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Abstract. The segmentation of the Inferior Alveolar Canal (IAC) plays
a central role in maxillofacial surgery, drawing significant attention in
the current research. Because of their outstanding results, deep learn-
ing methods are widely adopted in the segmentation of 3D medical vol-
umes, including the IAC in Cone Beam Computed Tomography (CBCT)
data. One of the main challenges when segmenting large volumes, includ-
ing those obtained through CBCT scans, arises from the use of patch-
based techniques, mandatory to fit memory constraints. Such training
approaches compromise neural network performance due to a reduction
in the global contextual information. Performance degradation is promi-
nently evident when the target objects are small with respect to the
background, as it happens with the inferior alveolar nerve that develops
across the mandible, but involves only a few voxels of the entire scan.
In order to target this issue and push state-of-the-art performance in
the segmentation of the IAC, we propose an innovative approach that
exploits spatial information of extracted patches and integrates it into a
Transformer architecture. By incorporating prior knowledge about patch
location, our model improves state of the art by ∼2 points on the Dice
score when integrated with the standard U-Net architecture. The source
code of our proposal is publicly released.

Keywords: Inferior Alveolar Canal · 3D Segmentation · CBCT · Trans-
formers · Patch-based Learning

1 Introduction

The presence of the Inferior Alveolar Nerve (IAN) represents a challenge for max-
illofacial surgery. Such a nerve crosses the Inferior Alveolar bone Canal (IAC)
and supplies sensation to the lower teeth, lips, and chin. For this reason, IAN
position (Fig. 1) must be carefully identified before surgical intervention (e.g.,
implant placement and molar extraction) to prevent aches, pain, and tempo-
rary or permanent paralysis [33]. Usually, the preoperative treatment planning
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(a) (b)

Fig. 1. CBCT with the IAC marked in red. (a) contains a 3D dense annotation, while
(b) contains a 2D sparse annotation obtained from a panoramic view of the mandible
and later re-projected to the 3D space.

is based on IAC segmentation performed on 3D data acquired with Cone Beam
Computer Tomography (CBCT). Nevertheless, producing 3D annotations for
3D data is dramatically challenging and time-consuming. Hence, the standard
practice consists of extracting 2D panoramic views where the surgeon can an-
notate the approximate position of the IAC drawing 2D curves. Despite this
procedure being effective most of the time, having the 3D segmentation of the
IAC would crucially improve the precision of the surgery planning, minimizing
the likelihood of errors during surgery operations.

Recent advancements in deep learning have significantly impacted multi-
ple domains, including medical imaging, particularly through methods based on
Convolutional Neural Networks (CNNs) [11, 14, 15, 23–26]. Among them, of the
most popular is U-Net [27], an encoder-decoder architecture with skip connec-
tions capable of extracting deep features while trying to retain as many fine-
grained details as possible [10]. As well, many U-Net-based approaches for the
automatic segmentation of the IAC [5,16,30] have been recently published, also
thanks to the public availability of a 3D-annotated dataset [4].

Despite the great success of CNN in medical imaging, the rise of Transformer
architectures [31] stands as a turning point. Representing the standard of Natural
Language Processing since 2017 and deeply affecting the Computer Vision field
since 2020 [8], Transformer-based architectures demonstrate dominance in sev-
eral tasks due to their capability of modeling long-range interactions [6,21,22,28].
This is in contrast with the CNN locality bias, which instead forces the modeling
of local interactions that lie within the CNN sliding kernels [8]. For this reason,
researchers are developing strategies to improve U-Net-based architectures [27]
by integrating some Transformer layers to enhance long-range interactions, with
encouraging results [9, 29]. In this work, we investigate innovative and effective
ways to improve such an integration.

Regardless of the adotped method, processing 3D volumes leads to severe
memory constraints, making the segmentation of a single 3D scan in one shot a
prohibitive operation. Meanwhile, decreasing the resolution of such 3D images
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with downsampling techniques is counterproductive because fine-grained details
are needed to improve the segmentation quality. Hence, the only solution to
solve both problems is splitting the 3D scans into multiple patches that will be
processed separately, without losing detailed information. The literature refers
to the aforementioned procedure as patch-based learning. Even if patch-based
learning allows the training of deep neural networks with standard hardware
resources, it must be mentioned that it forces the model to focus only on a
fraction of the total information at a time, losing global context (e.g., the position
of the examined patch with respect to the other patches of the 3D volume). In
this research, we aim at mitigating this phenomenon with Transformers [31].

Paper Contribution. We present an innovative 3D segmentation model en-
hanced by a memory-augmented Transformer encoder that effectively harnesses
absolute spatial coordinates, addressing the challenges of patch-based training.

Specifically, our proposal evolves from the standard 3D U-Net architecture by
incorporating a memory-augmented Transformer in the bottleneck. By leverag-
ing the inherent capacity of Transformers to model interactions between all pairs
of elements within a given sequence, we aim to enhance the flow of information
among the elements of the U-Net bottleneck, thereby increasing contextualiza-
tion. Moreover, we harness such a flow of information to effectively inject con-
textual information related to the processed patches, i.e., their position within
the entire volume, thus mitigating issues associated with patch-based learning.
The “memory” is an additional refinement that supports the model in retaining
crucial prior concepts that may be challenging to be directly extracted from im-
age features, but are nonetheless valuable for interpretation. In summary, the
key contributions of this paper are as follows:

i) We propose a memory-augmented Transformer module that harnesses ab-
solute spatial coordinates, mitigating issues related to patch-based learning;

ii) We design an U-Net-based deep learning architecture integrating our pro-
posed module and tailored for 3D IAC segmentation, outperforming state
of the art on the selected segmentation task of ∼2 Dice points;

iii) The source code of our proposal is publicly released3 to allow the replication
of the experiments and foster future research advancements.

2 Related Works

While classical computer vision approaches have made significant contributions
in the past [1,2,13,19,32], today, the most successful models for the segmentation
of the IAC are based on machine learning and deep learning.

Notably, Jaskari et al. [12] presented one of the pioneering applications of
deep learning for mandibular canal segmentation. Their approach involved train-
ing a convolutional network using a dataset of coarsely annotated 3D scans. This

3 https://github.com/AImagelab-zip/alveolar_canal

https://github.com/AImagelab-zip/alveolar_canal
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deep learning approach demonstrated superior performance compared to previ-
ous methods relying on Statistical Shape Models. However, it encountered limi-
tations due to the lack of finely annotated voxel-level data and the sub-optimal
quality of segmentation masks generated automatically from coarse annotations.

Cipriano et al. [5] introduced a significant breakthrough by proposing the first
publicly available dataset of 3D annotated CBCT scans of the human jaw, named
Maxillo, alongside a deep learning model for the 3D segmentation of the IAC,
PosPadUNet3D. This marks a substantial advancement in publicly accessible
datasets for the segmentation of the inferior alveolar canal. The Maxillo dataset
has been later extended with the 2023 MICCAI ToothFairy Challenge.4

Additionally, in [30], Usman et al. proposed a two-stage approach also based
on the U-Net architecture. On the hypothesis that the predominant challenge
in segmenting the inferior alveolar canal relates to the class imbalance between
the mandibular canal and the background, they initially apply a CNN to isolate
the regions of the input volume where the canal is likely to be located, reducing
background interference. Then, leveraging U-Net architecture, the segmentation
of the mandibular canal is performed exclusively within the extracted regions.

The latest approach tested on public data is contributed by Zhao et al. [34]
and, similarly to [30], it works in a two-stage fashion. Firstly, the mandibular
centerline is extracted via automatic segmentation of the mandible and local-
ization of the mandibular and mental foramen. The sub-volumes containing the
mandibular canal information are then obtained using a double reflection method
based on the Frenet frame. Secondly, the extracted sub-volumes are fed into a U-
Net-based 3D segmentation network, and the topology of the mandibular canal
is constrained with the clDice. To conclude the segmentation process, the pre-
diction masks are inversely transformed back into the original CBCT images.

2.1 Patch-based Learning

All of the aforementioned solutions employ a patch-based learning strategy. In-
deed, when targeting complex, high-dimensional inputs or when the computation
resources available are limited or should be kept so, patch-based learning is the
only viable approach. The segmentation or classification in whole-slide images,
as well as the segmentation of anatomical structures in 3D volumes, are notice-
able medical imaging applications requiring such a kind of learning procedure.
Indeed, feeding a neural network with gigapixel images or hundreds of millions
of voxels coming from 3D volumes is not a feasible approach.

To meet memory constraints, the simple downsampling of the input data is
counterproductive whenever the preservation of fine-grained details is crucial. A
common approach consists of training neural networks using subsets extracted
from the original data [3,12]. Such an approach, known as patch-based learning,
mitigates memory constraints but also leads to a loss of global information due
to restricted (patch-limited) receptive fields. Moreover, ambiguity in segmenting

4 https://toothfairy.grand-challenge.org

https://toothfairy.grand-challenge.org
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Fig. 2. Sample data from the ToothFairy dataset. Each line of the image contain a
different patient, from left to right you can see left-side and frontal views of the CBCT
volume, sparse and dense annotations of the inferior alveolar nerve.

objects situated at the intersections of multiple patches may arise, causing po-
tential artifacts around patch boundaries. When the object to be segmented is
small in comparison to the entire volume, as it happens in the segmentation of
the IAC, the aforementioned challenges become particularly prominent.

A first proposal to overcome the patch-based learning drawbacks in the seg-
mentation of the IAN is introduced in [5] with the PosPadUNet3D. The au-
thors suggested leveraging the positional information from the coordinates of ex-
tracted patches by simply projecting and concatenating these coordinates within
the network bottleneck. Although this approach demonstrated some improve-
ments in performance, the aforementioned major issues still persisted. Unlike
PosPadUNet3D, our approach harnesses the information flow of Transformers,
semantically conditioning the bottleneck embedding based on the spatial infor-
mation instead of a simple feature concatenation.

3 Dataset

The maxillofacial dataset employed in our experiments is an improved version
of the Maxillo dataset introduced by Cipriano et al. [4]. Such an improvement,
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known as ToothFairy dataset, was part of the homonymous MICCAI 2023 chal-
lenge hosted on the Grand Challenge platform.5

All of the 3D CBCT volumes of the ToothFairy dataset were collected from
the Affidea center in Modena, Italy, part of a leading pan-European healthcare
group specializing in advanced diagnostics, outpatient services, laboratory anal-
yses, physiotherapy and rehabilitation, and cancer diagnosis and treatment. The
scans were acquired using the NewTom/NTVGiMK4 CBCT device, with acqui-
sition parameters set at 3 mA, 110 kV, and 0.3 mm cubic voxels. The dataset is
publicly available after user registration:6 such availability, along with the public
release of the source code, ensures full reproducibility of our experiments and
verification of our claims.

The annotation process was initially performed by diagnostic technicians
responsible for the examinations, providing what we refer to as “sparse anno-
tations” (Fig. 1b): the upper boundary of the canal is marked along the entire
dental arch, offering a useful approximation of the nerve position. Such anno-
tations are performed on 2D panoramic views of the jawbone and are routinely
used in surgical practice to measure the height and depth of implant placement
sites, thereby avoiding injuries to the inferior alveolar nerve.

Instead, the 3D annotations (in the following also referred to as “dense anno-
tations”) of the ToothFairy dataset (Fig. 1a) have been created using an updated
version of the iacat tool [18], specifically version 2.0 developed in [17], by a team
of medical experts with over five years of experience in the maxillofacial field.

All of the 443 volumes in the ToothFairy dataset are paired with the 2D
sparse annotation. For a subset of 153 scans, the 3D dense annotation is also
provided. For what concerns volume shapes, the average size in the dataset
is 169 × 342 × 370, while minimum and maximum volumes have respectively
148×265×312 and 178×423×463 dimensions. Sample images of the employed
dataset are reported in Fig. 2.

4 Methods

This paper proposes a novel U-Net-based deep learning model for the segmen-
tation of the IAC. Specifically, we devise a module that harnesses memory-
augmented Transformer layers for modeling long-range interactions and inte-
grating absolute positional information to mitigate issues related to patch-based
learning. All the details concerning our proposed methodology can be found
in Sec. 4.1.

In our work, a two-step training procedure is employed to exploit both vol-
umes that are annotated in 3D and those that are annotated only in 2D, improv-
ing overall segmentation performances. An in-depth explanation of this training
procedure can be found in Sec. 4.2.

Finally, the Hann-based post-processing employed in our pipeline is described
in Sec. 4.3.
5 https://toothfairy.grand-challenge.org/
6 https://ditto.ing.unimore.it/toothfairy/

https://toothfairy.grand-challenge.org/
https://ditto.ing.unimore.it/toothfairy/
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Fig. 3. Proposed Transformer module integrated in the standard 3D U-Net architec-
ture. A detailed visualization of our module is reported in Fig. 4.

4.1 The Proposed Approach

We design a novel deep-learning model to address the limitations associated
with patch-based learning through the utilization of Transformers capable of ex-
ploiting contextual information. More specifically, we propose a module based
on Transformer encoder blocks, accompanied by learned embedding represen-
tations for positional encoding, and integrate it in the bottleneck of the well-
known U-Net architecture (Fig. 3). By capitalizing on the inherent capacity of
Transformers to model interactions between all pairs of elements within a given
sequence, we aim to enhance the flow of information among the elements of
the U-Net bottleneck. Moreover, we leverage this to effectively inject contextual
information related to the processed patches.

In practice, we introduce a specialized token that captures the absolute po-
sition of the patch within the original volume, referred to as [ABS]. This is
accomplished by projecting the 3D coordinates of two opposite corners of the
patch into the bottleneck dimensional space, exploiting a learnable matrix of
dimension 6 × dmodel, where 6 are the numbers identifying the position of the
patch within the entire volume and dmodel is the number of channels in the
U-Net bottleneck (Fig. 4). Subsequently, we concatenate this token with the re-
maining elements of the bottleneck, allowing its information to influence their
representations through the Transformer encoder.

It is worth noticing that Transformers already employ positional encoding
to describe the location of a token in a sequence. Such an encoding provides
information about the position of (groups of) voxels within the current patch
only. Instead, our [ABS] token encodes the position of a patch with respect to
the entire volume. However, the inbuilt positional encoding of the Transformer
architecture must not be applied to the [ABS] because all of the other tokens
should be able to employ its information independently from their position.
To achieve this goal, the Transformer inbuilt positional encoding is summed
only to the tokens representing volume information. Again, this ensures that
the [ABS] token remains positionally untied from the rest of the sequence. This
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Fig. 4. The proposed module. B, C, D, W, and H represent respectively batch size, chan-
nels, depth, height, and width. The patch coordinates [x1, y1, z1, x2, y2, z2] are projected
using a linear layer to produce the [ABS] token. The activation map obtained in the
bottleneck of U-Net before the first transposed convolution (pink blocks) is flattened
across the spatial dimension and concatenated with the [ABS] token. The resulting
tensor is fed to a cascade of four Transformer layers: for each layer a new set of mem-
ory token is concatenated to the input sequence and discarded from the output so that
the sequence length does not vary. After the Transformer layers, the [ABS] token is
removed and the remaining output is reshaped back to the original spatial dimension-
ality.

disentangled approach allows each element to pay attention to the special token’s
information and vice versa, regardless of its position in the sequence.

Additionally, we enriched the proposed module with memory. The integration
of Transformer memory has demonstrated considerable effectiveness in tasks
such as image captioning [7]. This mechanism enables the Transformer to retain
crucial prior concepts that may be challenging to be directly extracted from
image features, but are nonetheless valuable for interpretation. Recognizing the
applicability of this approach to the patch-based learning paradigm, wherein each
patch is extracted from a wider context, we harness the power of Transformer
memory to incorporate external information, thus enhancing the processing of
individual patches. A graphical summary of this process is provided in Fig. 4.

4.2 Model Training

With the aim of also leveraging volumes with only 2D sparse annotations avail-
able, we adopt a two-step procedure composed of an initial step called “deep label
expansion” or “generation phase” and a second one that consists of a standard
segmentation training. In the deep label expansion, the network is trained using
CBCT volumes paired with their corresponding sparse 2D labels to generate
dense 3D annotations. Again, the rationale behind this operation is to obtain a
model that can leverage the sparse 2D labels (available for all the volumes in
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the Maxillo dataset) to create dense synthetic 3D annotations when they are not
available.

The second step consists of merging the initial training set provided with
“true” labels with the synthetically annotated CBCT volumes, generated by the
deep label expansion. Thus, a total of 420 3D annotated volumes is obtained
as a train set. Still, 8 and 15 volumes from the non-synthetic 3D dataset are
available for the validation and test set respectively. Using the above-mentioned
set of data, our segmentation model is trained to output 3D masks representing
the inferior alveolar canal, and consequentially evaluated.

In other words, our pipeline leverage the proposed model twice, changing
only the input data. A first instance is used to extend the amount of 3D IAC
annotations by learning to “expand” the available 2D labels. The second instance
is trained to predict a 3D segmentation of the IAC starting from a virgin scan.
Test data of both instances are never seen during training.

4.3 Post-Processing

Even if the proposed memory-augmented Transformer-based encoder with [ABS]
token mitigates the lack of global information in patch-based learning and re-
duces the segmentation ambiguity on patch borders, we still need to deal with
noise and artifacts generated at patch boundaries (Fig. 5). Taking inspiration
from audio encoding [20], we introduced a post-processing algorithm based on
the Hann windows function to tackle the presence of artifacts near patch edges.
The Hann window function is defined as:

WHann(i) =
1

2

(
1− cos

2πi

I

)
(1)

where i is an element in the considered interval I. This function is symmetric,
peaking at 1 in the middle of the window and tapering to 0 at the edges.The sum
of two Hann windows, each shifted by I

2 (50%), is equivalent to a rectangular
window of width I and height 1:

WHann(i) +WHann

(
i+

I

2

)
= 1 (2)

Such a property is exploited in audio encoding to eliminate border artifacts by
multiplying the Hann window with frames that overlap by 50%, before summing
them together.

While this approach is defined in 1D for audio, we extended it to multiple
dimensions, and applied it to the 3D segmented patches produced by our model.
Thus, we are able to reduce the aforementioned noise on patch borders and
improve the overall performance.

The effects of the proposed 3D extension of the Hann filtering to the seg-
mented patches produced by our model are depicted in Fig. 5.



10 L. Lumetti et al.

(a) W/O Post-Processing (b) Hann-based Filtering

Fig. 5. Effects of Hann-based filtering on an axial plane extracted from a predicted
volume. On the left (a), the prediction of our model without post-processing. On the
right (b), the effect of the proposed Hann-based post-processing on the same model
output. In both images, blue represents logits that have a value higher than 10−4. The
post-processing significantly reduces artifacts that appear close to patch borders. Even
if most of these artifacts do not cause any issues, the ones that are close to the IAC
badly influence the final segmentation.

5 Experiments and Results

Sec. 5.1 defines the details of the adopted patch-based learning procedure, along-
side with our experimental setting. We compare our proposal with state-of-the-
art models in Sec. 5.2 and conduct an ablation study to highlight the contribution
of the absolute token [ABS] and the memory of the Transformer in Sec. 5.3. Fi-
nally, Sec. 5.4 provides some visualizations of our model predictions, discussing
its strengths and weaknesses.

5.1 Experimental Setting

Since we adopted a patch-based learning approach, we fed our model with
patches of 120 × 120 × 120 instead of the entire volume as a whole. During
training we extracted patches with random uniform sampling, while during in-
ference patches are extracted with an overlap of 50% in all the dimensions.

For what concerns the hardware resources, we trained our model in a dis-
tributed fashion, exploiting two NVIDIA Quadro RTX 5000 GPUs. The time
needed for a complete training is approximately 16h with a batch size of 2.

5.2 Comparison with the State of The Art

In order to compare our proposal with the latest advances in the segmentation
of the inferior alveolar nerve [30, 34], Tab. 1 is provided. Both [30] and [34]
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Table 1. Comparison of our proposed model with the state of the art on IAC seg-
mentation.

Dataset Method IoU Dice

Maxillo
Usman et al. [30] – 0.770
Cripriano et al. [5] 0.650 0.790
Zhao et al. [34] – 0.810
Ours 0.704 0.824

ToothFairy Ours 0.710 0.831

leverage a two-stage approach that aims at filtering out background data be-
fore actually performing the canal segmentation. In doing so, [30] makes use
of a CNN-based approach that performs worse than both the positional encod-
ing proposed in [5], and the non-deep two-stage approach based on the Frenet
frame described in [34]. In Tab. 1 the proposed (complete) model is trained from
scratch by means of both 3D “true” label and synthetically generated labels
obtained from the deep label expansion phase. For a fair comparison, we per-
formed the training twice, using only the Maxillo dataset (the dataset employed
by competitors) and the complete ToothFairy dataset (our reference dataset).
The test set of the two datasets matches, being one the extension of the other.
The comparative evaluation provided confirms that our proposal outperforms
the state-of-the-art competitors on the public dataset, by setting a new upper
bound for IAC segmentation.

5.3 On the Effectiveness of the ABS Token and Memory

To showcase the contribution of each model component, we perform our evalu-
ation by progressively including them in Tab. 2. We performed 10 experiments
for each setup,7 but focused only on the deep label expansion phase of the train-
ing, thus limiting the number of experiments without losing generality in the
conclusion raised (Sec. 4.2). It is worth noticing that any improvement in the
deep label expansion step will benefit the whole segmentation pipeline. More-
over, since the model employed in the two phases is the same, the contributions
of each proposed component can already be inferred during the generation phase.

At first glance, the comparison between the first two table lines might imply a
lack of efficacy of the Transformer architecture. However, it is crucial to note that
PosPadUNet3D incorporates absolute positional information from the original
volume, which is not the case for TransPosPadUNet3D, which simply relies on
a Transformer module introduced in the bottleneck of the U-Net architecture.

Introducing the [ABS] token to TransPosPadUNet3D (third line of Tab. 2)
enhances its performance, already improving with respect to PosPadUNet3D and
consistently demonstrating the effect of the proposed ABS token. Furthermore,

7 Experiments on the same setup differ only in the initialization seed.
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Table 2. Contribution of the modules composing our proposal, considering only the
generation phase of our training procedure.

Method Transf. ABS
Token Memory Hann

Window Dice

PosPadUNet3D ✗ ✗ 0 ✗ 0.797 ± 0.006
TransPosPadUNet3D ✓ ✗ 0 ✗ 0.796 ± 0.009
TransPosPadUNet3D ✓ ✓ 0 ✗ 0.801 ± 0.005
TransPosPadUNet3D ✓ ✗ 128 ✗ 0.800 ± 0.011
TransPosPadUNet3D ✓ ✓ 128 ✗ 0.802 ± 0.004
Ours (Complete) ✓ ✓ 128 ✓ 0.809 ± 0.004

the performance of TransPosPadUNet3D shows a progressive improvement, ini-
tially with the integration of memory tokens, and subsequently through the
application of the Hann Windows function as a post-processing strategy. Ul-
timately, the implementation of the [ABS] token results in a halved standard
deviation, thereby supporting the robustness of the proposed model.

5.4 Qualitative Evaluation

A qualitative evaluation of the predictions obtained using our proposed model
is provided in Fig. 6, where five pairs of automatic segmentations are coupled
with their corresponding ground-truth annotations. Sample data are taken from
the public test case of the ToothFairy dataset.

While the majority of the predictions are exceptionally accurate and worth to
be integrated in the daily clinical practice, a notable edge case is observed in the
sample P141, where the canal on the left is heavily affected by the presence of a
wisdom tooth, making it one of the hardest to be predicted. In this instance, our
model’s prediction resulted in a non-continuous canal. Further improvements to
our model may involve techniques to deal with such a kind of issues.

6 Discussion and Conclusion

One of the primary challenges associated with patch-based learning is the limited
context available when modeling patches extracted from the original objects. In
order to address this limitation, we propose an innovative approach by incorpo-
rating a transformer encoder with memory into the U-Net architecture, along
with the introduction of the [ABS] token. Specifically, the [ABS] token is de-
signed to embed the absolute position information of the processed patch within
the original volume. By sharing this positional information with other elements
within the bottleneck of the U-Net architecture, we are able to enhance the
contextual understanding of the patches during the segmentation process and
improve overall performance.

Moreover, our transformer encoder is equipped with memory tokens, which
serve to store essential and generalized information pertaining to all patches. This
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(a) P141

(b) P8 (c) P94

(d) P143 (e) P420

Fig. 6. Segmentation predictions proposed by our model (left) and corresponding
ground-truths annotation (right) on examples taken from the ToothFairy public test
set. The jaws face the camera view, thus the canal on the left side is the right IAC.

stored information can be particularly valuable for the segmentation task, as it
may be difficult to be directly retrieved from each patch singularly. By leveraging
the transformer encoder with memory and the [ABS] token, our proposed method
seeks to address the contextual information challenge in patch-based learning,
improving the segmentation performance within the U-Net architecture.

To ensure the reproducibility of our experiments, we have made the described
pipelines openly accessible to the scientific community as an open-source project.
Furthermore, we conducted our experiments on public datasets, encouraging the
broader scientific community to further enhance the results in the context of
inferior alveolar canal segmentation and letting anyone reproduce the obtained
results and verify our claims. Such a collaborative effort is crucial in critical
medical domains to foster progress and innovation.

Future Work. While the suggested approach has proven effective in refining
IAC segmentation, it could be adapted and potentially applied to any tasks
where feeding an entire sample into the network is impractical, but having a
global context is important. Future works will focus on studying the versatility
of our proposed method, which will open doors to a broad range of applications
beyond IAC segmentation. This will offer a promising research direction for fur-
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ther investigation into its performance across diverse neural networks, datasets,
and data modalities.
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