
BarBeR - Barcode Benchmark Repository:
Implementation and Reproducibility Notes

Enrico Vezzali1, Federico Bolelli1, Stefano Santi2, and Costantino Grana1

1 University of Modena and Reggio Emilia, Modena, Italy
{name.surname}@unimore.it

2 Datalogic, S.p.A, Bologna, Italy
stefano.santi@datalogic.com

Abstract. This paper provides a detailed description of how to install,
set up, and use “BarBeR” (Barcode Benchmark Repository) to repro-
duce the results presented in the ICPR 2024 paper “BarBeR: A Barcode
Benchmarking Repository”. The paper details the tests available in the
repository and how the configuration parameters affect and influence
experimental results.

Keywords: BarBeR · Barcodes· Benchmark· QR Codes · Public Dataset

1 Introduction

Barcodes, a prevalent form of machine-readable data, have revolutionized data
collection and identification due to their cost-effectiveness and efficiency [12].
They are widely used in supply chain management [5], warehousess [4], man-
ufacturing [12], retail [6], and robot guidance [7]. Despite their inception over
seven decades ago, barcodes continue to hold their ground in today’s digital
age, and their use is forecasted to increase in the future [3,9]. Barcodes come in
one-dimensional (1D) and two-dimensional (2D) forms. While 1D barcodes have
limited data storage, 2D barcodes offer greater capacity. The process of read-
ing a barcode involves localization and decoding. Recent advancements in edge
deep learning have spurred interest in developing deep learning-based barcode
localization solutions. Despite the huge interest in the field, several issues pre-
vent definitive conclusions about methods’ effectiveness and applicability. The
first is that existing research relies on small datasets that do not reflect real-
world scenarios accurately and make training deep learning models difficult.
Then there is the problem of reproducibility. The lack of public code implemen-
tations makes replicating results challenging. Finally, different studies use differ-
ent metrics, leading to contradictory comparisons even with identical algorithms
and datasets. To address these challenges, we have developed “BarBeR” (Bar-
code Benchmark Repository) [10, 11] — an open-source benchmark for barcode
localization with standardized test protocols and evaluation metrics. BarBeR
includes multiple localization algorithms and a large annotated dataset of 8 748
barcode images. Our goal is to enhance reproducibility and facilitate reliable
algorithm comparisons within the research community.



2 E. Vezzali et al.

2 The Dataset

For this project, we collected a large dataset of barcodes to compare algorithms
and train object detection neural networks. After conducting a thorough liter-
ature review, we gathered datasets totaling 8 748 images with 9 818 annotated
barcodes (8 062 linear and 1 756 two-dimensional). The BarBeR dataset follows
the VGG annotation format [1]. The Dataset consists of two components: images
in jpg format and a folder of JSON files with the annotations. The annotations
contain the polygon shape of each barcode plus three important characteristics
of the code: its type, PPE (pixels per element, other times referred to as PPM
or pixels per module), and encoded string. In total, we have 19 classes for the
argument Type, 18 of which identify a particular barcode type (Code 128, Code
39, EAN-2, EAN-8, EAN-13, GS1-128, IATA 2 of 5, Intelligent Mail Barcode,
Interleaved 2 of 5, Japan Postal Barcode, KIX-code, PostNet, RoyalMail Code,
UPC, Aztec, Datamatrix, PDF-417, and QR Code). The last class is the class
‘1D’ which indicates a 1D barcode that was not automatically assigned to a cate-
gory because it was impossible to decode. The dataset contains images in a wide
range of different resolutions (from 200×141 to 5 984×3 376) captured in various
settings with different devices, featuring diverse subjects and environments. This
diversity includes barcodes in different lighting conditions, some underexposed
or overexposed, and others with variable lighting. Additionally, the dataset con-
tains both planar and skewed or warped barcodes, as well as barcodes affected
by blur, noise, or partial obstruction.

3 The Evaluation Framework

BarBeR is available on GitHub3 and includes various detection methods and
scripts to train neural networks for barcode detection. The associated dataset
and the trained models can be downloaded from our website.4 The repository
has been developed with Linux as the main target OS. However, the code is
not architecture-specific and it is possible to build and run all the tests on
different Operative Systems. Both x86-64 and ARM architectures have been
tested without any reported issues.

The algorithms folder contains a Python class for every localization algo-
rithm available (Table 1). The config folder contains the YAML configuration
files for each Python script that needs a configuration file. These configuration
files are examples and can be modified depending on the configuration needed.
The python folder contains all Python files, including all test scripts. Other
important folders in the repository are results, which is the default path to
the generated results of the tests, and scripts, which contains bash scripts to
run multiple tests in the pipeline. Finally, there are a few other folders in the
repository, which contain the code to build the needed libraries to run the tests.
3 https://github.com/Henvezz95/BarBeR
4 https://ditto.ing.unimore.it/barber

https://github.com/Henvezz95/BarBeR
https://ditto.ing.unimore.it/barber


BarBeR - Implementation and Reproducibility 3

Table 1. This is a list of all the available localization algorithms featured in BarBeR.

Algorithm File 1D Detection 2D Detection Multi-Label

Gallo et al. [2] gallo_detector.py ✓ ✗ ✗

Soros et al. [8] soros_detector.py ✓ ✓ ✗

Yun et al. [13] yun_detector.py ✓ ✗ ✗

Zamberletti et al. [14] zamberletti_detector.py ✓ ✗ ✓

Zharkov et al. [15] zharkov_detector.py ✓ ✓ ✓

Ultralytics Models ultralytics_detector.py ✓ ✓ ✓

Detectron2 Models detectron2_detector.py ✓ ✓ ✓

Pytorch Models pytorch_detector.py ✓ ✓ ✓

4 Setting Up the Repository

To correctly install and run the current version of BarBeR, the following pack-
ages, libraries, and utilities are required:
– CMake 3.13 or higher (https://cmake.org);
– OpenCV and OpenCV Contrib 4.0 or higher (http://opencv.org);
– Boost 1.53 or higher;
– A C++ compiler supporting C++11 or higher;
– A list of Python libraries contained in requirements.txt.

The installation procedure is well detailed in the aforementioned GitHub repos-
itory and the main steps can be resumed as follows:
– Clone the repository;
– Generate the BarBeR project using CMake;
– Open the project folder and build;
– Download the dataset;
– [Optional] Download the pre-trained models.

The dataset comes in .zip format. Once Unzipped, you will find 2 folders inside:
Annotations and Dataset. If you place these two folders directly inside the
BarBeR folder, there is no need to change the paths of the configuration files.
Similarly, the folder Saved Models can be unzipped and placed in the BarBeR
folder with no need to change configuration paths.

4.1 Converting the Annotations

To run a test, we need COCO annotations divided into train.json, val.json,
and test.json. To configure how to split the annotations, a YAML configuration
file is used. An example of such a file is config/generate_coco_annotations-
_config.yaml. With the configuration file, we can select which files to use and
which annotations, the train-test split size, and if we are using K-fold cross-
validation. The script used to generate the annotation is python/generate_coco-
_annotations.py, which takes as input a configuration file and optionally the
index k, which indicates the index of the current cross-validation test (use 0 if
K-fold cross-validation is not used). It can be called with the following command:

1 python3 python/generate_coco_annotations.py -c \
2 ./ config/generate_coco_annotations_config.yaml -k 0

https://cmake.org
http://opencv.org


4 E. Vezzali et al.

If we also need to train an Ultralytics model, we need YOLO annotations, which
will be generated with the following command:

1 python3 python/convert_coco_to_yolo.py -c \
2 ./ annotations/COCO/ -o ./ dataset/

5 Reproduce the Tests

The repository is equipped with a variety of test scripts, each supporting di-
verse configurations. All test scripts are written in Python and take as input
argument a YAML configuration file and output a YAML file containing mul-
tiple evaluation metrics for every tested algorithm. The available metrics are
Precision, Recall, and F1 score at different IoU thresholds. For algorithms that
also output a confidence score, the Benchmark also computes the Average Preci-
sion (AP@.5, AP@[.5:.95]) for each class, the mean Average Precision (mAP@.5,
mAP@[.5:.95]) and the Average Recall (AR100, AR10, AR1). Finally, the bench-
mark allows the filtering of these metrics depending on the size of the ground
truth and its pixel density.

5.1 Single-Class Localization

The Single-Class Localization Test runs all the selected algorithms considering
only images with the selected type of barcodes (1D or 2D). The Python script
that runs the Single-Class detection test is test_single_class.py: inputs are a
configuration file and a path pointing to where the output report will be saved.
In this repository, there are three working examples of configuration files, one for
single-ROI 1D barcode detection (./config/test1D_singleROI.yaml), one for
multi-ROI 1D barcode detection (./config/test1D_multiROI.yaml), and one
for single-ROI 2D barcode detection (./config/test2D_singleROI.yaml). The
Listing 1.1 shows an example of how a configuration file should be formatted.
To launch the test run the following command:

1 python3 python/test_single_class.py -c \
2 ./ config/test_config.yaml -o ./ results/test_results.yaml

The results will be saved in the desired output path in YAML format. These are
some of the options that can be tuned in the configuration file:

– coco_annotations_path: path to the folder containing the annotations in
COCO format (test.json).

– longest_edge_resize: this is used to select the resolution of the resized
images. In particular, it indicates the number of pixels of the longest side of
the resized image. If this setting is set to a number lower than 0, no rescaling
will be applied, and the localization algorithm will run on the image at the
original resolution;

– class: indicates the class of barcodes used for the tests, which can be either
1D or 2D;



BarBeR - Implementation and Reproducibility 5

1 # Single Class Detection Configuration
2 coco_annotations_path: ./ annotations/COCO/
3 longest_edge_resize: 640
4 class: 1D
5 single_ROI: true
6 bins: [0,1,2,3,4,5,6,7,100]
7 algorithms:
8 - args:
9 lib_path: ./ path_to_lib/lib1.so

10 arg1: 11
11 class: First_detector
12 library: first_detector
13 name: First_Algorithm
14 - args:
15 lib_path: ./ path_to_lib/lib2.so
16 arg1: 5
17 arg2: 3
18 class: Second_detector
19 library: second_detector
20 name: Second_Algorithm

Listing 1.1. Configuration file example for single class localization.

– single_ROI: since some algorithms only support single ROI localization, it
is possible to select only the images containing a single barcode. To do so,
set this option to true;

– bins: if this option is present, the YAML file of the results will also present
different metrics depending on the PPE range. Each element of the bin is an
edge of a PPE range. For example, if bins = [0, 1, 2] we will have additional
metrics for barcodes with PPE ∈ [0, 1] and PPE ∈ [1, 2];

– algorithms: indicates the algorithms to test. For each algorithm library
indicates the library where the function is contained and class is the name
of the detector class. The name key is the name that will be assigned to
this algorithm in the results report. In addition, each algorithm is assigned
a dictionary of arguments (args).

5.2 Multi-Class Localization

This script runs all the selected algorithms on all the images of the test set.
As for Single-Class detection, we can choose the resizing resolution and which
algorithms are included in the test. It does not support the bins keyword,
though. The Python script that runs the Single-Class detection test is test_mul-
ti_class.py. The inputs are a configuration file and a path pointing to where
the report with the results will be saved. In this repository, there is one working
configuration file for Multi-Class detection (./config/test_multiclass.yaml).
This script will generate the results for Precision, Recall, F1-score, Average Pre-
cision (AP@.5, AP@[.5:.95]) for each class, mean Average Precision (mAP@.5,



6 E. Vezzali et al.

1 # Timing Benchmark Configuration
2 coco_annotations_path: ./ annotations/COCO/
3 longest_edge_resize: 640
4 num_repeats: 3
5 num_threads: 1
6 step: 1
7 define: &device ‘cpu’
8

9 - args:
10 model_path: ./Saved Models/zharkov_640_0.pt
11 class: Zharkov_detector
12 library: zharkov_detector
13 name: Zharkov
14 device: *device

Listing 1.2. Configuration file example for the timing benchmark.

mAP@[.5:.95]) and Average Recall (AR100, AR10, AR1). These metrics will be
saved to a YAML file in the designated output path. To launch the test run the
following command:

1 python3 python/test_multiclass.py -c \
2 ./ config/test_config.yaml -o ./ results/test_results.yaml

5.3 Timing Benchmark

The script time_benchmark.py measures the time required to run the localiza-
tion algorithms. The times can be taken from the average times on all datasets
or a subsection of it. It is possible to measure the algorithms’ performance on a
single core or multiple cores as well as on GPU. As for the previous test scripts,
the required inputs are a path to a configuration file and a path to the destina-
tion folder for the generated report. In the repository, there is a configuration file
named config/timing_config.yaml that can be used to replicate the results
showed in the original paper [11]. To launch the test run the following command:

1 python3 python/time_benchmark.py -c \
2 .config/timing_config.yaml -o ./ results/timing_results.yaml

The Listing 1.2 shows an example of a configuration file for the timing bench-
mark. To reduce the impact of the background processes, detections are repeated
multiple times per image, and the lowest time is taken. How many times to re-
peat the test for every image is specified with the keyword num_repeats in the
configuration file. The final time, reported in the output report in YAML for-
mat, is the average between the results for every image. The number of threads
is specified by the keyword num_threads. The target device can be selected by
changing the definition of the variable device. The supported targets are cpu pr
gpu. Only neural network models support GPU benchmarking at the moment.



BarBeR - Implementation and Reproducibility 7

Fig. 1. Example of the 4 graphs generated by the script single_class_graphs.py.
The first three graphs represent Precision, Recall, and F1-score curves of 2D barcode
detection algorithms at different values of IoU threshold. The last graph shows the
F1-scores on 2D barcodes at different ranges of pixels per element.

If the target device is set to gpu, the num_threads keyword will be ignored.
Finally, the step keyword is used to run the test on a subsection of the dataset.
If step is 1, all images will be used. With a step of n only 1 image every n will
be used in the test.

The time results presented in the BarBeR paper [11] were obtained by run-
ning the benchmark on two contrasting platforms: a high-end PC and a Rasp-
berry Pi 3B+. The high-end PC was equipped with a 24-core AMD Ryzen
Threadripper Pro 5965WX CPU, 128 GB of DDR4 RAM, and an RTX 4090
GPU. Changes in the testing hardware will lead, of course, to changes in the
results obtained.



8 E. Vezzali et al.

Fig. 2. Example of graph generated by the script multi_class_graphs.py. It incorpo-
rates results from at different scales. The graph shows the values of mAP@[.5:.95] of
different models at three different scales: longest side resized to 640 pixels, longest side
resized to 480 pixels, and longest side resized to 320 pixels.

5.4 Visualize the Results

To generate a graph from the results generated by a Single-Class detection test
run the following command:

1 python3 python/visualizer/single_class_graphs.py

It is necessary to select the right barcode type, changing the variable ttype,
which could be ‘1D’ or ‘2D’. Graphs will be generated inside results/graphs.
This script generates four graphs. The first three represent Precision, Recall, and
F1-scores at different values of the IoU threshold. The last graph is generated
only if the bins keyword was used. It represents the F1 scores (with an IoU
threshold of 0.5) of the tested detection methods at different ranges of pixels per
element. In Fig. 1, we see an example of the four generated graphs.

To generate a graph from the results generated by a Multi-Class detection
test, run the following command:

1 python3 python/visualizer/multi_class_graphs.py

It will generate a graph similar to Fig. 2. It can incorporate results from different
scales. In particular, the graph shows the values of mAP@[.5:.95] of different
models at the different scales the tests were conducted. To change the path
of the input reports, the variable base_path, present in both scripts, must be
changed.

6 Training New Models

The repository allows the training of new detection models from Ultralytics or
Detectron2. In addition, it contains the script to train the neural network pro-
posed by Zharkov et al. [15]. This last script can easily be adapted to train any
Pytorch detection model. To train a model with Ultralytics, run python/ultra-
lytics_trainer.py. A configuration file is needed (e.g., config/ultralytics



BarBeR - Implementation and Reproducibility 9

_training_config.yaml), as well as an output path for the trained model (de-
fault folder is “Saved Models”). Detectron2 model can be trained with the script
python/detectron2_trainer.py. A configuration file is needed (e.g., config/
detectron2_training_config.yaml), as well as an output path for the trained
model. Finally, to train a Zharkov model, you can run the script Zharkov2019/
zharkov_trainer.py. Again, a configuration file is needed (e.g. config/zha
rkov_training_config.yaml), as well as an output path for the trained model.

7 K-Fold Cross-Validation

To run K-fold cross-validation, it would be necessary to run the scripts multiple
times manually. Since running the scripts multiple times and changing the con-
figuration each time would be too cumbersome, it is possible to automate the
process using a bash script. The python file python/create_configuration
_yaml.py is used to generate a new configuration each time. Scripts can also
be used to train multiple networks, each with a different test set. The folder
scripts contains examples of how to use scripts to run multiple Python files
one after the other:

– k_fold_training_ult.sh: trains 5 Ultralytics networks, leaving out a dif-
ferent chunk of the dataset from the training set each time. Each trained
network will end its file name with a different index, going from 0 to 4;

– k_fold_training_det.sh: trains 5 Detectron2 networks, leaving out a dif-
ferent chunk of the dataset from the training set each time. Each trained
network will end its file name with a different index, going from 0 to 4;

– k_fold_training_zharkov.sh: trains 5 Zharkov networks, leaving out a
different chunk of the dataset from the training set each time. Each trained
network will end its file name with a different index, going from 0 to 4;

– k_fold_test_1D_singleROI.sh: runs 5 single-class tests with 1D barcodes.
The index in the file names of the models will be incremented automatically;

– k_fold_test_multiclass.sh: runs 5 multi-class tests. The index in the file
names of the models will be incremented automatically.

All detection tests presented in the BarBeR paper [11] used 5-fold cross-validation.
To replicate the 1D localization results, run this command:

1 source scripts/k_fold_test_1D_singleROI.sh

To replicate the 2D localization results, instead run the following command:

1 source scripts/k_fold_test_2D_singleROI.sh

Finally, to replicate the results shown in the Multi-class Detection section, run
this command:

1 source scripts/k_fold_test_multiclass.sh

The results obtained should be equal to the ones shown in the BarBeR paper [11].
However, different platforms could employ different floating point standards,
theoretically leading to very small changes in the results.



10 E. Vezzali et al.

8 Conclusions

This report provides a comprehensive guide on how to utilize the BarBeR bench-
mark and replicate the results presented in the BarBeR ICPR paper [11]. Specif-
ically, it details the repository and dataset locations, project setup instructions,
and test execution procedures. The detection results should be replicable on ev-
ery platform with high precision. On the other hand, changes in the hardware
used to run the tests will strongly impact the results of the timing test.

References

1. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and
video. In: Proceedings of the 27th ACM international conference on multimedia.
pp. 2276–2279 (2019)

2. Gallo, O., Manduchi, R.: Reading 1D Barcodes with Mobile Phones Using De-
formable Templates. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33(9), 1834–1843 (2010)

3. Kapsambelis, C.: Bar Codes Aren’t Going Away! (2005)
4. Kubáňová, J., Kubasáková, I., Čulík, K., Štítik, L.: Implementation of barcode

technology to logistics processes of a company. Sustainability 14(2), 790 (2022)
5. McCathie, L.: The advantages and disadvantages of barcodes and radio frequency

identification in supply chain management. Phd thesis, School of Information Tech-
nology and Computer Science (2004)

6. Melek, C.G., et al.: Datasets and methods of product recognition on grocery shelf
images using computer vision and machine learning approaches: An exhaustive
literature review. Engineering Applications of Artificial Intelligence 133 (2024)

7. Soliman, A., Al-Ali, A., Mohamed, A., Gedawy, H., Izham, D., Bahri, M., Erbad,
A., Guizani, M.: AI-based UAV navigation framework with digital twin technology
for mobile target visitation. Engineering Applications of Artificial Intelligence 123,
106318 (2023)

8. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for
smartphones. In: Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia. pp. 1–8 (2013)

9. Vaishnavi Shyamsundar Mate, S.M.: Barcode Reader Market Size, Share, Com-
petitive Landscape and Trend Analysis Report by Type, by Application : Global
Opportunity Analysis and Industry Forecast, 2023-2032 (2023)

10. Vezzali, E., Bolelli, F., Santi, S., Grana, C.: State-of-the-art Review and Bench-
marking of Barcode Localization Methods. Engineering Applications of Artificial
Intelligence pp. 1–29 (2025)

11. Vezzali, E., Bolelli, F., Santi, S., Grana, C., et al.: Barber: A barcode benchmarking
repository. In: 2024 27th International Conference on Pattern Recognition (ICPR)
(2024)

12. Weng, D., Yang, L.: Design and Implementation of Barcode Management Infor-
mation System. In: Information Engineering and Applications: International Con-
ference on Information Engineering and Applications. pp. 1200–1207 (2012)

13. Yun, I., Kim, J.: Vision-based 1D Barcode Localization Method for Scale and
Rotation Invariant. In: TENCON - IEEE Region 10 Conference. pp. 2204–2208
(2017)



BarBeR - Implementation and Reproducibility 11

14. Zamberletti, et al.: Robust Angle Invariant 1D Barcode Detection. In: 2013 2nd
IAPR Asian Conference on Pattern Recognition. pp. 160–164 (2013)

15. Zharkov, A., Zagaynov, I.: Universal Barcode Detector via Semantic Segmenta-
tion. In: 2019 International Conference on Document Analysis and Recognition
(ICDAR). pp. 837–843 (2019)


	BarBeR - Barcode Benchmark Repository: Implementation and Reproducibility Notes

