance and Service Robotics in a human environment, International
Conference on Intelligent Robots and Systems, 2012.

[4] C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An Improved
Moving Object Detection Algorithm Based on Frame Difference
and Edge Detection,” in Fourth International Conference on Image
and Graphics (ICIG). IEEE, 2007.

[5] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Real-Time
Image Segmentation on a GPU,” in Facing the multicore-challenge,
2010.

[6] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Improving Skin
Lesion Segmentation with Generative Adversarial Networks,” in
2018 IEEE 31st International Symposium on Computer-Based Medical
Systems (CBMS). IEEE, 2018.

[7] A. Körbes, G. B. Vitor, R. de Alencar Lotufo, and J. V. Ferreira,
“Advances on Watershed Processing on GPU Architecture,” in
International Symposium on Mathematical Morphology and Its Appli-
cations to Signal and Image Processing. Springer, 2011.

[8] E. Gomel, T. Shaharbany, and L. Wolf, “Box-based Refinement
for Weakly Supervised and Unsupervised Localization Tasks,” in
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[9] Y. Zhang, S. Wu, N. Snavely, and J. Wu, “Seeing a Rose in Five
Thousand Ways,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

19

[10] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and
M. Schmidt, “Where are the Blobs: Counting by Localization with
Point Supervision,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[11] A. Eklund, P. Dufort, M. Villani, and S. LaConte, “BROCCOLI:
Software for fast fMRI analysis on many-core CPUs and GPUs,”
Frontiers in neuroinformatics, vol. 8, 2014.

[12] H. V. Pham, B. Bhaduri, K. Tangella, C. Best-Popescu, and
G. Popescu, “Real Time Blood Testing Using Quantitative Phase
Imaging,” PloS one, vol. 8, no. 2, 2013.

[13] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Augmenting Data
with GANs to Segment Melanoma Skin Lesions,” Multimedia Tools
and Applications, vol. 79, no. 21-22, 2019.

[14] G. Bontempo, A. Porrello, F. Bolelli, S. Calderara, and E. Ficarra,
“DAS-MIL: Distilling Across Scales for MIL Classification of His-
tological WSIs,” in Medical Image Computing and Computer Assisted
Intervention – MICCAI 2023, Oct 2023.

[15] B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. Karsse-
meijer, G. Litjens, J. A. Van Der Laak, M. Hermsen, Q. F. Manson,
M. Balkenhol et al., “Diagnostic Assessment of Deep Learning
Algorithms for Detection of Lymph Node Metastases in Women
With Breast Cancer,” Jama, vol. 318, no. 22, 2017.

[16] T. Lelore and F. Bouchara, “FAIR: A Fast Algorithm for Document
Image Restoration,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 35, no. 8, 2013.

[17] F. Bolelli, “Indexing of Historical Document Images: Ad Hoc
Dewarping Technique for Handwritten Text,” in Italian Research
Conference on Digital Libraries. Springer, 2017.

[18] T. Berka, “The Generalized Feed-forward Loop Motif: Definition,
Detection and Statistical Significance,” Procedia Computer Science,
vol. 11, 2012.

[19] M. J. Dinneen, M. Khosravani, and A. Probert, “Using OpenCL for
Implementing Simple Parallel Graph Algorithms,” in Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee of
The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2011.

[20] C. Grana, L. Baraldi, and F. Bolelli, “Optimized Connected Com-
ponents Labeling with Pixel Prediction,” in Advanced Concepts for
Intelligent Vision Systems, vol. 10016, Oct 2016.

[21] F. Bolelli, M. Cancilla, and C. Grana, “Two More Strategies to
Speed Up Connected Components Labeling Algorithms,” in Image
Analysis and Processing - ICIAP 2017, vol. 10485, Sep 2017.

[22] W. Lee, S. Allegretti, F. Bolelli, and C. Grana, “Fast Run-Based
Connected Components Labeling for Bitonal Images,” in 2021
Joint 10th International Conference on Informatics, Electronics & Vision
(ICIEV) and 2021 5th International Conference on Imaging, Vision &
Pattern Recognition (icIVPR), Aug 2021.

[23] F. Bolelli, S. Allegretti, and C. Grana, “Connected Components
Labeling on Bitonal Images,” in Image Analysis and Processing -
ICIAP 2021, May 2022.

[24] A. Hennequin, L. Lacassagne, L. Cabaret, and Q. Meunier, “A new
Direct Connected Component Labeling and Analysis Algorithms
for GPUs,” in 2018 Conference on Design and Architectures for Signal
and Image Processing (DASIP). IEEE, 2018.

[25] L. Cabaret, L. Lacassagne, and D. Etiemble, “Distanceless label
propagation: An efficient direct connected component labeling
algorithm for GPUs,” in 2017 Seventh International Conference on
Image Processing Theory, Tools and Applications (IPTA), 2017.

[26] D. P. Playne and K. Hawick, “A New Algorithm for Parallel
Connected-Component Labelling on GPUs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 6, June 2018.

[27] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Im-
age Processing, vol. 23, no. 2, 2014.

[28] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, 2009.

[29] D. Windisch, C. Kaever, G. Juckeland, and A. Bieberle, “Parallel
Algorithm for Connected-Component Analysis Using CUDA,”
Algorithms, vol. 16, no. 2, 2023.

[30] M. Kowalczyk, P. Ciarach, D. Przewlocka-Rus, H. Szolc, and
T. Kryjak, “Real-Time FPGA Implementation of Parallel Con-
nected Component Labelling for a 4K Video Stream,” Journal of
Signal Processing Systems, vol. 93, no. 5, 2021.

[31] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The
connected-component labeling problem: A review of state-of-the-
art algorithms,” Pattern Recognition, vol. 70, 2017.

[32] A. Rosenfeld and A. Kak, Digital Picture Processing, ser. Computer
Science and Applied Mathematics. Academic Press, 1982, no. 1.

[33] D. Zhang, H. Ma, and L. Pan, “A gamma-signal-regulated
connected components labeling algorithm,” Pattern Recognition,
vol. 91, 2019.

[34] F. Bolelli, S. Allegretti, and C. Grana, “One DAG to Rule Them
All,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 7, Jan 2021.

[35] F. Lemaitre, A. Hennequin, and L. Lacassagne, “How to speed
Connected Component Labeling up with SIMD RLE algorithms,”
in Proceedings of the 2020 Sixth Workshop on Programming Models for
SIMD/Vector Processing, 2020.

[36] S. Allegretti, F. Bolelli, and C. Grana, “Optimized Block-Based
Algorithms to Label Connected Components on GPUs,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, Aug 2019.

[37] H. Zhou, R. Dou, L. Cheng, J. Liu, and N. Wu, “A Provisional
Labels-Reduced, Real-Time Connected Component Labeling Al-
gorithm for Edge Hardware,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 69, no. 6, 2022.

[38] Z. Li, Q. Zhang, T. Long, and B. Zhao, “A parallel pipeline
connected-component labeling method for on-orbit space target
monitoring,” Journal of Systems Engineering and Electronics, vol. 33,
no. 5, 2022.

[39] K. Bok, N. Kim, D. Choi, J. Lim, and J. Yoo, “Incremental Con-
nected Component Detection for Graph Streams on GPU,” Elec-
tronics, vol. 12, no. 6, 2023.

[40] H. Samet, “Connected Component Labeling Using Quadtrees,”
Journal of the ACM (JACM), vol. 28, no. 3, 1981.

[41] V. M. Oliveira and R. A. Lotufo, “A Study on Connected Com-
ponents Labeling algorithms using GPUs,” in SIBGRAPI, vol. 3,
2010.

[42] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized Block-
based Connected Components Labeling with Decision Trees,”
IEEE Transactions on Image Processing, vol. 19, no. 6, 2010.

[43] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Im-
age Processing, vol. 23, no. 2, 2014.

[44] D. J. C. Santiago, T. I. Ren, G. D. Cavalcanti, and T. I. Jyh, “Efficient
2×2 block-based connected components labeling algorithms,” in
2015 IEEE International Conference on Image Processing (ICIP), 2015.

[45] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti La-
beling: Directed Acyclic Graphs for Block-Based Connected Com-
ponents Labeling,” IEEE Transactions on Image Processing, vol. 29,
no. 1, October 2019.

[46] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, “Block Equiv-
alence Algorithm for Labeling 2D and 3D Images on GPU,”
Electronic Imaging, vol. 2016, no. 2, 2016.

[47] S. Allegretti, F. Bolelli, M. Cancilla, F. Pollastri, L. Canalini, and
C. Grana, “How does Connected Components Labeling with
Decision Trees perform on GPUs?” in Computer Analysis of Images
and Patterns, vol. 11678, Sep 2019.

[48] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
Another Connected Components Labeling Benchmark,” in 23rd
International Conference on Pattern Recognition. ICPR, 2016.

[49] M. B. Dillencourt, H. Samet, and M. Tamminen, “A General
Approach to Connected-Component Labeling for Arbitrary Image
Representations,” Journal of the ACM, vol. 39, no. 2, 1992.

[50] K. Yonehara and K. Aizawa, “A Line-Based Connected Compo-
nent Labeling Algorithm Using GPUs,” in 2015 Third International
Symposium on Computing and Networking, 2015.

[51] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel graph compo-
nent labelling with GPUs and CUDA,” Parallel Computing, vol. 36,
no. 12, 2010.

[52] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2D grid using CUDA,” Journal of Parallel
and Distributed Computing, vol. 71, no. 4, 2011.

[53] O. Šťava and B. Beneš, “Chapter 35 - Connected Component
Labeling in CUDA,” in GPU Computing Gems Emerald Edition, ser.
Applications of GPU Computing Series, W. mei W. Hwu, Ed., 2011.

[54] P. Chen, H. Zhao, C. Tao, and H. Sang, “Block-run-based con-
nected component labelling algorithm for GPGPU using shared
memory,” Electronics Letters, vol. 47, Nov. 2011.

[55] Y. Soh, H. Raja, Y. Hae, and I. Kim, “Fast Parallel Connected Com-
ponent Labeling Algorithms Using CUDA Based on 8-directional
Label Selection,” International Journal of Latest Research in Science
and Technology, vol. 3, 03 2014.

20

[56] A. Rasmusson, T. Sørensen, and G. Ziegler, “Connected Com-
ponents Labeling on the GPU with Generalization to Voronoi
Diagrams and Signed Distance Fields,” in Advances in Visual
Computing, vol. 8033, 07 2013.

[57] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimiz-
ing GPU-Based Connected Components Labeling Algorithms,” in
2018 IEEE International Conference on Image Processing, Applications
and Systems (IPAS), 2018.

[58] Y. Komura, “GPU-based cluster-labeling algorithm without the
use of conventional iteration: Application to the Swendsen–Wang
multi-cluster spin flip algorithm,” Computer Physics Communica-
tions, vol. 194, 2015.

[59] F. Nina Paravecino and D. Kaeli, “Accelerated Connected Compo-
nent Labeling Using CUDA Framework,” in Computer Vision and
Graphics, vol. 8671, 09 2014.

[60] K. Wu, E. Otoo, and K. Suzuki, “Two Strategies to Speed up
Connected Component Labeling Algorithms,” Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-59102, 2005.

[61] C. Grana, M. Montangero, and D. Borghesani, “Optimal decision
trees for local image processing algorithms,” Pattern Recognition
Letters, vol. 33, no. 16, 2012.

[62] F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected Com-
ponents Labeling on DRAGs,” in 2018 24th International Conference
on Pattern Recognition (ICPR), Aug 2018.

[63] The YACCLAB Benchmark. Accessed on 2022-12-21. [Online].
Available: https://github.com/prittt/YACCLAB

[64] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reliable
experiments on the performance of Connected Components La-
beling algorithms,” Journal of Real-Time Image Processing, 2018.

[65] J. Chen, K. Nonaka, H. Sankoh, R. Watanabe, H. Sabirin, and
S. Naito, “Efficient Parallel Connected Component Labeling With
a Coarse-to-Fine Strategy,” IEEE Access, vol. 6, 2018.

[66] T. Chabardès, P. Dokládal, and M. Bilodeau, “A labeling algorithm
based on a forest of decision trees,” Journal of Real-Time Image
Processing, vol. 17, no. 5, 2020.

[67] F. Diaz-del Rio, P. Sanchez-Cuevas, H. Molina-Abril, and P. Real,
“Parallel connected-Component-Labeling based on homotopy
trees,” Pattern Recognition Letters, vol. 131, 2020.

[68] A. Torralba and A. A. Efros, “Unbiased Look at Dataset Bias,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2011.

[69] W.-Y. Chang and C.-C. Chiu, “An efficient scan algorithm for
block-based connected component labeling,” in 22nd Mediter-
ranean Conference of Control and Automation (MED). IEEE, 2014.

[70] M. J. Huiskes and M. S. Lew, “The MIR Flickr Retrieval Eval-
uation,” in MIR ’08: Proceedings of the 2008 ACM International
Conference on Multimedia Information Retrieval, 2008.

[71] N. Otsu, “A Threshold Selection Method from Gray-Level His-
tograms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 9, no. 1, 1979.

[72] F. Dong, H. Irshad, E.-Y. Oh et al., “Computational Pathology to
Discriminate Benign from Malignant Intraductal Proliferations of
the Breast,” PloS one, vol. 9, no. 12, 2014.

[73] The Hamlet Dataset. Accessed on 2019-03-21. [Online]. Available:
http://www.gutenberg.org

[74] G. Agam, S. Argamon, O. Frieder, D. Grossman, and D. Lewis,
“The Complex Document Image Processing (CDIP) Test Collection
Project,” Illinois Institute of Technology, 2006.

[75] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and
J. Heard, “Building a test collection for complex document infor-
mation processing,” in Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2006.

[76] “The Legacy Tobacco Document Library (LTDL),” University of
California, San Francisco, 2007.

[77] F. Bolelli, G. Borghi, and C. Grana, “Historical Handwritten Text
Images Word Spotting Through Sliding Window Hog Features,” in
19th International Conference on Image Analysis and Processing, 2017.

[78] ——, “XDOCS: an Application to Index Historical Documents,” in
Digital Libraries and Multimedia Archives, vol. 806, Jan 2018.

[79] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer Science & Business Media, 2009.

[80] J. Sauvola and M. Pietikäinen, “Adaptive document image bina-
rization,” Pattern recognition, vol. 33, no. 2, 2000.

[81] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D People
Dataset for Surveillance and Forensics,” in Proceedings of the 2011

joint ACM workshop on Human gesture and behavior understanding.
ACM, 2011.

[82] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open Access Series of Imaging Studies (OASIS):
Longitudinal MRI Data in Nondemented and Demented Older
Adults,” J. Cognitive Neurosci., vol. 22, no. 12, 2010.

[83] The Electron Microscopy Dataset. Accessed on 2019-03-21.
[Online]. Available: https://cvlab.epfl.ch/data/data-em/

[84] A. Lucchi, Y. Li, and P. Fua, “Learning for Structured Prediction
Using Approximate Subgradient Descent with Working Sets,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[85] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, 1998.

[86] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

Federico Bolelli received the B.Sc. and M.Sc.
degrees in Computer Engineering from Univer-
sità degli Studi di Modena e Reggio Emilia, Italy.
He pursued the Ph.D. degree from the same uni-
versity where he is currently working as a Tenure
Track Assistant Professor within the AImageLab
group at Dipartimento di Ingegneria ”Enzo Fer-
rari.” His research interests include image pro-
cessing, algorithms and optimization, and medi-
cal imaging. He is currently involved in a H2020
European Project.

Stefano Allegretti received the B.Sc. and M.Sc.
degree in Computer Engineering from Università
degli Studi di Modena e Reggio Emilia, Italy. He
is currently pursuing the Ph.D. degree at the
AImagelab Laboratory at Dipartimento di Ingeg-
neria “Enzo Ferrari” of Università degli Studi di
Modena e Reggio Emilia. His research interests
include algorithm optimization and image pro-
cessing.

Luca Lumetti received both B.Sc. and M.Sc de-
grees in Computer Engineering from Università
degli Studi di Modena e Reggio Emilia, Italy.
He is currently pursuing a Ph.D. at the same
University, in the AImageLab group. His research
interests regard Artificial Intelligence, Computer
Vision, and Medical Imaging.

Costantino Grana graduated at Università degli
Studi di Modena e Reggio Emilia, Italy in 2000
and achieved the Ph.D. in Computer Science
and Engineering in 2004. He is currently Full
Professor at Dipartimento di Ingegneria “Enzo
Ferrari” of the same university. His research in-
terests are mainly in medical imaging, optimiza-
tion of image processing algorithms, and com-
puter vision applications. He published 6 book
chapters, 47 papers on international peer re-
viewed journals and more than 130 papers on

international conferences.

