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ABSTRACT Segmentation of the Inferior Alveolar Canal (IAC) is a critical aspect of dentistry and
maxillofacial imaging, garnering considerable attention in recent research endeavors. Deep learning
techniques have shown promising results in this domain, yet their efficacy is still significantly hindered by the
limited availability of 3Dmaxillofacial datasets. An inherent challenge is posed by the size of input volumes,
which necessitates a patch-based processing approach that compromises the neural network performance due
to the absence of global contextual information. This study introduces a novel approach that harnesses the
spatial information within the extracted patches and incorporates it into a Transformer architecture, thereby
enhancing the segmentation process through the use of prior knowledge about the patch location. Ourmethod
significantly improves the Dice score by a factor of 4 points, with respect to the previous work proposed
by Cipriano et al., while also reducing the training steps required by the entire pipeline. By integrating
spatial information and leveraging the power of Transformer architectures, this research not only advances
the accuracy of IAC segmentation, but also streamlines the training process, offering a promising direction
for improving dental and maxillofacial image analysis.

INDEX TERMS CBCT, inferior alveolar canal, medical imaging, 3D imaging, transformers, patch-based
learning.

I. INTRODUCTION
Maxillofacial surgery represents a complex challenge due to
the presence of the Inferior Alveolar Nerve (IAN). Among
bone canals containing blood vessels and nerves, the one
containing the IAN, known as the Inferior Alveolar Canal
(IAC) or simply Mandibular Canal (MC), supplies sensation
to the lower teeth, lips, and chin, and its position (Fig. 1) must
be carefully identified before surgical intervention. Avoiding
contact with the IAN is a priority during implant placement,
molar extraction, and many other craniofacial procedures
to prevent aches, pain, and temporary or permanent paral-
ysis [1]. To achieve such a goal, the preoperative treatment
planning and simulation requires a strong and accurate IAC
segmentation [2], [3] that is usually performed upon data
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acquired with Cone Beam Computer Tomography (CBCT),
a low-radiation and cheap 3D image modality.

Unfortunately, achieving meticulous 3D annotations is
a time-intensive task that requires the eyes of expert
clinicians. Consequently, CBCTs are usually condensed
into 2D panoramic views providing an approximation of
relevant information and used for canal segmentation or other
preoperative planning. This approach, known as panoramic
radiography, prevents from determining the 3D rendering of
the entire canal and the connected anatomical structures.

Recent advancements in the field of Deep Learning
have significantly impacted the medical imaging domain,
particularly through methods based on Convolutional Neural
Networks (CNNs) [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13].While CNNs excel across a spectrum of computer vision
tasks, the rise of attention mechanisms and Transformer
methodologies has propelled them to prominence, surpassing
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FIGURE 1. CBCT scan with the inferior alveolar canal marked in red.

CNNs in various domains, including medical imaging [14],
[15]. Initially introduced by Vaswani et al. [16] for machine
translation, Transformers have evolved into state-of-the-art
solution for numerous Natural Language Processing (NLP)
tasks. Subsequently, the advent of the Vision Transformer
(ViT) architecture marked a turning point, extending Trans-
formers’ dominance also into computer vision and, as a
consequence, diverse domains like image segmentation.
Notably, Transformers have recently been incorporated into
U-Net architectures [17] for both 2D and 3D medical image
segmentation, demonstrating encouraging outcomes [14],
[15].Motivated by the flexibility and potential of Transformer
architectures, we propose to integrate this methodology into
our model to address the 3D IAC segmentation challenge.

Independently from the technique employed, when seg-
menting large 3D volumes, it is often required to adopt a
patch-based processing approach to reduce input data size
and fit memory constraints. This makes the training feasible
but compromises the neural network performance due to the
absence of global contextual information. Hence, this paper
introduces a novel approach called Memory Augmented
Transformer with Absolute Positional information, MATAP,
a 3D architecture enhanced by a memory-augmented Trans-
former encoder that effectively harnesses absolute spatial
coordinates, mitigating the challenges associated with patch-
based training.

More specifically, our proposal builds from the standard
3D U-Net architecture introducing a memory-augmented
Transformer in the bottleneck. By capitalizing on the inherent
capacity of Transformers to model interactions between all
pairs of elements within a given sequence, we aim to enhance
the flow of information among the elements of the U-
Net bottleneck, thus increasing contextualization. Moreover,
we leverage such a flow of information to effectively inject
contextual information related to the processed patches,
i.e., their position within the entire volume, mitigating the
patch-based learning-related issues. The ‘‘memory’’ is an
additional refinement that supports the model to retain
crucial prior concepts that may be challenging to be directly
extracted from image features, but are nonetheless valuable
for interpretation.

The key contributions of this research can be summarized
as follows:

• Design of a memory-augmented Transformer module
capable of leveraging absolute spatial coordinates when
dealing with patch-based learning;

• Introduction of an innovative deep learning architecture
tailored for 3D IAC segmentation, effectively addressing
the limitations of patch-based training;

• Release of the source code,1 enabling precise replication
of all the proposed experiments and future comparison
with additional proposals on the field.

The subsequent sections of this paper are organized as
follows. Section II summarizes related works and Section III
introduces and describes the dataset employed for evaluation.
Our proposed methodology is then detailed in Section IV,
followed by the presentation of experiment outcomes in
Section V. The paper concludes with Section VI, providing
a final summary and directions for future research.

II. RELATED WORKS
In the field of dentistry and maxillofacial surgery, three-
dimensional (3D) imaging has emerged as a fundamental
technology for accurate diagnosis [18]. Initial studies pri-
marily focused on the utilization of Computed Tomography
(CT) scans [19], [20]. However, with the introduction and
widespread adoption of cone beam computed tomography in
the early 2000s [21], significant attention has been directed
towards the development of automated systems for the
segmentation of the inferior alveolar canal. This research has
encompassed both classical computer vision methods [22],
[23], [24], [25], [26], [27], [28] and, more recently, machine
learning and deep learning approaches [29], [30], [31], [32].

For what concerns classical computer vision methods,
Kainmueller et al. [22] proposed a fully automatic approach
based on a combined Statistical Shape Model of the
bone surface and nerve course. Their method improved
nerve position reconstruction using a Dijkstra-based tracing
algorithm. Abdolali et al. [25] presented a similar solution
with a pre-processing step based on low-rank decompo-
sition and fast marching for optimal path determination
between the mandibular and mental foramen. However,
these methods require manual segmentation of the mandible
bone in the training annotation, adding extra manual effort.
Moris et al. [26] took a different approach by considering the
volume from multiple perspectives and extracting the canal
by searching for candidate positions with high similarity to an
IAC ideal model. However, their method relies on predefined
thresholds, often excluding parts of the canal due to low
contrast in CBCT scans. Wei and Wang [27] introduced
a method based on a curved Multi-Planar Reconstruction
(MPR) image set and clustering of texture features to enhance
image contrast. They segmented the mandibular canal edges
using 2D line-tracking and fitting the results with a fourth-
order polynomial.

1The source code is available at https://github.com/AImagelab-zip/
alveolar_canal.
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While classical computer vision approaches have made
significant contributions, the most successful models for the
segmentation of the IAC lie within the domain of machine
learning and deep learning. Notably, Jaskari et al. [31]
presented one of the pioneering applications of deep learning
for mandibular canal segmentation. Their approach involved
training a fully convolutional network using a dataset of
coarsely annotated 3D scans. On average, each canal was
annotated with 10 manually assigned control points, which
were subsequently interpolated using a 3D spline and con-
verted into volumetric representations by placing disks with
a fixed diameter of 3.0 mm on the planes orthogonal to the
spline. This deep learning approach demonstrated superior
performance compared to previous methods relying on
Statistical ShapeModels. However, it encountered limitations
due to the lack of finely annotated voxel-level data and
the sub-optimal quality of segmentation masks generated
automatically from coarse annotations.

Another take on the use of CNNs for mandibular canal
segmentation was proposed by Kwak et al. [30]. Their work
involved training 2D and 3Dmodels based on the SegNet [33]
and U-Net [17], [34] architectures using a privately annotated
dataset and an arguable evaluation metric [35]. Additionally,
Lahoud et al. [36] employed a standard 3D U-Net model
for IAC segmentation. However, neither the dataset nor the
experimental code from these studies is publicly available,
limiting the possibility of direct comparisons with our work.

To address the challenges in inferior alveolar canal
segmentation, Cipriano et al. [35] introduced a significant
breakthrough by proposing the first publicly available dataset
of 3D annotated CBCT scans of the human jaw, named
Maxillo, alongside a state-of-the-art deep learning model
for the 3D segmentation of the IAC called PosPadUNet3D.
The Maxillo dataset comprises 347 CBCT scans, with 91 of
them featuring 3D annotations meticulously generated by
radiologic technologists using the IACAT tool [37]. This
marks a substantial advancement in publicly accessible
datasets for the segmentation of the inferior alveolar canal.
The segmentation pipeline based on the PosPadUNet3D
model used a three-step training procedure: in the initial
step, known as ‘‘deep label expansion,’’ the network was
trained using CBCT volumes paired with their correspond-
ing sparse 2D labels to generate dense 3D annotations.
Next, they employed this network to generate synthetic
3D annotations for the 256 volumes for which only a
2D annotation is available. Subsequently, the synthetic 3D
labels were employed for pre-training the segmentation
network, which was further fine-tuned using 3D annotations
performed by medical experts. Notably, unlike other 3D
U-Net-based algorithms in the literature, PosPadUNet3D
incorporates patch positional information in the bottle-
neck and employs padded convolutions to preserve tensor
dimensionality.

After the appearance of the Maxillo dataset, different
authors employed public data to evaluate their proposals,
making them verifiable and comparable.

In [38], Usman et al. proposed a two-stage approach also
based on the U-Net architecture. Their methodology was
formulated on the hypothesis that the predominant challenge
in segmenting the inferior alveolar canal relates to the class
imbalance between themandibular canal and the background.
To address this issue, they initially apply a CNN to identify
and isolate volume regions where the canal is likely to be
located (Regions of Interest, ROIs), thereby substantially
reducing background interference. Subsequently, in the
second phase, they leverage U-Net architecture to perform the
segmentation of the mandibular canal, exclusively within the
ROIs.

Another contribution was by Zhao et al. [39] and, similarly
to [38], it is based on a two-stage approach. The author
proposed a whole mandibular canal segmentation using
transformed dental CBCT volume in the Frenet frame. They
first extracted the mandibular centerline via automatic seg-
mentation of the mandible and localization of the mandibular
foramen and mental foramen. The sub-volumes containing
the mandibular canal information were then obtained using
a double reflection method based on the Frenet frame. The
transformed sub-volumes were fed into the 3D segmentation
network (again U-Net-based), and the clDice loss was used
to constrain the topology of the mandibular canal. Lastly, the
prediction masks were inversely transformed back into the
original CBCT images to obtain final segmentations.

Liu et al. [40] introduced the Frequency-domain Attention
Module (FAM) in the U-Net architecture. Although the
proposed FAM only includes 56 additional parameters with
respect to U-Net, they significantly improved the IAN canal
segmentation accuracy.

III. DATASET
The maxillofacial dataset employed in our experiments,
named ToothFairy, is an enhanced version of the Maxillo
dataset proposed by Cipriano et al. [41]. It has been employed
in the homonymous MICCAI 2023 challenge hosted on the
Grand Challenge platform. This dataset was created using
the updated version of the IACAT tool [37], specifically
IACAT 2.0, developed in [42]. The innovative features
introduced enhanced the clinicians’ performance during the
canal identification process and reduced the annotation time.
Consequently, compared to the Maxillo dataset, ToothFairy
improves both the quality and quantity of the 3D annotations,
with an average increase of 61.9% in the number of annotated

TABLE 1. Summary description of the ToothFairy dataset.
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FIGURE 2. Example of a 2D annotation obtained from a panoramic view.

voxels. Thanks to the aforementioned tool, clinicians were
able to carry out annotations at a faster rate, providing
62 additional 3D-annotated volumes, as well as improving
40 of the 91 3D-ground-truth annotations already available
within the Maxillo dataset. More specifically, the total
number of CBCT scans in the newer dataset increased
from 347 to 443. For convenience, the details about ground-
truth, test, and training sets are summarized in Tab. 1.
A distinction between the so-called primary and secondary
dataset, containing respectively 3D (dense) annotations or 2D
(sparse) annotations, is provided in Sec. III-A.
In the same study by Lumetti et al. [42], in addition to the

clinical validation performed by medical experts, the authors
demonstrated that all tested deep learning models for IAC
segmentation performed better with the ToothFairy dataset.

Therefore, the majority of the experiments carried out and
described in the following of this article have been performed
using the ToothFairy dataset.

All 3D CBCT volumes were acquired from the Affidea
center located in Modena, Italy, a leading pan-European
healthcare group specializing in advanced diagnostics, out-
patient services, laboratory analyses, physiotherapy and
rehabilitation, and cancer diagnosis and treatment. The
organization operates 312 centers across 15 countries, with
approximately 11,000 professionals.

The annotations have been performed by medical experts
with more than five years of experience in the maxillofacial
field. No multiple annotations are available for a specific
patient, meaning that all the CBCT volumes are annotated by
a single expert only.

The dataset is publicly available after user registration and
it can be downloaded from https://ditto.ing.
unimore.it/toothfairy/. Such availability, combined with the
public release of the source code allows for a complete
reproducibility of our experiments and empiric verification
of our claims.

A. 2D AND 3D ANNOTATIONS
The diagnostic technicians responsible for the examinations
were also involved in the initial annotation process of the

FIGURE 3. Examples of cross-sectional views and corresponding
annotations. Combining the closed splines generated from different
views will produce the final voxel-level dense annotation.

mandibular canal, providing what we refer to as ‘‘sparse
annotations.’’ These are performed on 2D panoramic views
of the jawbone and are routinely used in surgical practice
to measure the height and depth of implant placement sites,
thereby avoiding injuries to the inferior alveolar nerve.

In these sparse labels, the upper boundary of the canal
is marked along the entire dental arch, offering a useful
approximation of the nerve position. In this context, the
annotation process begins with the selection of an axial
slice from the original volume. The central position of the
jawbone is roughly identified upon this slice with the so-
called panoramic base curve, i.e., a line employed to generate
the panoramic view (Fig. 2a). This view is composed of
the voxels lying on the curved surface identified by the
base curve and orthogonal to the axial plane. The inferior
alveolar canal should be distinctly identifiable within this
panoramic view. An example of a 2D annotation provided by
an expert technician is shown in Fig. 2b. Both the primary
and secondary datasets contain sparse annotation.

Instead, the 3D annotation process is performed using
the IACAT tool [42]. This makes use of an automatically
computed 2D base curve to propose Cross-Sectional Views
(CSVs) where radiologic technologists can annotate the
inferior alveolar canal by drawing a closed Catmull-Rom
spline (Fig. 3). As one can imagine, this operation must
be conducted for a significant number of CSVs to ensure
sufficient accuracy in the annotation. The number of proposed
CSVs depends on a configurable parameter that determines
the distance between two consecutive views.

After the annotation process, the closed splines produced
by medical experts are saved as the coordinates of their
control points. Subsequently, the final ground-truth volume,
which is both smooth and precise, is generated from this set of
control points using the α-shape algorithm [43], as described
in [35]. Dense annotations are only available for the primary
dataset.

When comparing the two procedures, it becomes evident
that obtaining sparse annotations is a quick and straight-
forward process, while creating dense labels from 3D
volumes is significantly more laborious and time-consuming.
Consequently, researchers often have limited access to
densely annotated volumes and typically reserve them for the
test set.
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FIGURE 4. Visualization of a patch-based training. From the original
volume, depicted in blue, a sub-volume is extracted and fed into the
network. The output, depicted in green, is then placed in the same
position where the patch has been extracted.

IV. METHODS
A. PATCH-BASED LEARNING
In recent years, learning using patch-based representations
has become increasingly popular, especially when dealing
with visual tasks. There are specific scenarios that make
patch-based learning the only viable approach, e.g., when
targeting complex, high-dimensional inputs, or when the
computational resources available are limited or should be
kept so. The segmentation or classification in whole-slide
images, as well as the segmentation of anatomical structures
in 3D volumes, are noticeable medical imaging applications
requiring such a kind of learning procedure. Indeed, feeding a
neural network with gigapixel images or hundreds of millions
of voxels coming from 3D volumes is not a feasible approach.

To provide the reader with an example, numerous popular
image classification models employ an input image size of
3 × 224 × 224, equivalent to 1.5 ∗ 105 pixels [6], [7],
[8]. Conversely, the CBCT scans of the aforementioned
ToothFairy dataset have a spatial dimension of 169 × 342 ×

370 voxels, for a total of 2.1 ∗ 107 voxels. To meet memory
constraints, the simple downsampling of the input data is
counterproductive whenever the preservation of fine-grained
details is crucial. The increase in the spatial dimensions
propagates in every layer of the neural network, making it
often impossible to process even a single volume through a
GPU. To overcome this limitation, it is common in medical
imaging to train neural networks using subsets extracted from
the original data [29], [30], [31], [44], as depicted in Fig. 4.

Such an approach mitigates memory constraints, but it also
introduces additional hurdles that must be taken into account:
the loss of global information due to restricted, patch-limited
receptive fields, ambiguity in segmenting objects situated at
the intersections of multiple patches, and potential artifacts
arising from the boundaries of these patches. Furthermore,
these challenges become particularly prominent when the
object to be segmented is small in comparison to the entire
volume: the segmentation of the IAC is an example of such
circumstances.

A first proposal to overcome the patch-based learning
drawbacks in the segmentation of the IAN is introduced
by Cipriano et al. [35] with the PosPadUNet3D. The
authors suggested leveraging the positional information from
the coordinates of extracted patches by simply projecting
and concatenating these coordinates within the network
bottleneck. Although this approach demonstrated some
improvements in the network performance, the observed
enhancement was limited, and the aforementioned major
issues still persisted.

B. THE PROPOSED APPROACH
With this paper, we introduce a novel deep-learning model
designed for the segmentation of 3D scans of the inferior
alveolar canal. Our proposed approach extends the existing
PosPadUNet3D [35] architecture by addressing the limi-
tations associated with patch-based learning through the
utilization of Transformers capable of exploiting contextual
information.

Our model (Fig. 5) incorporates memory-augmented
Transformer encoder blocks. By capitalizing on the inherent
capacity of Transformers to model interactions between all
pairs of elements within a given sequence, we aim to enhance
the flow of information among the elements of the U-Net
bottleneck. Moreover, we leverage this to effectively inject
contextual information related to the processed patches.

In practice, we introduce a specialized token that captures
the absolute position of the patch within the original volume,
referred to as [ABS]. This is accomplished by projecting the
3D coordinates of two opposite corners of the patch into the
embedding of the bottleneck, exploiting a learnable matrix
of dimension 6 × dmodel . Subsequently, we concatenate this
token with the remaining elements of the bottleneck, allowing
its information to influence their representations through the
Transformer encoder.

It is worth noticing that Transformers already employ
positional encoding to describe the location of a token in a
sequence. Such an encoding provides information about the
position of (groups of) voxels within the current patch only.
Instead, our [ABS] token encodes the position of a patch
with respect to the entire volume. However, the inbuilt posi-
tional encoding of the Transformer architecture must not be
applied to the [ABS] because all the other tokens should be
able to employ its information independently from their posi-
tion. To achieve this goal the positional encoding is applied
before concatenating any other element. Again, this ensures
that the [ABS] token remains positionally untied from the
rest of the sequence. This disentangled approach allows each
element to pay attention to the special token’s information
and vice versa, regardless of its position in the sequence.

Additionally, inspired by the advancements in the vision-
language domain, we incorporate a memory-augmented
Transformer encoder within our architecture. The integration
of Transformer memory has demonstrated considerable
effectiveness in tasks such as image captioning [45]. This
mechanism enables the Transformer to retain crucial prior
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FIGURE 5. Proposed architecture with the MATAP module. (a) is the input volume and (b) is the corresponding sparse annotation, which is
only concatenated to (b) during the generation phase, while it is not employed for the segmentation phase. The detailed visualization of the
MATAP module is reported in Fig. 6.

FIGURE 6. Graphical representation of the proposed module. The letters
B, C, D, W, and H represent respectively batch size, channels, depth, height,
and width. The patch coordinates [x1, y1, z1, x2, y2, z2] are
projected using a linear layer producing the [ABS] token represented in
yellow. The activation map obtained in the bottleneck of U-Net before the
first transposed convolution is flattened across the spatial dimension,
concatenated with the [ABS] token and M×4 memory tokens, which are
different for each transformer layer. After the processing of the 4-layer
transformer, the [ABS] and the memory tokens are removed and the
remaining output is reshaped back to the original spatial dimensionality.

concepts that may be challenging to be directly extracted
from image features, but are nonetheless valuable for
interpretation. Recognizing the applicability of this approach
to the patch-based learning paradigm, wherein each patch
is extracted from a wider context, we harness the power
of Transformer memory to incorporate external information
thus enhancing the processing of individual patches. In prac-
tice, memory tokens are learnable vector representations
that are concatenated to the input of each transformer
encoder layer and removed after being processed. A graphical
summary is provided in Fig. 6.

C. FILTERING WITH THE HANN WINDOW FUNCTION
Even if the proposed memory-augmented Transformer-
based encoder with [ABS] token mitigates the lack of
global information in patch-based learning and reduces the
segmentation ambiguity of objects situated on patch borders,
we still need to deal with noise and artifacts generated at patch
boundaries.

Taking inspiration from the field of audio encoding [46],
we introduced a post-processing algorithm based on the Hann
windows function to tackle the presence of artifacts near
patch edges. The Hann window function is defined as:

WHann(i) =
1
2

(
1 − cos

2π i
I

)
(1)

where i is an element in the considered interval I . This
function is symmetric, peaking at 1 in the middle of the
window and tapering to 0 at the edges. An intriguing property
of this function is that the sum of two Hann windows, each
shifted by I

2 (50%), is equivalent to a rectangular window of
width I and height 1:

WHann(i) +WHann

(
i+

I
2

)
= 1 (2)

Such a property is exploited in audio encoding to eliminate
border artifacts. This is achieved by multiplying the Hann
window with frames that overlap by 50%, before summing
them together. While this approach is defined in 1D for
audio, it can be extended to multiple dimensions, making it
applicable to 3D images:

WHann(i, j, k) = WHann(i)WHann(j)WHann(k) (3)

where i, j, k identify a point in the space.When implementing
this filtering, particular care should be exercised to ensure that
the window function applied in the 3D space still sums to one
also on volume borders.

By applying the proposed 3D extension of the Hann
filtering to the output segmented patches produced by our
model, we are able to reduce the aforementioned noise on
patch borders (Fig. 7) and improve the overall performance
(Sec. V).

D. MODEL TRAINING
The adopted model training procedure partially follows the
one described in Cipriano et al. [35]. In particular, we use a
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FIGURE 7. (a) is an axial plane extracted from a predicted volume after
applying the Hann windows function, (b) is the same plane obtained
without any post-processing. In both images, blue represents logits that
have a value higher than 10−4. The post-processing significantly reduces
artifacts appearing close to patch borders. Even if most of these artifacts
do not cause any issues, the ones which are close to the IAC badly
influence the final segmentation.

two-step procedure composed of an initial step called ‘‘deep
label expansion’’ or ‘‘generation phase’’ and a second one
that consists of a standard segmentation training. In the ‘‘deep
label expansion,’’ the network is trained using CBCT volumes
paired with their corresponding sparse 2D labels to generate
3D dense annotations. The rationale behind this operation
is to obtain a model that can leverage the sparse 2D labels
(that are available for both the primary and the secondary
ToothFairy datasets) to create dense synthetic 3D annotations
when they are not available. The second step consists of
merging the initial training set provided with true labels
(primary) with the synthetically annotated CBCT volumes
(generated from the secondary dataset). Thus, a total of 443
3D annotated volumes is obtained as a train set. Still, 8 and
15 volumes from the primary dataset are available for the
validation and test set respectively.

Using the above-mentioned set of data, our MATAP seg-
mentation model is trained to output 3D masks representing
the inferior alveolar canal, and consequently evaluated.

Differently from the procedure proposed by Cipri-
ano et al. [35], we employ human and synthetically generated
3D annotations in a single training stage, without distinguish-
ing between pre-training, performed by Cipriano et al. with
only synthetically generated annotations, and fine-tuning,
performed in [35] by means of true labels only. Our improved
generation step produces synthetic annotations that are very
close to the ground truth, even more than those obtained by
Cipriano et al. [35]. Hence, we can save time and simplify
the process by relying on a single-phase training procedure,
without degrading the overall segmentation performance.

E. EVALUATION PROTOCOL
Considering the stochastic nature of parameter fitting in
neural networks, different models trained under identical
experimental conditions yield slightly varying outputs. These
variations are usually approximated by a normal distribution.
Taking this into consideration, to ensure the robustness and
reliability of our proposal, we run each experiment ten

times, resulting in a population size, N , of ten: X1, . . . ,X10.
Each experiment involved training the model with the same
experimental conditions, but with a different random seed
employed for the initialization. The corresponding output
values of the test evaluation metric, specifically the Dice, are
recorded obtaining a population of test metrics.

To validate the strength of our proposal and compare
the above-mentioned populations, we employed different
standard statistical tools, which are detailed in the following.

1) CONFIDENCE INTERVAL
A statistical tool for assessing the potential range around the
estimate of a statistical measure for a given population is the
Confidence Interval (CI), which also allows to highlight how
stable an assessment is.

To compute the CIs, we advocate for the Student’s t-
distribution with N − 1 degrees of freedom. The strength of
the t-distribution comes from its ability to adjust for smaller
sample sizes (and therefore fewer degrees of freedom) by
effectively having amore conservative estimate of probability
density with respect to the normal distribution. Having a
relatively small population of 10 samples, the t-distribution
is well-suited for our purpose, allowing us to determine the
range of plausible values around the estimated mean.

Practically, for each experiment, we calculate the standard
deviation (S) using the unbiased estimator as follows:

S =

√∑N
i=1(X̄ − Xi)2

N − 1
(4)

where N is the number of data points, Xi are the observed
values and X̄ =

1
n

∑
i Xi is their average. Then, the mean

(Mean), lower bound (LB), and upper bound (UB) values of
the CIs are computed as follows:

Mean = X̄ =
1
N

N∑
i=1

Xi (5)

LB = X̄ − tα/2,ν
S

√
N

(6)

UB = X̄ + tα/2,ν
S

√
N

(7)

where, again, N is the number of data points and Xi are
observed values. In this context, α represents the significance
level (in our case equal to 0.05, so that the confidence level
is 0.95), ν is the number of degrees of freedom, and tα/2,ν is
the t-distribution evaluated at α/2, ν.

2) HYPOTHESIS TESTING
It involves formulating two competing hypotheses, the null
hypothesis (H0) and the alternative hypothesis (HA), and
then collecting data to assess if there is enough evidence
in a sample data to draw conclusions about a population.
Specifically, since we have two populations that need to
be compared, we leverage on one-sided paired samples t-
test. The paired t-test determines whether the mean change
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TABLE 2. Confidence intervals of the Dice test metric of PosPadUNet3D and variations of our MATAP, both trained on the ToothFairy dataset for the
generation phase only.

TABLE 3. One-sided paired samples t-test of the Dice test metric of
PosPadUNet3D, variants of MATAP trained on the ToothFairy dataset for
the generation phase only.

between the two populations under examination is signifi-
cantly different from zero. Hence, it can be used to determine
if one mean is consistently greater than the other. By means
of this test, we can statistically demonstrate the superiority of
our proposed approach compared to the existing literature.

Formally, we define our hypothesis test as follows:

H0 : µX = µY

HA : µX < µY (8)

where H0 states that the mean of the first (X1, . . . ,Xm) and
second (Y1, . . . ,Yn) population are equal, and our objective
is to disprove such a hypothesis in favor of the alternative,
stating that the mean of the first population is significantly
smaller than that of the second one.

In our context, we can mathematically define the degrees
of freedom of the t-test distribution, ν, and the test statistic
value, t , as follows:

ν =

⌊
( S

2
X
m +

S2Y
n )

2

(S2X /m)2

m−1 +
(S2Y /n)2

n−1

⌋
, t =

X̄ − Ȳ√
S2X
m +

S2Y
n

(9)

where S is the unbiased estimator of the standard deviation
introduced in Eq. (4).

Finally, we compute the area under the ν-degrees of
freedom t-curve to the right of t value find with Eq. (9). Such
area represents the so-called p-value and corresponds to the
probability of obtaining a t that is greater, or at least equal,
to the one that is actually observed, assuming that the null
hypothesis is true. In other words, a smaller p-value means
that there is stronger evidence in favor of the alternative
hypothesis, in our case the distribution µX < µY . The
detailed outcomes of these hypothesis tests are presented in
Tab. 3.

V. EXPERIMENTS & RESULTS
According to our evaluation protocol described in Sec. IV-E,
with the aim of ensuring the robustness of the proposedmodel
and obtaining reliable performance estimates, we repeated

the training procedure 10 times using different random seeds.
By doing so, we are able to compute confidence intervals
and hypothesis testing, hence obtaining a comprehensive
assessment of MATAP’s performance. Hyperparameters are
fixed among all the different experiments: we set the batch
size to 2, used Adam as optimizer with a learning rate 0.0001,
a weight decay of 0.00005, and no momentum. We employed
the soft IoU as loss and trained each phase for 100 epochs.
The size of the extracted patches was (120, 120, 120) for
the Generation phase, and (80, 80, 80) for the other phases.
For every other detail about the experiment configuration,
we suggest taking a look at the configuration files in our
public repository, which briefly describe every minimal
tuning adopted.2

A. ON THE EFFECTIVENESS OF ABS TOKEN AND MEMORY
To show the contribution of each model component, we start
our evaluation by progressively including them in Tab. 2.
In order to keep the number of training procedures reasonably
modest, we performed our experiments focusing only on
the generation phase of the training (Sec. IV-D). It is worth
noticing that any improvement in this step will benefit the
whole segmentation pipeline. In the aforementioned table,
the confidence intervals of the test Dice metric are reported
for each experiment. Additionally, Tab. 3 reports the paired
samples t-tests to assess whether our proposal is statistically
valuable or not. Such a table should be read as follows: a
smaller p-value means that there is stronger evidence in favor
of the alternative hypothesis, meaning in our case that the
mean of the first population is smaller than the mean of the
second. Our populations are composed of the Dice metrics
computed on the test set with the predictions of a model
trained 10 times under the same experimental conditions,
except only for random seeds.

As mentioned, Tab. 2 evaluates the contribution of each
component to our proposal by increasingly introducing it onto
the baseline, PosPadUNet3D [35]. At first glance, the com-
parison between the first two lines of the table might imply
a lack of efficacy of the Transformer architecture. However,
it is crucial to note that PosPadUNet3D incorporates absolute
positional information from the original volume, which is not
the case for TransPosPadUNet3D, which simply relies on a
Transformer module introduced in the bottleneck of the U-
Net architecture.

2https://github.com/AImagelab-zip/alveolar_canal
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TABLE 4. State-of-the-art comparison on the Maxillo dataset. Missing
results were not provided by the original papers.

Introducing the [ABS] token to TransPosPadUNet3D
(third line of Tab. 2) enhances its performance, already
improving with respect to PosPadUNet3D, as statistically
evidenced also in Tab. 3. Furthermore, the performance
of TransPosPadUNet3D shows a progressive improvement,
initially with the integration of memory tokens, and
subsequently through the application of the Hann Windows
function as a post-processing strategy. Ultimately, the imple-
mentation of the [ABS] token results in a halved standard
deviation, thereby supporting the enhanced robustness of the
proposed model.

B. ABOUT COMPUTATIONAL REQUIREMENTS
Regarding the convergence speed and computational time,
it is worth recalling that all presented architecture variations
are based on the U-Net framework. These architectures
slightly differ in the number of layers and hyperparameters
without any significant influence on the convergence speed
and computational time. The only exception is MATAP,
which requires additional parameters due to the integration
of a transformer in the bottleneck. This modification has
resulted in a measurable increase in the training com-
putational time of approximately 21%. The most notable
difference regards the number of parameters, that is double
with respect to the base U-Net model (55.24 million
parameter instead of the 20.19 million of PosPadUNet3D).

Nevertheless, the inference time is approximately the
same, also when considering the MATAP model. As an
example, on a NVIDIA GeForce RTX 2080 Ti with 12GB of
VRAM, all the architecture variations analyzed in the paper
require less than 3s for processing a 170 × 340 × 370 input
volume, making the tools suitable for a clinical application
and significantly reducing the segmentation time required in
the daily practice. Indeed, if amanual 2D sparse segmentation
requires about 2 minutes to be completed, with the proposed
tool it is possible to obtain a 3D dense segmentation in a
matter of a few seconds.

C. COMPARISON WITH THE STATE OF THE ART
In order to compare our proposal with the latest advances
on the segmentation of the inferior alveolar nerve [38], [39],
[40], Tab. 4 is also provided. Both [38] and [39] leverage
a two-stage approach that aims at filtering out background
data before actually performing the canal segmentation.
In doing so, [38] makes use of a CNN-based approach that
performs worse than both the positional encoding proposed

FIGURE 8. Pair of predictions made by our proposed model MATAP (left)
and ground-truths on examples taken from the test set (right). The jaws
face the camera view, thus the canal on the left side is the right IAC.

in [35], and the non-deep two-stage approach based on the
Frenet frame described in [39]. Liu et al. [40], the worst
among the considered competitors, is again based on a U-Net
architecture enhanced with a frequency attention module.

To make the evaluation as fair as possible, the comparison
reported in Tab. 4 is based on the Maxillo dataset only, which
was the target dataset for both [38] and [39]. The employed
training procedure was described in Section IV-D. Such a
comparative evaluation confirms that our proposed model,
MATAP, outperforms the state-of-the-art competitors on the
public dataset.

To provide the reader with a complete evaluation, we also
performed the complete training procedure on the Tooth-
Fairy dataset, obtaining an overall segmentation score of
0.831 Dice and 0.710 IoU.

D. QUALITATIVE EVALUATION
To provide a visual representation of the predictions obtained
using our MATAP model, Fig.8 showcases five pairs of
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automatic segmentations coupled with their corresponding
ground-truth annotations. Sample patients are taken from the
public test case of the ToothFairy dataset.

While the majority of the predictions are exceptionally
accurate and worth to be integrated in the daily clinical
practice, a notable edge case is observed in the sample
P141, where the canal on the left is heavily affected by the
presence of a wisdom tooth, making it one of the hardest to
be predicted. In this instance, our model’s prediction resulted
in a non-continuous canal. Further improvements of our
MATAP may involve techniques to deal with such a kind of
issues.

VI. CONCLUSION
In conclusion, this paper introduces a novel approach
for segmenting the inferior alveolar canal. Our approach
addresses the limitations related to patch-based learning by
incorporating the global coordinates of each extracted patch
into a transformer-based architecture. The proposed design
choice enhances the model’s ability to efficiently leverage
global spatial information by projecting patch coordinates
into the input sequence of the transformer architecture. Addi-
tionally, we introduce post-processing techniques based on
the Hann window function to effectively remove artifacts that
arise at patch borders. The achieved state-of-the-art results
are consistently demonstrated across multiple experimental
runs and their statistical significance is validated using the
Student’s t-distribution.

To ensure the reproducibility of our experiments, we have
made the described pipelines openly accessible to the
scientific community as an open-source project. Furthermore,
we conducted our experiments on public datasets encourag-
ing the scientific community to further enhance the results
in the context of inferior alveolar canal segmentation and
letting anyone reproduce the obtained results and verify our
claims. Such a collaborative effort is crucial in medical-
related critical domains to foster progress and innovation.

While the suggested approach has proven effective in refin-
ing IAC segmentation, it could be adapted and potentially
applied to any tasks where feeding an entire sample into
the network is impractical, but having a global context is
important.

Future works will focus on studying the versatility of
our proposed method which would open doors to a broader
range of applications beyond IAC segmentation, offering a
promising research direction for further investigation into its
performance across diverse neural networks, datasets, and
data modalities.
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