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Abstract. Convolutional Neural Networks (CNNs) have been broadly
employed in dermoscopic image analysis, mainly due to the large amount
of data gathered by the International Skin Imaging Collaboration (ISIC).
But where do neural networks look? Several authors have claimed that
the ISIC dataset is affected by strong biases, i.e., spurious correlations
between samples that machine learning models unfairly exploit while
discarding the useful patterns they are expected to learn. These strong
claims have been supported by showing that deep learning models main-
tain excellent performance even when “no information about the lesion
remains” in the debased input images. With this paper, we explore the
interpretability of CNNs in dermoscopic image analysis by analyzing
which characteristics are considered by autonomous classification algo-
rithms. Starting from a standard setting, experiments presented in this
paper gradually conceal well-known crucial dermoscopic features and
thoroughly investigate how CNNs performance subsequently evolves. Ex-
perimental results carried out on two well-known CNNs, EfficientNet-B3,
and ResNet-152, demonstrate that neural networks autonomously learn
to extract features that are notoriously important for melanoma detec-
tion. Even when some of such features are removed, the others are still
enough to achieve satisfactory classification performance. Obtained re-
sults demonstrate that literature claims on biases are not supported by
carried-out experiments. Finally, to demonstrate the generalization ca-
pabilities of state-of-the-art CNN models for skin lesion classification, a
large private dataset has been employed as an additional test set.

Keywords: ABCDE Rule · Convolutional Neural Networks · Skin Le-
sion Classification · Dataset Bias · Transfer Learning

1 Introduction

Skin cancer is the most common form of human cancer and a major public health
issue. Malignant melanoma, although less common, is responsible for most of the
deaths [6]. The early detection of skin cancer remains one of the key factors in
preventing its progression to advanced stages and lowering mortality rates [40].
To do so, many dermatologists rely on dermoscopy, which is a form of in-vivo skin
surface microscopy performed using special equipment to enhance the visibility
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of the pigmentation of the lesion and perform a faster, more accurate diagno-
sis over time. Unfortunately, dermoscopy image analysis must be performed by
expert clinicians to be effective, and this is why many efforts have been made
toward the creation of tools to assist non-specialized physicians in the analysis
of dermoscopic images [2]. The outstanding results of deep learning in many dif-
ferent research areas [5,23,26,47], make it one of the most employed and effective
options for analyzing medical images. However, the great discriminative power
of neural networks comes at the cost of very low explainability. Hence, it is ex-
tremely difficult to understand the reasoning behind a model prediction [22,38],
and this characteristic can also lead to the possibility of CNNs learning a bias.
A bias can exist in different shapes and forms and may originate from different
sources [35,46], but in the analysis carried out in this paper, we focus on data-
to-algorithm biases, which, when used by machine-learning training algorithms,
might result in biased algorithmic outcomes. In particular, a dataset bias can
be defined as a collection of features that are semantically irrelevant to the in-
vestigated task, but which can be (undesirably) exploited by neural networks to
improve the evaluation metrics, hindering their generalization capabilities [32].
This phenomenon has been thoroughly investigated by several authors [4,20]
and our goal is to explore it in dermoscopic image analysis [19]. It is desirable
for automatic skin lesion classification algorithms to focus on medically relevant
features instead of considering irrelevant artifacts (e.g., checkerboard patterns
introduced by sharpening filters, black round borders, pen drawings, rulers, and
hair) which should be ignored for classification.

The most common dermoscopic relevant features for melanoma detection,
explicitly outlined by expert practitioners, are defined in the so-called “ABCDE
rule”: lesion Asymmetry, Border irregularity, Color variegation, Diameter (> 6
mm), and Evolution over time [40].

Our study investigates how the performance of CNNs correlates with es-
tablished dermoscopic criteria by methodically altering images to omit each of
the ABCDE melanoma indicators. By selectively “removing” these elements, the
research aims to discern the extent to which CNNs rely on authentic clinical
features versus incidental image attributes. The contributions of this paper can
be summarized as follows:

i) Making use of state-of-the-art interpretability tools, we examine the correla-
tion between deep learning algorithms and well-known dermoscopic features
(ABCDE rule) used by expert practitioners to perform diagnoses;

ii) We propose an extensive set of experiments to highlight how the discrimi-
native power of state-of-the-art CNNs is affected by different dermoscopic
features and verify the literature claims on dermoscopic datasets biases;

iii) We validate the generalization capabilities of state-of-the-art CNN algo-
rithms for skin lesion classification by carrying out experiments on two to-
tally distinct datasets: the combined ISIC2019 and ISIC2020 and a privately
owned one that has no intersection with the former.
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Fig. 1. Samples of the 2019 ISIC dataset. From left to right, top to bottom: Melanoma,
Melanocytic Nevus, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, Der-
matofibroma, Vascular Lesion, and Squamous Cell Carcinoma.

2 Related Work

CNNs have become the dominant machine learning approach, and the scaling up
strategy [24] has been widely used to achieve accuracy results similar to those of
dermatologists, particularly in skin lesion classification [1,16,17,27,33,34,52,39]
and to aid in diagnosis even on low-resolution non-dermoscopic images [15].
However, despite their success, concerns about CNN focusing on irrelevant arti-
facts were highlighted by [31,41], where studies on multiple COVID-19 datasets,
performed hiding sensitive information with large black squares, showed state-
of-the-art networks focusing on dataset-specific features rather than clinically
relevant ones, highlighting the incompatibility of those models for clinical usage.

In dermatology, Bissoto et al. [4] showed the effects of performing skin lesion
classification while occluding the actual skin lesion with large black bounding
boxes, obtaining a melanoma/non-melanoma classification AUC (Area Under the
ROC Curve) score of 77.4%, which is quite inferior compared to state-of-the-art
methods, but higher than what expert dermatologists can do [7], highlighting
a potential reliance on non-diagnostic features. Additional studies confirmed
the CNNs’ learned filters focusing on both relevant features (e.g., borders, and
colors) and extraneous features (like artifacts surrounding the lesion) [3,54].

Autonomous systems in medical applications aim to act as support tools for
clinicians and, therefore, must be trustworthy and highly interpretable. To aid in
this task, the outcome explainability of neural networks can be increased thanks
to several visualization strategies, like CAM (Class Activation Mapping), which
have been proposed for the identification of image regions that most contribute
to the final prediction [43,49].

In this paper, we make use of state-of-the-art interpretability tools, along with
quantitative results, to examine the correlation between deep learning algorithms
and well-known dermoscopic features [29] introduced in Section 1.
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Table 1. Class distribution of the three employed datasets: 2019 and 2020 ISIC datasets
and private dataset.

Class Label ISIC2019 % ISIC2020 % Private %

Melanoma MEL 17.8 1.8 16.7
Melanocytic Nevus NV 50.8 15.7 58.1
Basal Cell Carcinoma BCC 13.0 – 7.6
Actinic Keratosis AK 3.0 – 1.6
Benign Keratosis BKL 10.0 0.7 6.3
Dermatofibroma DF 0.9 – 1.0
Vascular Lesion VASC 1.0 – 0.0
Squamous Cell Carcinoma SCC 2.4 – 1.8
Unknown unknown – 81.9 6.9

Total 25 331 33 126 25 849

3 Dermoscopic Images

ISIC. The International Skin Imaging Collaboration (ISIC) began to aggre-
gate a large-scale, publicly available collection of dermoscopic skin lesion images
(Fig. 1) starting in 2016, with the aim of supporting research towards enhanc-
ing machine learning algorithms for automated skin cancer analysis, showcasing
the results of researchers in several challenges and workshops hosted over the
years [14]. The 2019 version of the ISIC archive contains a total amount of
25 331 labeled dermoscopy images, belonging to nine different classes [25], which
represent eight types of skin lesion plus an additional category, not available in
the training partition and containing dermoscopic images of different natures
with respect to the other eight classes.

The available data is heavily imbalanced in classes, therefore the 2019 chal-
lenge official metric was the balanced accuracy, computed as the average sensi-
tivity among classes regardless of their occurrence in the test set.

The successive 2020 SIIM-ISIC challenge dataset [42] gained patient-level
contextual information, providing for each image an identifier that allows lesions
from the same patient to be mapped to one another. This additional knowledge
is frequently used by clinicians to diagnose melanoma and is especially useful
in ruling out false positives in patients with many atypical nevi, leveraging the
“ugly duckling sign” rule [18]. The challenge edition, hosted on Kaggle,1 switched
to a binary classification problem: benign or malignant, employing the AUC
evaluation metric. In the subsequent sections of the paper, the name ISIC19-20
will be used to refer to the combination of ISIC2019 and ISIC2020 datasets. More
details about such a combination are provided in Section 5. Table 1 summarizes
ISIC dataset features.

Private Dataset. In order to evaluate the generalization capabilities of state-
of-the-art CNNs models, we extend the experiments by means of a private der-
moscopic dataset (Fig. 2) consisting of 25 849 images, collected between 2003
and 2019 in the University Hospital of Modena using several distinct acquisi-

1 kaggle.com/c/siim-isic-melanoma-classification

https://www.kaggle.com/c/siim-isic-melanoma-classification


Investigating the ABCDE Rule in Convolutional Neural Networks 5

Fig. 2. Samples of the Private dataset. From left to right, top to bottom: Melanoma,
Melanocytic Nevus, Basal Cell Carcinoma, Actinic Keratosis, Benign Keratosis, Der-
matofibroma, Vascular Lesion, and Squamous Cell Carcinoma.

tion tools, and employing the same classes mapped into the ISIC2019 dataset.2
This dataset presents a different category distribution compared to the ISIC2020
dataset, with a higher percentage of melanoma cases (Table 1). Similar to both
ISIC datasets, the private collection of data contains several clinical information
such as sex, age, and site of the lesion. Contrary to the public ISIC dataset,
visual artifacts that could be considered a source of biases, such as rulers, ink
markings/staining, and colored patches, are almost completely absent in our
private dataset (7% ruler, 1.9% ink, and no images with patches). The whole
set of dermoscopic images is used as an additional test set for the experiments
and analyses carried out in this paper, and thus yields important information
about the generalizability of state-of-the-art CNNs models and their possible
application in real-world scenarios.

4 Investigating ABCDE Features

Neural networks for skin lesion classification have been shown to focus on relevant
features for dermoscopic image analysis, aligned with the ABCDE rule [29,40],
but they might also focus on irrelevant visual aspects that are common in ma-
lignant skin lesion images, such as artifacts related to pen drawings, markers,
colored patches, or rulers. Moreover, additional research showed that CNNs are
able to recognize acquisition device models and calibration settings, thus iden-
tifying the provenience of an image that might be highly related to the final
diagnosis [31]. Hence, it is extremely important to be able to interpret which
image characteristics neural networks take into account when making a class
prediction to highlight potential data-to-algorithm biases. This can be achieved

2 The dataset is currently under review by the ethical committee to be publicly re-
leased. After approval, it will be accessible at https://ditto.ing.unimore.it/.

https://ditto.ing.unimore.it/
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(a) (b) (c) (d) (e) (f)

Fig. 3. Grad-CAM visualization when debasing different ABCD(E) properties. (a)
Original, (b) Asymmetry, (c) Borders, (d) Grayscale, (e) Mask, (f) Diameter

by means of Class Activation Mapping (CAM) strategies, employed in this paper.
In particular, Grad-CAM [43] was exploited to locate the regions of an image that
most contribute to the final prediction. We run an extensive set of experiments
to study how introducing noise in the ABCDE properties affects neural network
performance and analyze which sections of an image CNNs focus on when cru-
cial features are debased or removed. Some of the experiments described in the
following exploit segmentation masks obtained by means of DeepLabv3+ [12],
trained using the 2017 ISIC segmentation task dataset [9]. Sample images ob-
tained through feature debasing are reported in Fig. 3 and generated by means
of the European Computer Vision Library (ECVL) [10]. Additional examples of
ABCDE features debasing images can be found in Fig. 7 at the end of the paper.

By applying the feature debasing process described in the following of this
section, we obtain five additional variations of each considered dataset (i.e., five
variations of the ISIC datasets and five variations of the Private dataset), each
of them is employed for both training (ISIC19-20) and testing (ISIC19-20 and
private dataset) selected models.
Tampering with Asymmetry. Asymmetry is one of the most important vi-
sual features for melanoma detection [36], it can be described as the difference
in volume and shape of two parts of a skin lesion, obtained by cutting it with a
straight line passing through its center. In order to train a symmetry-agnostic
neural network, dermoscopic images can be split by a random straight line and
by its perpendicular, both passing through the center of the lesion. Subsequently,
a quarter of the image can be flipped over both axes to obtain a version of the
original lesion with increased symmetry. Practically, the center of the image is
aligned with the centroid of the lesion obtained from the segmentation mask.
The image is then randomly rotated, and the top-right quarter is flipped with
respect to the horizontal and vertical axes (Fig. 3b).
Concealing Borders. With the aim of removing valuable information about
the shape of a skin lesion edge, which is a crucial aspect when assessing its ma-
lignancy, we cover borders with a thick black line obtained from the contour
of the segmentation map. Firstly, a morphological dilation operation is applied
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Fig. 4. Histograms of foreground density distribution within different test sets. (a)
ISIC2020 official test set, (b) ISIC19-20 “Internal” test set, (c) Private Dataset. Benign
and malignant skin lesions are depicted in blue and orange, respectively. Best viewed
in color.

to the contour, with a kernel size proportional to both the image size and the
foreground-background ratio. Then, to smooth out irregular segments, a Gaus-
sian filter with a large kernel is applied. Finally, the black border image is su-
perimposed on the original one, thus removing any information about the actual
transition from the human skin (background) to the actual lesion (foreground).
Fig. 3c showcases an example of the end result image.

Removing Color. The presence of multiple colors within a single mole (blue,
black, white, red, and brown) or the uneven distribution of color can sometimes
be a warning sign of melanoma, since most benign lesions are usually a single
shade of brown or tan [30]. Two different sets of experiments are conducted in
order to assess the effects of discarding information about color from dermo-
scopic images. The first one is run by simply converting the image from RGB
to grayscale, thus removing any knowledge about the different colors within a
skin lesion (Fig. 3d). However, while this processing step erases any data about
hue and saturation, it does not affect the luminance, thus leaving the CNN the
chance to learn valuable features from the color distribution within moles. In the
second experiment, color features are completely removed as we train a neural
network to classify skin lesions using only their segmentation masks (Fig. 3e). In
this extreme setup, the neural network is fed with minimal knowledge about skin
lesions, and is forced to make a prediction based uniquely on noisy, automatically
obtained, binary mole shapes.

Altering Diameter. Because skin cancer cells grow abnormally fast, diameter
is one of the most important parameters in skin lesion classification. Unfortu-
nately, dermoscopic images are acquired at several scales, which are not always
included as metadata and can not be deducted from the image, as only a limited
amount of samples contain a ruler. As a matter of fact, a mole that exceeds the
borders of the image is not necessarily larger than one that does not; information
about diameter is extremely noisy and very hard to investigate, yet potentially
extremely important for melanoma detection algorithms. To remove any infor-
mation about mole dimensions, the foreground-background ratio of images is set
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to a fixed percentage. We choose to train a CNN uniquely with samples where
the skin lesion represents the 80% of the image, as it yields good qualitative
results. In order to achieve this, samples where the skin lesion is contained in
just a small portion of the image must be cropped, using the mole centroid as
the center, whereas images with moles covering more than 80% of the original
sample are padded by reflecting the sections of the image closest to the borders.
An example of the result of this process is illustrated in Fig. 3f. Additionally, the
foreground density histograms in Fig. 4 show that this method mostly results in
crops, whereas only a very small portion of the dataset (foreground percentage
> 80%) needs padding. By following the aforementioned Crop&Pad technique,
in the rare cases of very elongated lesions, a small part of the mole is left out
by the crop. However, each image will present the same number of foreground
pixels, thus eliminating the image scale differences and bringing all the lesions
to the same size.
About Evolving. Dermoscopic images seldom contain information about evo-
lution, as only in a few cases follow-up data is provided in the existing datasets.
Introducing such additional data in dermoscopic datasets would certainly have
significant implications in the research field, but it cannot be considered and
analyzed nowadays. For this reason, we were unable to experiment on lesion
evolution.

5 Experiments

Datasets Preprocessing. To harmonize the two ISIC datasets, the following
pre-processing steps have been employed: first, the 2020 classes are mapped
into 2019 ones; then, in order to compensate for dissimilarities between image
sizes, a squared center crop is performed to produce images of min(h,w) ×
min(h,w) pixels, later resized to 768×768. The combined ISIC2019 and ISIC2020
datasets, purged of duplicates [51], provide a total of 57 964 images. As previously
mentioned, we refer to this combined dataset as ISIC19-20. As introduced in
Section 3, we also employed a private dataset with the same class mapping as
the ISIC19-20.
Networks and Training Details. Our study utilizes two of the networks
constituting the ensemble strategy adopted by the ISIC2020 Kaggle challenge
winner [21], i.e., EfficientNet-B3 and ResNet-152. While achieving performances
that are comparable with the state-of-the-art, they have a limited computational
load in terms of time and memory and allow us to perform the extensive set
of experiments described in this section. Input image sizes are 300 × 300 and
256 × 256 for the two models, respectively. Both networks are trained with the
Cross-Entropy loss and Adam optimizer [28], with a learning rate of 3 × 10−5.
Networks are trained for 20 epochs and produce 9 class probabilities as output,
among which only the melanoma class is considered.

Given the unavailability of ISIC test set labels, we expanded our evaluation
metrics by partitioning the validation set of ISIC19-20 to create an “internal”
test set: the resulting dataset counts 46 379 training images, 1 159 for validation,
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Table 2. Experimental results obtained by training (and testing) the models on the
input configurations described in Section 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased ISIC19-20 “internal” test set. Threshold is set to 0.5.

Model Experiment AUC
ROC Precision Recall

(Sensitivity) Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.9671 0.7821 0.7180 0.9808 0.7487 0.9577

Asymmetry 0.9448 0.7755 0.5399 0.9850 0.6366 0.9459
Borders 0.9605 0.7326 0.6678 0.9766 0.6987 0.9495

Color (Grayscale) 0.9559 0.7420 0.7071 0.9763 0.7241 0.9527
Color (Mask) 0.8017 0.6897 0.0656 0.9972 0.1198 0.9154

Diameter 0.9724 0.8216 0.7399 0.9845 0.7786 0.9631

R
es

N
et

-1
52

Original 0.9572 0.7548 0.6934 0.9782 0.7228 0.9531
Asymmetry 0.9188 0.6539 0.4848 0.9837 0.5568 0.9320

Borders 0.9456 0.7548 0.6043 0.9706 0.6699 0.9475
Color (Grayscale) 0.9424 0.7216 0.5788 0.9784 0.6424 0.9432

Color (Mask) 0.8502 0.6073 0.1136 0.9206 0.1914 0.9154
Diameter 0.9553 0.7688 0.6513 0.9811 0.7052 0.9520

Table 3. Experimental results obtained by training (and testing) the models on the
input configurations described in Section 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased private dataset. Threshold is set to 0.5.

Model Experiment AUC
ROC Precision Recall

(Sensitivity) Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.7983 0.5299 0.5038 0.9104 0.5165 0.8425

Asymmetry 0.7693 0.5553 0.4025 0.9354 0.4667 0.8465
Borders 0.7896 0.5261 0.4992 0.9099 0.5123 0.8413

Color (Grayscale) 0.7673 0.4607 0.4540 0.8935 0.4573 0.8201
Color (Mask) 0.7032 0.6017 0.0322 0.9957 0.0612 0.8349

Diameter 0.8099 0.5597 0.5168 0.9185 0.5374 0.8515

R
es

N
et

-1
52

Original 0.7872 0.4774 0.5542 0.8772 0.5129 0.8229
Asymmetry 0.7340 0.5279 0.3176 0.9416 0.3966 0.8351

Borders 0.7559 0.4498 0.4921 0.8762 0.4700 0.8107
Color (Grayscale) 0.6860 0.3565 0.4411 0.8389 0.3943 0.7719

Color (Mask) 0.6881 0.5243 0.1187 0.8436 0.1936 0.8313
Diameter 0.7660 0.4121 0.5424 0.8409 0.4684 0.7899

and 10 426 images for testing. The private dataset is employed for testing clas-
sification performance as well. These datasets, modified as outlined in Section 4
facilitated a broader analysis across five variant datasets, against which desig-
nated architectures are trained and tested. Table 2 and Table 3 report results
obtained by training the model on the debased ISIC19-20 datasets and testing
on the ISIC19-20 “internal” test set and on the private dataset, respectively.

6 Discussion

The efficacy of our ABCDE feature-concealment methods, despite occasional
inaccuracies in segmentation mask generation (Fig. 5), underscores their ability
to divert neural networks’ focus from compromised features towards other ones,
as demonstrated in most test scenarios (Fig. 3).
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(a) Original (b) Borders (c) Color (d) Diameter

Fig. 5. Example of failure cases due to wrongly generated masks.

In particular, in Fig. 3c the neural network trained to classify images with
hidden borders makes a prediction focusing on the section of the lesion with the
most variance of color intensity. The same patch is equally important for the
network fed with grayscale images (Fig. 3d), whereas Fig. 3a shows that mole
borders are of great interest for the “standard” model.

On the other hand, CNN asked to make a prediction based solely on the
segmentation mask strictly focuses on the sections of the foreground with higher
concavity, which is roughly the only valuable piece of information about the
lesion to be found in the extremely degraded input.

As suggested by the high classification performance, neural networks au-
tonomously learn to extract features for melanoma detection. The accuracy ob-
tained when single important features are missing is very close to the “reference”
values, meaning that the other image features are enough to produce a satisfy-
ing classification prediction. Experimental results alone are clearly not enough
to distinguish whether such features are biases or notoriously important ele-
ments for melanoma detection. For this reason, in our work, we also rely on the
clinically validated Grad-CAM analysis (Fig. 3).

The discriminative power of CNNs is also confirmed on the private dataset.
CNN performance tends to drop when the source domain (training data) and
the target domain (test data) come from distinct origins, even for extremely
simple tasks such as handwritten digit recognition, where classification accuracy
across separate datasets can be decreased by up to 40% [50]. A performance drop
can be due to a large number of reasons (biases), such as different lighting set-
tings, resolution, image quality, human-introduced artifacts, subject centering,
and image acquisition devices [53,37].

Notably, this is also confirmed by our experiments, identifying that model
generalization abilities are satisfactory (AUC performance is higher than those
obtained by expert dermatologists [7]), but certainly require fine-tuning the mod-
els on the real case scenario they have to be employed, thus ensuring an adequate
level of Precision and Recall.
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Fig. 6. ROC curves for the Mask experi-
ment on the ISIC19-20 “internal” validation
and test sets (Table 2 and Table 5 of the
paper). The threshold value that minimizes
the distance from the (0;1) are highlighted
in both ROC curves. Moreover, the points
corresponding to the 0.5 threshold are high-
lighted in the two curves.

About AUC. The Area Under
the Receiver Operating Characteris-
tic curve (AUC) is a well-known met-
ric designed to evaluate the diagnos-
tic capabilities of binary classifiers. It
is the official metric of the ISIC2020
challenge, and it offers the advantage
of not needing a fixed threshold, thus
supplying one less parameter to “over-
fit” proposed algorithms on the official
test set. However, real clinical applica-
tions require a threshold to be set and
a class prediction to be given; eval-
uating experimental results uniquely
using the AUC metric can be mis-
leading. To put results into context,
we further discuss the performance of
the CNN trained to classify skin lesion
binary masks (i.e., debased dataset
obtained removing colors). Focusing
on the EfficientNet-B3 results in Ta-
ble 2, the fifth line shows that the in-
vestigated network yields an AUC of
0.8017 when tested on the subset of
public images (ISIC19-20) used as an
“internal” test set. This is the area under the blue curve in Fig. 6. When follow-
ing this strategy, we obtain a tool with a sensitivity of 0.0656, and a specificity
of 0.9972, which means that the model can correctly recognize only 6.5% of the
melanoma cases, but successfully identifies 99.7% of the not-melanoma cases.
Clearly, this is not the positive result that an AUC of 0.8017 might suggest.

As a matter of fact, the assumption that 0.5 is an appropriate threshold when
dealing with neural networks is not correct [41], as shown in Fig. 6. Alternatively,
the threshold can be set by studying the ROC curve obtained on the validation

Table 4. Experimental results obtained by training (and testing) the models on the
input configurations described in Section 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
debased ISIC19-20 “internal” test set using a specific threshold calculated as the value
of the ROC curve which minimizes the distance from (0;1) on the validation set.

Model Experiment AUC
ROC Precision Recall

(Sensitivity) Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.9671 0.3163 0.9519 0.8020 0.4748 0.8152

Asymmetry 0.9448 0.2527 0.9628 0.7260 0.4003 0.7468
Borders 0.9605 0.2218 0.9858 0.6672 0.3621 0.6952

Color (Grayscale) 0.9559 0.2590 0.9628 0.7349 0.4082 0.7549
Color (Mask) 0.8017 0.1500 0.8536 0.5345 0.2551 0.5625

Diameter 0.9724 0.2419 0.9803 0.7044 0.3881 0.7287
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Table 5. Experimental results obtained by training (and testing) the models on the
input configurations described in Section 4. Each of the Experiment correspond to a
training performed on the corresponding debased ISIC19-20 dataset and tested on the
private test set using a specific threshold calculated as the value of the ROC curve
which minimizes the distance from (0;1) on the validation set.

Model Experiment AUC
ROC Precision Recall

(Sensitivity) Specificity F1-Score Accuracy

E
ffi

ci
en

tN
et

-B
3 Original 0.7983 0.2578 0.8570 0.5055 0.3963 0.5642

Asymmetry 0.7693 0.2140 0.9017 0.3365 0.3460 0.4308
Borders 0.7896 0.2012 0.9300 0.2600 0.3308 0.3718

Color (Grayscale) 0.7673 0.2291 0.8844 0.4038 0.3639 0.4840
Color (Mask) 0.7032 0.2421 0.7604 0.5229 0.3672 0.5626

Diameter 0.8099 0.2150 0.9263 0.3221 0.3489 0.4230

Table 6. Experimental results using foreground densities obtained from segmentation
masks, bounding boxes, and bounding boxes that cover at least 70% of the image as
melanoma probability on the ISIC19-20 “internal” test set and on the private dataset.

Dataset Experiment AUC
ROC Precision Recall

(Sensitivity) Specificity F1-Score Acc.

ISIC19-20
“Internal”
test set

Segm. Mask 0.7215 0.1483 0.7388 0.5917 0.2470 0.6046
B. Box 0.7154 0.1483 0.7202 0.6019 0.2459 0.6123

B. Box 70% 0.6220 0.1830 0.3989 0.8286 0.2509 0.7909

Private
dataset

Segm. Mask 0.6980 0.2856 0.5898 0.7043 0.3848 0.6852
B. Box 0.6919 0.2573 0.6589 0.6190 0.3701 0.6256

B. Box 70% 0.6517 0.3328 0.4735 0.8098 0.3909 0.7536

set (green curve in Fig. 6), and choosing the value in the graph closer to point
(0; 1), i.e., the value that maximizes True Positive Rate while minimizing False
Positive Rate. In this particular case, the desired rate is ≈0.06, and by employing
this same threshold on the EfficientNet-B3 CNN outputs over the test set, we
obtain a binary classifier with a sensitivity of 0.8536 and a specificity of 0.5345.
Table 4, Table 5, and Table 6 present the results obtained by setting the predic-
tion threshold following the described steps, always making use of the validation
set. Regardless of how thresholds are set, it is clear that high AUC values do not
always correspond to satisfying discriminative capabilities.

Finally Identifying the “Bias” in Dermoscopic Datasets. Contrasting
with Bissoto et al.’s findings [4] where CNNs performed well despite significant
lesion occlusion, our analysis suggests that lesion size can be inferred from the
foreground-background ratio and significantly influences predictions. While Bis-
soto et al. observed high AUCs (0.712) with major lesion coverage (≥ 70%),
our evaluations posit that networks might rely on lesion dimensions rather than
intricate pixel patterns unrelated to the mole. This is substantiated by our Seg-
mentation Mask and Bounding Box experiments (Table 6), where AUCs corre-
late strongly with lesion area metrics, even without deep learning models. This
experiment has been pushed further by making predictions based only on lesion
bounding box (and not segmentation mask) dimensions and, finally, by setting
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the foreground-background ratios as ≥ 70%. Results obtained are reported in
the aforementioned table with the name of Bounding Box and Bounding Box
70%. Finally, histograms in Fig. 4 show that the probability of a lesion being
malignant grows with its size within a dermoscopic image. Intuitively, a mole
that exceeds the borders or gets very close to them is not necessarily larger than
others, but it is more likely to be malignant. This characteristic might be more
related to the complexity of including a whole malignant lesion when acquiring
dermoscopic images [13,44], than to the diameter itself. Nevertheless, this fea-
ture is strongly related to the nature of dermoscopic images, and experiments
provided in [4] are insufficient to prove the presence of biases in the ISIC dataset.

7 Conclusion

In this work, we explored the correlation between automatic skin lesion classi-
fication and the ABCDE rule. This was done by gradually removing important
visual information from CNN inputs and analyzing performance changes. Exper-
imental results show that neural networks autonomously learn to extract features
that are notoriously important for melanoma detection, but also prove that their
performance is still satisfying when some of these features are removed. Our ex-
periments provide no proof that this is related to dataset biases: instead, the
remaining information can be enough to achieve satisfying or even good classi-
fication accuracy. As pointed out by different authors [45,48], the interpretation
of GradCAM’s saliency maps may be subjective to reader biases and cannot be
used to draw general conclusions about network behavior. However, combined
with the quantitative evaluation discussed and showcased in this paper, they
contribute to our final conclusion.

In particular, the proposed paper experimentally proved that the foreground-
background ratio is strongly related to the malignancy probability of a skin le-
sion. The reasoning behind this might be related to the well-known diameter
characteristic from the ABCDE rule, but also to the fact that capturing the
entire malignant mole in a dermoscopic image is usually not trivial given its
dimensions, the non-clearly defined borders, and the irregular shapes that char-
acterize cancerous skin lesions [8,11,13,44]. Nevertheless, foreground-background
ratio is a valuable dermoscopic property. We cannot conclude that “there are no
biases in the ISIC dataset”, but we can certainly state that literature claims of
strong biases affecting the ISIC dataset are supported by an inconsistent exper-
imental analysis.

Finally, testing model performance on a totally distinct private dataset,
with no possible intersection with samples employed during the training phase,
demonstrated that, despite intra-datasets biases (if any), state-of-the-art algo-
rithms preserve satisfactory performance: still higher than those obtained by
expert dermatologists [7], but with lower Precision and Recall.
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(a) (b) (c) (d) (e) (f)

Fig. 7. Skin lesion image samples obtained from ISIC dataset after debasing different
ABCDE properties. Columns from left to right: (a) Original, (b) Asymmetry, (c) Bor-
ders, (d) Color - Grayscale, (e) Color - Mask, (f) Diameter. The first half rows depict
melanomas, while the others are generated from benign lesions.
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