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Abstract. The presence of visible particles in pharmaceutical products
is a critical quality issue that demands strict monitoring. Recently, Con-
volutional Neural Networks (CNNs) have been widely used in industrial
settings to detect defects, but there remains a gap in the literature con-
cerning the detection of particles floating in liquid substances, mainly
due to the lack of publicly available datasets. In this study, we focus on
the detection of foreign particles in pharmaceutical liquid vials, leverag-
ing two state-of-the-art deep-learning approaches adapted to our specific
multiclass problem. The first methodology employs a standard ResNet-18
architecture, while the second exploits a Multi-Instance Learning (MIL)
technique to efficiently deal with multiple images (sequences) of the same
sample. To address the issue of no data availability, we devised and par-
tially released an annotated dataset consisting of sequences containing
19 images for each sample, captured from rotating vials, both with and
without impurities. The dataset comprises 2,426 sequences for a total
of 46,094 images labeled at the sequence level and including five dis-
tinct classes. The proposed methodologies, trained on this new extensive
dataset, represent advancements in the field, offering promising strate-
gies to improve the safety and quality control of pharmaceutical products
and setting a benchmark for future comparisons.

Keywords: Vial Liquid inspection · Multi-Instance Learning · Convo-
lutional Neural Network · Classification · Prediction

1 Introduction

Control over visible particles represents an important aspect in various fields,
such as pharmaceuticals, food and beverages, and manufacturing, because they
have a significant effect on the quality of the products. Impurities found in
food can have different forms: physical, chemical, and biological contaminants,
like small metal fragments or pesticides [30]. These impurities pose significant
health risks to humans, potentially leading to severe illnesses and affecting the
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(a) Plastic (b) Rubber (c) Glass (d) Sand

Fig. 1. An example of some impurities (circled in red) that can occur in a liquid vial. (a)
shows brown plastic particles, in (b) black rubber particles are present, (c) illustrates
the presence of a piece of glass, and (d) shows residual sand at the bottom of the vial.

quality and taste of food. In manufacturing processes, impurities can alter de-
sired product characteristics and performance. For example, metallic contami-
nants in semiconductor manufacturing can alter product mechanical properties,
leading to the development of weak points, thus impairing the functionality of
final products [9]. Our work is focused on foreign particles in pharmaceutical
products. These impurities can lead to various consequences, including reduced
effectiveness due to interference with active ingredients, safety risks from toxic
substances or allergens, and regulatory issues resulting in product recalls or legal
penalties [3]. These particles can arise from injection of the bottles, packaging,
collisions, or filtration, and they can pose serious health risks when injected
into the bloodstream, potentially resulting in thrombosis, phlebitis, tumors, and
anaphylactic reactions [15]. The detection of these particles is particularly chal-
lenging because they can occur in various forms, such as dust, plastic, rubber
and silicone particles, glass fragments, and sand residues as illustrated in Fig. 1.

Traditionally, identifying particles and impurities relied on manual inspec-
tion, which has been proven to be inefficient due to its time-consuming nature,
subjectivity, low repeatability, and susceptibility to errors. Several factors in-
fluence the likelihood of visually detecting particles, such as the particle’s size,
composition, and shape, as well as the product formulation, the vials, the filled
volume, and inspection conditions [29]. In manual detection, typically, inspec-
tors position the injection bottle under a high brightness and planar light source,
then rotate and tilt the container manually (or with the assistance of machin-
ery) to observe any visible foreign substances inside. Based on their inspection
experience, they decide whether these substances are acceptable or not. Such
an approach often exhibits poor efficiency since it strongly depends on light
conditions and other external factors, and it is not exactly repeatable [10].
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Advancements in imaging technology and computer vision have led to the
establishment of automated particle detection systems, which are increasingly
reliable, removing human error. These systems typically leverage image process-
ing [21], machine learning techniques [42], and well-known vision algorithms [18].
The main challenge to overcome is to find a method capable of efficiently extract-
ing fine-grained features from images that may be captured under suboptimal
lighting conditions and contain various sources of interference or noise. In sum-
mary, the issues to be tackled when designing particle detection methods in
liquid vials are as follows:

1. The appearance of particles can be influenced by different lighting con-
ditions, leading to variations in color, especially if some particles are trans-
parent, as is often the case with glass fragments. Images of pharmaceutical
containers are taken using a camera positioned beneath a mobile tracking de-
vice, operating synchronously, and changes in illumination within the image
may occur due to ambient light conditions and vibrations from the machine;

2. Particles come in a variety of forms, ranging from small spots to bigger
shapes. They can exhibit different textures and surface characteristics, from
smooth to rough or irregular. The diversity in particle properties poses a
significant challenge for detection and classification systems, requiring robust
algorithms capable of effectively distinguishing between different particle
types under various circumstances;

3. The presence of noisy elements on the bottle wall and bubbles [40] within
the liquid can pose challenges in classifying the foreign particles, as they
share similar visual characteristics.

In recent years, Convolutional Neural Networks (CNNs) have been exten-
sively used for multiple applications [4, 7, 33, 34, 38, 39], including industrial de-
fect detection [8,11,20,41]. They have shown promising results in overcoming the
aforementioned issues. CNN models can perform various tasks thanks to their
strong capability to represent robust features. While recent literature focused on
developing tools for detecting particles in liquids using deep learning methods,
there is an absence of publicly available datasets for this task, mainly due to the
preservation of industrial secrets. For this reason, previous research in this area
relied only on private datasets, making the comparison with existing approaches
impractical.
Paper Contributions. To partially cope with this literature gap, this paper
releases a small set of images that can be employed for future comparison.3 Un-
fortunately, for the same aforementioned reasons, the entire training set cannot
be released.

More specifically, this paper tackles the problem of identifying different kinds
of impurities in pharmaceutical vial liquid by smartly leveraging two existing
state-of-the-art deep learning approaches, namely ResNet-18 [16] and DSMIL [22].
To cope with the previously identified issues 1 and 2, instead of dealing with a
single image per sample, we opted for acquiring sequences of 20 images for each
3 Test data are available at https://ditto.ing.unimore.it/residual.

https://ditto.ing.unimore.it/residual
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vial, suitably subjected to machinery-supported rotation. Such an approach,
which is also feasible in modern inline injection machines, allows for mitigating
particle appearance issues and the presence of noisy elements. However, it in-
troduces additional challenges in the automatic detection algorithms. In order
to achieve satisfactory performance without sacrificing computation time, our
approach advocates for ResNet-18 by directly feeding it with multiple channels,
each corresponding to a sequence frame.

Additionally, to achieve similar results, although tackling it in a different
way, a Multi-Instance Learning Approach (MIL) is employed by treating each
sequence as a bag composed of multiple images instances. This way, the model
can deal with moving objects in the sequence without requiring expensive track-
ing strategies as previously proposed in literature [48].

In both cases, our proposed pipeline achieves outstanding results without
requiring pixel-level annotations.

2 Related works

Product quality is crucial for pharmaceutical products, given their impact on
people’s health. To ensure this quality, various works have been made on vial
inspection, with the goal of detecting defects such as tilting and sinking of the
cap or cracks in the glass, which may negatively affect the product quality [44].
Although this is a slightly different task with respect to the detection of liquid
defects, our approach follows similar steps and employs comparable techniques
to those used in these studies.

The first works in this field employed traditional computer vision techniques.
Liu et al. [25] have proposed an inspection method that used the watershed
transform to find defective areas and a fuzzy SVM ensemble combined with
an ensemble of genetic algorithms to classify the type of imperfection. Also,
Liu et al. [27] used the SVM classifier to inspect vials for flaws, fed with local
binary pattern (LBP) features extracted from the region of interest of the image,
grouped using k-means clustering to have a compact representation of them.
Several other studies have utilized SVM for classifying defects on the surface of
the rolled steel [19], in the industrial pavements [28], and in textile materials [1].
The key difference in existing approaches lies in the method used for feature
extraction. More recently, Zhou et al. [49] proposed two different techniques
to find defects in glass bottles using traditional vision algorithms: a template-
matching-based method with multiscale filtering, and a region-growing Euclidean
saliency method, with the integration of superpixel segmentation and geodesic
saliency detection algorithms.

Regarding the analysis of liquid solutions, Wang et al. [45] developed a
method to find unwanted glass fragments in the liquid by shaking the con-
tainer, exploiting the fact that the glass pieces are heavier, so they cannot move
smoothly with liquid and other particles. Thus, they took several images in se-
quence and used the optical flow algorithm to perform the detection. In the
same year, Ge et al. [12] presented an automated system for checking ampoule
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injections for tiny foreign particles. They developed a custom hardware platform
for transportation and agitation, capturing images for analysis. The computa-
tion of trajectories of moving objects within liquid allowed them to differentiate
foreign particles in the images; then impurity types were classified through mul-
tiple features, including particle area, mean gray value, and geometric invariant
moments.

The advent of deep learning has been a breakthrough in visual detection
tasks, including defect detection [41]. Its ability to autonomously learn com-
plex features from datasets enabled algorithms to accurately identify patterns
and objects with more precision. One of the first approaches regarding foreign
particle inspection is another work of Ge et al. [11]. They successfully explored
the usage of a modified version of Pulse-Coupled Neural Networks (PCNN) [20]
to identify undesired particles in glucose or sodium chloride injection liquids.
PCNNs are non-trained neural networks where each neuron receives as input
the corresponding pixel intensity and other inputs from its neighboring neurons.
These stimuli are added together, accumulating them until they surpass a dy-
namic threshold, triggering a pulse output. This process, iteratively performed,
generates a series of binary images as outputs. Neighboring neurons’ connections
lead to pixels of the image with similar intensity values pulsing together. Thus,
it is possible to obtain image segmentation by identifying pixels corresponding
to synchronously pulsing neurons. The main drawback of this technique lies in
its dependence on the choice of thresholds. The author of the paper suggested
an adaptive approach to find the best hyperparameters.

Since the middle of the 2010s, many neural network architectures have been
developed for detection tasks, such as R-CNN [14], Faster R-CNN [36], YOLO [35],
SSD [26], and ResNet [16] and have become widely popular. Examples of ap-
plication of these networks can be found in defect detection addressing various
domains, such as the inspection of flat surfaces [46] using a combination of Fast
and Faster R-CNN, the particle detection in complex biomedical images [13]
through a ResNet-based architecture and the detection of cracks in aircraft struc-
tures through the usage of YOLOv3-Lite [23]. In the work of Ding et al. [8], a
defect-detecting Single-Shot Detector (SSD) is devised for wood inspection, us-
ing DenseNet [17] as the backbone to improve the extraction of deep features
and mitigate gradient vanishing issues of the original SSD backbone. Further-
more, the integration of a feature fusion function to combine multi-layer feature
maps from the backbone enhances the classification of wood defects. Ritter et
al. [37] presented a new method to identify and track fluorescent particles in
microscopy images. Their approach leveraged the Deconvolution Network [31],
a CNN similar to an encoder-decoder architecture for particle detection, along
with a bidirectional long short-term memory for tracking, which also aided in
particle classification. A less conventional deep learning approach was used by
Zhang et al. [48], who developed a particle inspection system for liquid vials.
They captured eight sequential images and used fuzzy cellular neural networks
for precise position and segmentation, introducing an adaptive tracking system
based on a sparse model for determining the presence of foreign particles. In
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one of the most recent works, Yi et al. [47] explored the usage of the attention
mechanism on pharmaceutical foreign particle detection. They developed an end-
to-end deep architecture with adaptive convolution and multiscale attention to
identify and classify foreign particles.

Based on the results reported in the aforementioned papers, we can state that
deep learning detection methods outperform traditional approaches in particle
detection liquids. For these reasons, in this work, we choose to employ two state-
of-the-art deep learning architectures: ResNet [16], which we employed in a new
fashion to handle sequences rather than individual images, and DSMIL [22], a
method not previously investigated for multiclass particle detection. The specific
details of our architectures and the results on our dataset are outlined in the
following sections.

3 Methods

As said, to face the task of recognizing defective vials, we decided to explore
two different paths; the former is based on the use of ResNet [16] in a slightly
different way than the standard one, in order to deal with the entire sequence of
images, the latter is a Multi-Instance Learning (MIL) [5] based technique.

3.1 ResNet-18

Residual Neural Network (also known as ResNet [16]) is a family of deep learning
models in which the weights layers learn residual functions based on the layer
inputs. This is possible through the residual connections that execute identity
mappings and are added to layer outputs. In our study we employed ResNet-18.

As ResNet operates on individual images, we had to adapt its architecture
to our problem, where we deal with a sequence of images for each rotating vial.
Our goal was to capture the collective information across the sequence of frames
acquired during the vial’s rotation. To perform classification at the sequence
level, we explored two different aggregating methods. In the first approach, we
learned to predict a class for each frame within the sequence and subsequently
determined the class for the entire sequence through a majority voting approach.
Secondly, we investigated an alternative approach wherein we independently
extracted features from each frame using ResNet convolutional layers. Then,
these features were concatenated along a new dimension before being fed to the
fully connected layers, resulting in a single prediction for the entire sequence. As
a loss function, we used cross-entropy.

3.2 MIL-based Approach

Multiple instance learning is an extensively used weakly supervised learning al-
gorithm [2,24,32] where a subset of examples from the training set is arranged as
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Fig. 2. Representation of the proposed MIL-based pipeline, divided into four main
steps: preprocessing, self-supervised training of ResNet-18, Embedding phase, and the
MIL phase.

a set (bag) composed of multiple instances. If we deepen the case of binary clas-
sification, let B = {(x1, y1), . . . , (xn, yn)} be a bag where xi ∈ X are instances
with labels yi ∈ {0, 1}, the label of B is given by:

c(B) =

{
1, if ∃ yi ∈ B : yi = 1

0, otherwise

The challenge of detecting defects in the liquid inside vials can be seen as a
multiple-instance learning problem if the detection method involves capturing a
series of images of the rotating vials and the labeling is done based on the entire
sequence. The sequence-level labeling method is usually the standard because
while foreign particles may not always be visible in every frame if they appear
at least in one frame, the vial should be classified as defective.

The problem of multi-instance learning for a bag-level classification can be
approached by training a model that assigns a probability c(X) of the bag being
labeled as positive (Y = 1). The function c(X), can be formulated as follows:

c(X) = g(σ(f(x1), . . . , f(xn)))

where the function f is a feature extractor transforming single instances into a
lower-dimensional embedding; σ is a permutation-invariant aggregation function
(often referred to as MIL pooling), which derives the bag representation; and g
apply a final transformation to obtain the bag probability. Both functions f and
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g can be parameterized by neural networks, which can be trained end-to-end
through backpropagation. The only other requirement is that the MIL pooling
operation σ must be differentiable.

In our case, each image sequence is considered a bag, while each single frame
composing the sequence is treated as an instance. We used the MIL architec-
ture developed by Li et al. [22] called Dual-Stream Multiple Instance Learning
(DSMIL). This network, depicted in Fig. 2, learns from both instances and bag
embeddings at the same time. The first stream works at instance-level. It ex-
tracts an embedding from each instance and classifies each embedding, giving
a single score in case of a binary classification problem. Then, the classification
step is followed by a max-pooling operation to identify the instance with the
highest score, referred to as the critical instance.

In a more exhaustive way, let X = x1, ..., xn denote a sequence (bag) of
frames of a rotating vial. Given f as feature extractor, each frame xi can be
projected into an embedding hi = f(xi) ∈ RL×1. The first stream uses a frame
classifier on each frame embedding, followed by max-pooling on the scores:

cm(X) = gm(f(x1), . . . , f(xn)) = max{W0h1, . . . ,W0hn}

where W0 is a weight vector. The max-pooling stream provides the frame with
the highest score (the critical instance).

The second stream aggregates the above frame embeddings into a single
sequence embedding, which is further scored by a bag classifier. It transforms
each instance embedding hi, obtained in the first stream (including the critical
instance embedding hm) into two vectors, query qi ∈ RL×1 and information
vi ∈ RL×1, which are given respectively by:

qi = Wqhi, vi = Wvhi, i = 0, . . . , N − 1

where Wq and Wv are learnable weight matrices. Then, a distance measurement
U , which has a similar structure and meaning of the attention operation used in
Transformers architecture [43], is defined as follows:

U(hi, hm) =
exp(⟨qi, qm⟩)∑N−1

k=0 exp(⟨qk, qm⟩)

where ⟨·, ·⟩ denotes the inner product of two vectors. As we can see from the
formulation, the distance is computed only between the critical instance and all
the instances in the bag. This ensures a linear complexity of O(n) rather than
quadratic like the attention mechanism.

Overall bag representation b is computed by combining the information vec-
tors vi of all instances using a weighted sum, where the weights are determined
by the distances to the critical instance:

b =

n∑
i=1

U(hi, hm)vi
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Fig. 3. Sample images from a sequence of a vial containing no impurities.

The bag score of the second stream is obtained through a final linear layer. This
score, averaged with the one of the first stream cm(B), produced the final score.

Since our research tackles a multiclass problem, DSMIL has been adapted
accordingly. We use max-pooling to determine the critical instance of each class,
and then we compute attention weights for each class individually with respect
to the corresponding critical instance. As a result, the bag embedding b becomes
a matrix with dimensions L × C, where C represents the number of classes. In
this matrix, each entry is a weighted sum of the instance information vectors vi.
The final fully connected layer for the classification has C output channels.

DSMIL exploited SimCLR [6], which stands for Simple Contrastive Learn-
ing Representation, to produce a robust feature extractor in an unsupervised
learning setting. In our case, SimCLR trains a ResNet-18 to drastically reduce
the input size of each frame by embedding it into a vector. It randomly selects
pairs of images from the sequences, applies random augmentations to improve
the robustness, and trains the network to maximize similarity between images
belonging to the same sequence while minimizing similarity between images from
different sequences. After training, ResNet-18 is used to generate the embeddings
for single frames within the first stream of DSMIL.

4 Experiments and Results

Dataset. The samples under examination are glass vials with silicone caps filled
with distilled water. Image acquisition was performed on a rotating test bench
using a Matrix Vision camera with a bottom white illuminator and a single
LED. The vials were rotated at a speed of 200rpm with an acceleration and
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Fig. 4. Sample images from a sequence of a vial containing glass impurities.

deceleration time of 400ms. Image acquisitions of each sample occurred after a
rotation of the vial, with a delay of approximately 100ms.

Before the acquisition procedure, each vial was cleaned on the outside with
alcohol to remove marks and residual particles from the glass. The dataset used
to train and evaluate our models is composed of 2,426 vial sequences, where each
sequence consists of 19 frames, for a total of 46,094 images.

The dataset contains annotations for five different classes. One class repre-
sents good vials, indicating the absence of impurities. The other four classes refer
to different types of foreign particles: brown impurities, corresponding to burnt
plastic particles, black defects, corresponding to rubber or silicone particulates,
a class is for glass pieces of various sizes, and the last class for sand residues.
These are essentially the defects shown in Fig. 1. Samples from a clean sequence
are reported in Fig. 3, while images extracted from sequences containing glass
and sand impurities are depicted in Fig. 4 and Fig. 5.

Pre-processing. Each frame in the dataset encompassed a pre-processing phase
consisting of a center crop to a fixed dimension of 325× 268 pixels to isolate the
vial, followed by a rotation to ensure a consistent vial alignment.

Implementation Details. The experiments were conducted for both the pre-
sented methods by dividing the dataset into 4 separate and non-overlapping
sequence splits. For each split, each training set consists of 2, 000 sequences,
while each test set consists of 426 sequences.

For what concerns ResNet-18 with voting and concat, we used SGD with
momentum as optimizer, a learning rate of 0.01, ReduceLROnPlateau as sched-
uler, and a batch size of 4 sequences. In this case, convergence is achieved after
a total of 30 epochs.
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Fig. 5. Sample images from a sequence of a vial containing sand impurities.

For DSMIL, instead, we used Adam as optimizer, keeping a fixed learning
rate of 0.0002 during the training and a batch size of 1. The feature extractor
(ResNet-18) is trained using the SimCLR framework on each frame of all the
sequences. To achieve convergence, DSMIL is trained for a total of 120 epochs.
Both DSMIL and ResNet are trained using NVIDIA Tesla K80 as GPU.

Results. The classification results are summarized in Tab. 1. For each method,
we reported accuracy, precision, recall, and F1-score computed on the test set,
averaged across the five classes. Additionally, we computed the average infer-
ence time on a single sequence. We used 4-fold cross-validation to evaluate the
model’s performance more robustly and mitigate the risk of overfitting to a spe-
cific subset of the data. Thus, the reported results consist of the average metrics
computed across all the folds. The results suggest that all models reach good per-
formance on this classification task; in particular, the best-performing method
is DSMIL, which reaches an accuracy of 99.53%. DSMIL misclassifies only a few
sequences confusing brown particles sample as vials’ without impurities. This
occurred because these types of impurities consist of very tiny burnt plastic
pieces. Comparing the two aggregation methods used for ResNet experiments,
we observed that concatenation is slightly more effective than majority voting.

Table 1. Comparison of different methods on our dataset.

Model Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑ Time [ms] ↓

ResNet (voting) 0.9835 ± 0.0071 0.9829 ± 0.0062 0.9851 ± 0.0069 0.9840 ± 0.0064 1257
ResNet (concat) 0.9903 ± 0.0046 0.9899 ± 0.0042 0.9918 ± 0.0048 0.9908 ± 0.0046 1328

DSMIL 0.9953 ± 0.0023 0.9948 ± 0.0020 0.9957 ± 0.0024 0.9952 ± 0.0022 1639
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We noticed that instances where majority voting failed were due to a misclassi-
fication of vials with an impurity as pure vials. This happens because very small
impurities (Fig. 5) are only visible in specific frames of the sequence, leading to
most of them being assigned the “no impurities” class. Thus, we can conclude
that, particularly for challenging-to-detect defects, using concatenation before
the ResNet-18 fully connected layers is preferable.

5 Conclusion

In conclusion, this study addresses the critical issue of detecting visible particles
in pharmaceutical liquid vials using advanced deep-learning techniques. Over the
years, some traditional algorithms, such as SVM and k-means clustering have
been explored. More recently, deep learning techniques have outperformed the
latter, improving the safety of the final products. In this work, we introduce
two methodologies, leveraging ResNet-18 and DSMIL, to classify four types of
impurities. To gap the absence of publicly available dataset we also create a
new dataset (which is partially released) comprising sequences of images cap-
tured from rotating vials, enhances research in this area by providing valuable
data for future comparisons. Our methodologies, trained on this dataset, reaches
impressive results, with a maximum accuracy of 99.53%, and 99.52% of F1-score.

Future Work. The proposed methodologies exhibited exceptional performance
in the designated task, achieving near-optimal scores in multi-class classification.
Future research will pivot towards the localization and detection of impurities
rather than solely focusing on classification, thereby augmenting the pipeline
with explanatory capabilities. Moreover, this allows to classify each detection
with its own class, and identify different kind of impurities within the same
sample. Another direction of research could focus on improving the inference
time in order to obtain real-time performance in a production environment.

Acknowledgements. This work was supported by the University of Modena
and Reggio Emilia and Fondazione di Modena, through the FAR 2023 and
FARD-2023 funds (Fondo di Ateneo per la Ricerca).
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