
BarBeR: A Barcode Benchmarking Repository

Enrico Vezzali1, Federico Bolelli1, Stefano Santi2, and Costantino Grana1

1 University of Modena and Reggio Emilia, Modena, Italy
{name.surname}@unimore.it

2 Datalogic, S.p.A, Bologna, Italy
stefano.santi@datalogic.com

Abstract. Since their invention in 1949, barcodes have remained the
preferred method for automatic data capture, playing a crucial role in
supply chain management. To detect a barcode in an image, multiple
algorithms have been proposed in the literature, with a significant in-
crease of interest in the topic since the rise of deep learning. However,
research in the field suffers from many limitations, including the scarcity
of public datasets and code implementations, which hampers the repro-
ducibility and reliability of published results. For this reason, we devel-
oped “BarBeR” (Barcode Benchmark Repository), a benchmark designed
for testing and comparing barcode detection algorithms. This benchmark
includes the code implementation of various detection algorithms for bar-
codes, along with a suite of useful metrics. It offers a range of test setups
and can be expanded to include any localization algorithm. In addition,
we provide a large, annotated dataset of 8 748 barcode images, combining
multiple public barcode datasets with standardized annotation formats
for both detection and segmentation tasks. Finally, we share the results
obtained from running the benchmark on our dataset, offering valuable
insights into the performance of different algorithms.

Keywords: BarBeR · Barcodes· Benchmark· QR Codes · Public Dataset

1 Introduction

Barcodes, a prevalent form of machine-readable data representation, have rev-
olutionized the accuracy and speed of data collection and identification [36].
Their cost-effectiveness and efficiency have led to their widespread use in var-
ious engineering applications. First of all, barcodes serve as a cornerstone of
supply chain management [24], facilitating the flow of goods from manufacturers
to consumers by enabling efficient inventory tracking and logistics management.
Secondly, barcodes are extensively used in warehouses to automate the process
of goods receipt, storage, and dispatch, helping in reducing manual errors and
improving the speed of operations [19]. Other notable applications are compo-
nent tracking in manufacturing, product recognition in retail [25], and robot
guidance [29]. Despite their inception over seven decades ago, barcodes continue
to hold their ground in today’s digital age, and their use is forecasted to increase
in the future [17]. This is reflected in the projected growth of the barcode reader
market, which was valued at $7.4 billion in 2022 and is expected to reach $13.3

2 E. Vezzali et al.

billion by 2032, growing at a CAGR of 6.3% from 2023 to 2032 [33]. Barcodes
come in two categories: one-dimensional (1D or linear) and two-dimensional
(2D). Linear barcodes encode data with lines of varying widths and spacing, but
have limited data storage capacity. To overcome this issue, 2D barcodes were
introduced. Their structure allows data to be stored on both vertical and hori-
zontal axes, offering greater capacity compared to 1D barcodes [32]. The process
of reading a barcode can usually be divided into two macro steps: localization
and decoding. While some papers focus on both steps [10,18] most of the publi-
cations just focus on the localization part [30,38,41]. Especially in recent times,
it has become the norm to use public third-party libraries to handle the decoding
step [37]. The two most used libraries are ZXing3 and Zbar.4 Each software tool
can handle both 1D and 2D barcodes. Therefore, our primary focus from now
on will be on localization. Until recently, real-time speed for a localization al-
gorithm was achievable solely through the computation of hand-crafted features
from the image. However, the recent advancements in edge deep learning fueled
the interest in developing barcode localization solutions based on deep learn-
ing. Between the years 2015 and 2021, 25 publications introduced a method for
barcode localization (either 1D, 2D, or both) that utilized deep learning tech-
niques [37]. Despite the huge interest in the field, several issues prevent definitive
conclusions about methods’ effectiveness and applicability. The first is that ex-
isting research relies on small datasets that do not reflect real-world scenarios
accurately and make training deep learning models difficult. Then there is the
problem of reproducibility. The lack of public code implementations makes repli-
cating results challenging. Finally, different studies use different metrics, leading
to contradictory comparisons even with identical algorithms and datasets.

To address these challenges, we have developed “BarBeR” (Barcode Bench-
mark Repository) —an open-source benchmark for barcode localization with
standardized test protocols and evaluation metrics. BarBeR contains the im-
plementation of multiple localization algorithms tailored for barcodes that we
selected after a thorough review of the literature. In addition, we are publicly re-
leasing a large annotated dataset of 8 748 images of barcodes to be used with our
benchmark. Our aim is to enhance reproducibility and facilitate more reliable
algorithm comparisons within the research community.

2 Related Works

Early Barcode Localization Efforts. Joseph Woodland and Bernard Silver
invented the linear barcode in 1949 and patented it in 1952. Early decoding
methods relied on analog circuits, with laser scanners being the primary decod-
ing method in the ‘70s. However, these systems required the reader to be directly
aimed at the barcode. The 1990s saw the advent of 2D image barcode reading.
A significant advantage of this approach is the ability to read a barcode from

3 https://github.com/zxing/zxing
4 https://github.com/ZBar/ZBar

https://github.com/zxing/zxing
https://github.com/ZBar/ZBar

BarBeR: A Barcode Benchmarking Repository 3

Table 1. List of the public datasets collected for the benchmark. The table reports the
number of images per dataset and the resolution of the image with the minimum and
the maximum number of pixels in the dataset respectively. # 1D and # 2D represent
the number of linear and two-dimensional barcode instances in each dataset.

Dataset Name # Images Minimum Resolution Maximum Resolution # 1D # 2D

Arte-Lab Medium 1D [39] 430 1 152×864 2 976×2 232 430 7
Arte-Lab Extended 1D [40] 155 648×488 648×488 165 3
Bodnár-Huawei QR [3] 98 1 600×1 200 1 600×1 200 0 98
DEAL KAIST Lab [7] 3 308 141×200 3 480×4 640 3 378 76
Dubska QR [8] 810 402×604 2 560×1 440 0 806
InventBar [16] 527 480×640 480×640 530 33
Muenster 1D [35] 1 055 1 600×1 200 2 592×1 944 1 068 1
OpenFood Facts [1] 185 390×520 5 984×3 376 187 5
ParcelBar [16] 844 1 108×1 478 1 478×1 108 1 196 17
Skku Inyong DB [38] 325 1 440×2 560 1 440×2 560 368 10
Szentandrasi QR [31] 90 1 024×768 4 752×3 168 0 225
ZVZ-Real [41] 921 407×576 3 288×4 930 740 475

Total 8 748 200×141 5 984×3 376 8 062 1 756

a wider field of view, but to do so, the barcode must first be located. Detec-
tion methods for linear barcodes included Sobel filters for texture analysis [34],
Gabor filters [13], and even early machine learning techniques for texture classifi-
cation [14]. The Hough Transform also gained popularity for linear barcodes [26],
and gradient analysis was used for QR codes [27].
Recent Approaches. Research continued to address limitations and expand
barcode localization applications. Methods explored skeletonization [4] and tex-
ture direction analysis [12], while the use of the Hough Transform was extended
to the 2D barcodes [31]. Huge efforts were directed into increasing the algorithm’s
speed, to allow the use on mobile phones [10].
The Deep Learning Era. Chou’s 2015 work marked a turning point with the
introduction of CNNs for QR code detection [6]. Deep learning has since become
dominant, with notable successes using YOLO [11] and Faster R-CNN [20]. Many
also proposed custom CNN architectures adapted to the task [41].

3 Dataset

For this project, we required a large dataset to accurately compare algorithms
and train object detection neural networks. For this reason, we conducted a
thorough literature review to identify publicly available datasets of barcodes.
Table 1 lists these datasets and their sources. The collected datasets account
for a total of 8 748 images with 9 818 annotated barcodes, 8 062 linear, and
1 756 two-dimensional. A significant challenge was the lack of annotations in
some datasets and the wide variation in annotation formats. To address this, we
generated new annotations for all images using Datalogic’s proprietary software,
which generates a 4-point polygon for each barcode read and provides additional
information, such as its type, and the encoded string. In addition, we have in-
formation about the pixel density of the barcode, usually measured in pixels per

4 E. Vezzali et al.

Fig. 1. Example of images taken from the proposed dataset. Multiple types of items
are portrayed in different settings. In addition, we have some examples of hard cases,
such as confusing patterns, small bounding boxes, variable lighting, underexposure,
and blur. Some barcodes are also non-planar or partially obstructed.

element (PPE), i.e., the mean width of the smallest element in a barcode. This
measure can also be referred to as pixels per module (PPM). While most codes
were annotated in this way (8 096), a few (1 722) were un-decodable due to blur,
noise, or incorrect scale. These codes were manually annotated, and thus they
lack some information like the PPE. Since the annotations use polygons instead
of boxes, they are suitable for both detection and segmentation.

The final dataset presents an extensive diversity of subjects and environ-
ments. It contains barcodes of 18 categories, 14 of which are considered linear
symbologies (Code 128, Code 39, EAN-2, EAN-8, EAN-13, GS1-128, IATA 2
of 5, Intelligent Mail Barcode, Interleaved 2 of 5, Japan Postal Barcode, KIX-
code, PostNet, RoyalMail Code, and UPC) and 4 are considered 2D symbologies
(Aztec, Datamatrix, PDF417, and QR Code). The images have been captured
with different devices such as a Nokia N95 [35], a Huawei Smartphone from
2014 [3], and a 15MP professional camera [8]. The dataset also features different
settings and subjects. Skku Inyong DB [38] was captured inside a supermar-
ket and represents items found there. DEAL KAIST Lab [7] also represents
market items, but the settings change widely, some indoors, others outdoors.
Dubska [8] dataset represents mostly QR codes printed on paper, captured in-
doors in a controlled setting. ZVZ-Real [41] is one of the most diverse datasets
in the collection, with images taken indoors and outdoors, with subjects ranging
from market items, product labels, receipts, and letters as well as book photos
and scans. In addition, our dataset contains both planar barcodes and skewed
or warped barcodes. The dataset contains barcodes in different lighting condi-
tions, some are underexposed or overexposed, and others have variable lighting

BarBeR: A Barcode Benchmarking Repository 5

throughout the code. Other codes have specular reflections. Finally, some codes
are affected by blur and noise or are partially covered or obstructed, as shown
in Fig. 1.

4 Benchmark Description

As part of this project, we have developed BarBeR, a benchmark for barcode
localization algorithms available on GitHub.5 It includes various detection meth-
ods and scripts to train neural networks for barcode detection. Our dataset, used
for running our tests, can be downloaded from the same GitHub repository or
from our website.6

4.1 Tests and Metrics

The repository is equipped with a variety of test scripts, each supporting diverse
configurations. Here is a breakdown of the test scripts and their main configu-
ration parameters:

– Single Class Detection: runs all the selected algorithms considering only
images with the selected type of barcodes. It can be tailored to permit only
linear or two-dimensional barcodes. It is also possible to include only images
with a single Region Of Interest (ROI) or multiple ROIs per image. In ad-
dition, we can decide the target resolution used to rescale the images in the
test set. Finally, we can specify which algorithms to use in the test and with
which arguments;

– Multi-Class Detection: runs all the selected algorithms on all the images
of the test set. As for Single Class Detection, we can choose the resizing
resolution and which algorithms are included in the test;

– Timing Performance: measures the time required to run the algorithms.
The times can be taken from the average times on all datasets or a subsection
of it. It is possible to measure the algorithms’ performance on a single core
or multiple cores as well as on GPU.

All test scripts are written in Python and take as input argument a YAML
configuration file and output a YAML file containing multiple metrics for ev-
ery tested algorithm. The available metrics are precision, recall, and F1-score
at different IoU scores. For algorithms that also output a confidence score, the
Benchmark computes the Average Precision (AP@.5, AP@[.5:.95]) for each class,
the mean Average Precision (mAP@.5, mAP@[.5:.95]) and the Average Recall
(AR100, AR10, AR1). Finally, the benchmark allows to filter these metrics de-
pending on the size of the ground truth and its pixel density. The repository also
contains bash scripts used to run a pipeline of tests. This is useful, for example,
for k-fold cross-validation.
5 https://github.com/Henvezz95/BarBeR
6 https://ditto.ing.unimore.it/barber

https://github.com/Henvezz95/BarBeR
https://ditto.ing.unimore.it/barber

6 E. Vezzali et al.

Table 2. Characteristics of the deep-learning models used in our tests. Two-stage
detectors first propose regions, then classify and refine bounding boxes. One-stage
detectors perform detection and classification in a single step.

Network Type Backbone # Parameters [M] GFlops @(640x640)

Zharkov et al. [41] One-Stage dilated-net 0.0424 1.528
Faster R-CNN [28] Two-Stage resnet50_fpn_3x 41.755 134.38
RetinaNet [21] One-Stage resnet50_fpn_3x 34.014 151.54
YOLO-v8 [15] One-Stage yolov8 medium 25.903 39.66
YOLO-v8 Nano [15] One-Stage yolov8 nano 3.157 4.429
RT-DETR [23] One-Stage HGNetv2-L 31.005 54.17

4.2 Available Localization Methods

Gallo et al. The localization method proposed by Gallo and Manduchi in 2011
is a rapid algorithm that localizes a single 1D barcode per image. It assumes
the barcode is horizontally positioned with vertically aligned parallel lines and
is not rotation invariant. The process begins by calculating a heatmap Ie(n),
representing the difference between the magnitudes of the horizontal and vertical
derivatives. After smoothing and binarizing the heatmap, the blob containing the
pixel that maximizes Ie(n) is used to compute the barcode’s bounding box.
Soros et al. This algorithm was proposed in 2013 by Sörös and Flörkemeier. It
is a method designed for both 1D and 2D barcodes that is orientation invariant
and is quite resistant to blur [30]. However, this method can only output a
single ROI for each barcode type. It is based on the UNIVAR detector and
OMNIVAR detector proposed by Ando [2]. The first detector finds areas with
strong unidirectional edges and can be used to find linear barcodes, while the
latter can find corners and is useful for 2D barcode localization.
Zamberletti et al. The method introduced by Zamberletti et al. in 2013 is
capable of detecting multiple linear barcodes. It generates several rotated boxes,
all sharing the same angle of rotation. This proves beneficial in scenarios where
a single label contains multiple barcodes, each exhibiting the same rotational
angle. It uses a multi-layer perceptron to process the Hough Transform of the
image and predict the angle of the barcodes in the image. Once the angle is
found, the technique of Galamhos et al. [9] is used to find all lines with that
angle of orientation. Finally, the areas with the highest concentration of these
lines are located using a method based on histograms and labeled as barcodes.
Yun et al. This detection method was described in 2017 by Yun and Kim. The
algorithm is designed for the detection of linear barcodes and supports multiple
detections per image. For detecting the salient regions, the entropy scheme is
used [5]. The idea is to divide the image into non-overlapping cells, and for
each cell the local orientation histogram is computed. The histogram is used to
compute the entropy of the cell. Cells with high entropy have high directionality
and a high probability of being part of a barcode.
Zharkov et al. In 2019, Zharkov et al. proposed a custom Convolutional Neural
Network for 1D and 2D barcodes segmentation employing dilated convolution.
The network is trained using a loss function that prioritizes high recall over high
precision.

BarBeR: A Barcode Benchmarking Repository 7

Table 3. Precision, Recall and F1-score with an IoU threshold of 0.5. Employed images
contain a single 1D barcode and were resized to have their longest side of 640 pixels.

Detection Method Precision ↑ Recall ↑ F1-score ↑

Gallo et al. [10] 0.533 0.533 0.533
Soros et al. [30] 0.658 0.658 0.658
Zamberletti et al. [40] 0.234 0.340 0.278
Yun et al. [38] 0.806 0.714 0.757
Zharkov et al. [41] 0.725 0.952 0.823
Faster R-CNN [28] 0.981 0.996 0.989
RetinaNet [21] 0.988 0.991 0.990
YOLO Nano [15] 0.978 0.997 0.987
YOLO Medium [15] 0.984 0.998 0.991
RT-DETR [23] 0.987 0.999 0.993

Open Source Object Detection Models. In addition, we included five open-
source object detection models in our benchmark. Each model was pre-trained
on the MS COCO dataset [22] and fine-tuned on our training set. The selected
architectures are Faster R-CNN, RetinaNet, YOLO-v8 Medium, and Nano and
RT-DETR. The details of the selected architectures are presented in Table 2.

5 Benchmark Results

5.1 Methodology

We assess the detection accuracy using 5-fold cross-validation for both single-
class and multi-class modes. End-to-end deep learning models are trained with
75% of the training set, using the remaining 25% as a validation set for early
stopping. Zamberletti’s method leverages a pre-trained MLP trained on the Arte-
Lab Rotated dataset, that is not included in our dataset, thus preventing any
unfair comparison. Timing measurements are taken as the best of three runs to
minimize external factor interference.

5.2 Single 1D Barcode Localization

First, we tested the available detection algorithms by considering just images
of a single class, linear barcodes, or 2D barcodes. This evaluation focuses on
images containing a single linear barcode, allowing us to test all the available
algorithms. The total number of images included in this test was 6 811. For
this test, we resized all images to have their longest side of 640 pixels. This
is the same size used to test the methods of Gallo [10] and Zamberletti [40]
in their original paper. This is also the default resolution for YOLO-v8 [15]
and other object detection networks. At this resolution, our dataset comprises
42 small objects (area < 322), 2 665 medium objects (322 < area < 962), and
4 104 large objects (area >962). Traditional methods often rely on some form of
texture detection for localization, where barcode texture depends on the number
of pixels per element (PPE). After resizing, the PPE ranges from 0.35 to 5.13,
with most barcodes in the dataset having a pixel density between 1 and 3 pixels

8 E. Vezzali et al.

per element. Additionally, there are 1 044 barcodes without PPE information,
suggesting that the automatic labeler was unable to decode them.

Since not all methods generate a confidence score, we used precision, recall,
and F1-score as metrics for a fair comparison. In Table 3 we can see the results
of the different methods considering an IoU threshold of 0.5. Gallo and Soros’
algorithms produce a single prediction every time, so their precision, recall, and
F1 scores are always the same. However, considering a single IoU threshold could
not be enough for a fair comparison. A more complete evaluation is displayed in
Fig. 2, with the F1-score curves at different values of TIoU . Apart from Zharkov et
al., all the other end-to-end neural networks always outperform the other meth-
ods. This was expected since these methods are more computationally intensive
and adept at complex detection problems. Among the tested classic algorithms,
Yun et al. is by far the one that performs better at every IoU threshold, making
it a valid choice when a neural network is too resource-heavy. The methods of
Gallo and Soros have similar performance, with a moderate edge in favor of the
second one at low TIoU . Zamberletti’s method is the weakest performer overall.
Zharkov et al. reaches a very high recall, much higher than what is achieved by
the classic algorithms, but scores lower in precision. All the other deep-learning-
based methods reach a near-perfect precision and recall for TIoU < 0.75. Despite
being the two biggest models, Faster R-CNN and RetinaNet underperform a bit
compared to other networks for TIoU > 0.75, meaning that the generated boxes
are less precise. Overall, T-DETR leads the leaderboard, albeit by a small mar-
gin. Interestingly, YOLO Nano, despite having nearly 10 times fewer parameters,

Fig. 2. F1-score of detection algorithms at different thresholds. Employed images con-
tain a single 1D barcode and were resized to have the longest side equal to 640 pixels.

BarBeR: A Barcode Benchmarking Repository 9

Table 4. Precision, Recall and F1-score with IoU threshold of 0.5. All images contain
a single 2D barcode and were resized to have their longest side equal to 640 pixels.

Detection Method Precision ↑ Recall ↑ F1-score ↑

Soros et al. [30] 0.140 0.140 0.140
Zharkov et al. [41] 0.727 0.900 0.804
Faster R-CNN [28] 0.981 0.992 0.987
RetinaNet [21] 0.981 0.995 0.988
YOLO Nano [15] 0.962 0.989 0.975
YOLO Medium [15] 0.980 0.990 0.985
RT-DETR [23] 0.972 0.997 0.984

performs similarly to YOLO Medium and RT-DETR, suggesting that smaller
networks can excel in this detection task without sacrificing accuracy.

5.3 Single 2D Barcode Localization

In this test, we only include examples with a single two-dimensional barcode.
Soros’s method [30] is the only non-deep-learning-based method available that
also detects 2D barcodes. The employed dataset contains 1 164 images, resized
to a maximum edge length of 640 pixels. At this resolution, our dataset included
19 small objects (area < 322), 202 medium objects (322 < area < 962), and 943
large objects (area > 962). Alongside the object’s area, module density remains
crucial for determining the dataset’s difficulty. After resizing, the PPE ranges
from 0.48 to 9.98, with most codes being uniformly distributed in the range 1.5
to 7.0. Additionally, 90 barcodes lack PPE information. As for the linear barcode
case, we present the values of precision, recall, and F1-score of the tested methods
considering an IoU threshold of 0.5. The results are presented in Table 4.

Fig. 3. F1-score curves of 2D barcode detection algorithms at different values of IoU
threshold. Employed images contain a single 2D barcode and were resized to have their
longest side of 640 pixels.

10 E. Vezzali et al.

Table 5. Number of objects per class and size category across the entire dataset, with
images resized at different resolutions.

Longest Side Resolution Type Small Objects Medium Objects Large Objects Total

640 px
1D 172 3 613 4 277 8 062
2D 85 611 1 060 1 756

Total 257 4 224 5 337 9 818

480 px
1D 478 4 789 2 795 8 062
2D 157 712 887 1 756

Total 635 5 501 3 682 9 818

320 px
1D 1 813 5 447 802 8 062
2D 421 574 761 1 756

Total 2 234 6 021 1 563 9 818

It is clear that the Soros et al. method, with an F1 score of 0.14, is not
a reliable 2D barcode detector. To better understand how the other methods
perform at different IoU thresholds, we present their F1 curves in Fig. 3.

Zharkov et al. achieves good results, especially in recall, but falls short of the
other deep learning architectures. At TIoU < 0.75, RetinaNet performs the best
in terms of F1-score, while YOLO Medium and RT-DETR have the highest score
for TIoU > 0.75. YOLO Nano has a similar performance to YOLO Medium, but
now the gap is a bit larger with respect to the 1D case.

5.4 Multi-class Detection

We expand our analysis to the entirety of the dataset, encompassing both 1D
and 2D barcode classes. The task is now not only about detection, but also clas-
sification. The available methods for multi-class and multi-ROI detection are the
deep-learning-based models. As previously observed, deep-learning models sig-
nificantly outperform classical methods in this domain. However, implementing
them in industrial applications could be challenging due to the high computa-
tional costs. A potential solution is to detect barcodes at a lower resolution and
execute the decoding phase at full resolution. We thus decided to run our tests
at three different resolutions, to test the viability of this strategy. First, all the
images are resized to have their longest side equal to 640 pixels, then to 480
pixels and 320 pixels. For each scale, we re-trained the models using a training
set with the same scale used for testing. In Table 5 we see the number of in-
stances divided by class and size. In total, 8 748 images are included, with 8 062
instances of 1D barcodes and 1 756 instances of 2D barcodes. To evaluate model
performance, we calculated the Average Precision at an IoU threshold of 0.5
(AP@0.5) and the Average Precision across IoU thresholds from 0.5 to 0.95 with
a step size of 0.05 (AP@[.5:.95]) for each class. In addition, we considered the
corresponding mean Average Precision values (mAP@0.5 and mAP@[.5:.95]) for
each model. The results are presented in Table 6. Zharkov et al.’s model, while
not as robust as the others, achieves a respectable mAP@0.5 score of 0.823 at
the 640 pixels scale. However, its performance drops significantly at the other
two scales. Other models perform well at all tested resolutions. The performance

BarBeR: A Barcode Benchmarking Repository 11

Table 6. Average precision scores for the tested models across all images of the dataset
resized at different scales.

Longest Side
Resolution Model

1D barcodes 2D barcodes Average

AP@0.5 ↑ AP@[.5:.95] ↑ AP@0.5 ↑ AP@[.5:.95] ↑ mAP@0.5 ↑ mAP@[.5:.95] ↑

640 px

Zharkov et al. 0.905 0.536 0.741 0.468 0.823 0.502
YOLO Nano 0.986 0.902 0.960 0.910 0.973 0.906
YOLO Medium 0.988 0.909 0.976 0.930 0.982 0.920
RT-DETR 0.989 0.914 0.973 0.930 0.981 0.922
Faster R-CNN 0.982 0.857 0.967 0.866 0.974 0.862
RetinaNet 0.973 0.848 0.968 0.894 0.970 0.871

480 px

Zharkov et al. 0.380 0.180 0.661 0.465 0.521 0.322
YOLO Nano 0.982 0.889 0.961 0.901 0.972 0.895
YOLO Medium 0.988 0.899 0.966 0.917 0.977 0.908
RT-DETR 0.987 0.900 0.968 0.919 0.977 0.910
Faster R-CNN 0.979 0.843 0.953 0.843 0.966 0.843
RetinaNet 0.963 0.830 0.948 0.866 0.955 0.848

320 px

Zharkov et al. 0.530 0.254 0.571 0.382 0.551 0.318
YOLO Nano 0.976 0.860 0.947 0.872 0.961 0.866
YOLO Medium 0.975 0.853 0.946 0.862 0.960 0.857
RT-DETR 0.980 0.875 0.955 0.893 0.968 0.884
Faster R-CNN 0.929 0.764 0.928 0.787 0.928 0.775
RetinaNet 0.887 0.740 0.89 0.793 0.888 0.766

drop from 640 pixels to 480 pixels is small for most models, while downscaling to
320 pixels has a more noticeable impact. At the 640 pixels scale, Faster R-CNN
and RetinaNet achieve lower scores than other models, while YOLO Medium
and RT-DETR deliver the highest mAP@0.5 and mAP@[.5:.95], respectively. At
the other two scales, the scores of Faster R-CNN and RetinaNet decrease more
than those of YOLO and RT-DETR. RT-DETR is the best model across all
metrics considered, with an increase in lead at the lowest resolution. Surpris-
ingly, YOLO Nano has better metrics across all categories compared to YOLO
Medium at 320 pixels resize, while this is not true for the other scales.

5.5 Time Measurement

In this section, we evaluate barcode detection algorithm inference times. This
analysis is essential for applications running on devices with limited resources.
For a comprehensive assessment, we benchmark the algorithms on two contrast-
ing platforms: a high-end PC and a Raspberry Pi 3B+. The algorithms we tested,
implemented in C++, were not specifically optimized for multi-threading, but
employ a few OpenCV functions capable of multi-threaded execution. To pro-
vide a clear understanding of their performance, we ran these methods on a
single CPU thread. For a balanced comparison, we also recorded the inference
times of deep-learning methods running on a single CPU thread. In addition, we
also report the times of deep-learning methods when running on GPU or CPU
with multi-threading enabled. All C++ implementations were compiled with -
O3 optimization for maximum performance. For this benchmark, we run all the
detection methods on all the images of the dataset. To reduce the impact of the
background processes, we repeat detections three times per image and take the
lowest time. The final time is the average for every image.

12 E. Vezzali et al.

Table 7. Average time required for detection on PC and on Raspberry PI. All images
have been resized to have the longest side to 640 pixels. The ∞ symbol indicates that
there was not enough RAM to run the algorithm.

Detection
Method

Times on PC (ms) Times on Raspberry PI (ms)

Single-Thread
CPU ↓

Multi-Thread
CPU ↓ GPU ↓ Single-Thread

CPU ↓
Multi-Thread

CPU ↓

Gallo et al. [10] 1.63 - - 53.45 -
Soros et al. [30] 11.25 - - 397.53 -
Zamberletti et al. [40] 48.20 - - 1 360.23 -
Yun et al. [38] 7.59 - - 146.31 -
Zharkov et al. [41] 25.85 5.97 1.45 2 120.43 1 949.08
YOLO Nano [15] 64.99 17.40 18.66 3 034.27 1 803.09
YOLO Medium [15] 478.92 51.36 23.91 20 083.87 15 813.46
RT-DETR [23] 985.41 141.06 37.55 39 882.45 33 224.15
Faster R-CNN [28] 1 271.93 237.91 30.27 ∞ ∞
RetinaNet [21] 1 124.11 105.20 36.00 ∞ ∞

Time on PC. We measured times when running on a PC with a 24-core AMD
Ryzen Threadripper Pro 5965WX CPU, 128 GB of DDR4 RAM, and an RTX
4090 GPU. All the tests were conducted after scaling the images to have their
longest side of 640 pixels. In total, we have 8 748 images, with a mean resolution
of 0.284 Megapixels after resizing. Inference is conducted on a single image at
a time. Table 7 presents the times required to run detection methods on a
single CPU thread. For deep-learning methods, we also report multi-threaded
performance and GPU performance. Focusing on single-threaded performance on
the CPU, there’s a significant difference between the methods, with Gallo et al.
being the fastest (1.63ms). This was expected since this is the oldest method,
and its main focus was to run on limited hardware. Yun et al. is the second
fastest method (7.59ms), despite having a better detection accuracy than Soros
and Zamberletti’s algorithms. Zharkov et al. is the only deep-learning model
that could run in real-time on a single core with a recorded time of 25.85ms.
YOLO Nano is also quite faster than the other deep-learning models with a mean
execution time of 64.99ms. YOLO Medium is much slower at 478.9ms in single-
thread. As expected, RT-DETR is slower with a time of 985.4ms, and both
RetinaNet and Faster R-CNN require even more time (1 124ms and 1 272ms
respectively). Using multiple threads, all neural networks become 5-10 times
faster, except YOLO Nano which becomes only 4 times faster with a time of
17.4ms. On GPU, the ranking remains the same, but bigger models receive
a bigger boost than smaller models. The fastest model is still Zharkov et al.
at 1.45ms while the slowest one is RetinaNet at 36ms. All barcode detection
methods could be used for real-time applications on a high-end PC. However, it
is hard to find a real-world application where this makes economic sense.

We also recorded the single-thread performance when resizing the longest
side to 480 pixels and 320 pixels, as deep-learning-based detectors work well
even at lower resolutions. The results are shown in Table 8. At lower resolution,
the ranking remains the same, but shorter times are required. Indeed, time scales
more or less linearly with the amount of pixels.

BarBeR: A Barcode Benchmarking Repository 13

Table 8. Average times required for detection on PC and on Raspberry PI, using a
single thread on the CPU, at different longest side resolutions. The ∞ symbol indicates
that there was not enough RAM to run the algorithm.

Detection
Method

Times on PC (ms) Times on Raspberry PI (ms)

Time at
640px ↓

Time at
480px ↓

Time at
320px ↓

Time at
640px ↓

Time at
480px ↓

Time at
320px ↓

Gallo et al. [10] 1.63 0.92 0.41 53.45 32.04 14.31
Soros et al. [30] 11.25 6.26 2.78 397.53 205.51 92.02
Zamberletti et al. [40] 48.20 29.66 17.42 1 360.23 1 357.17 855.78
Yun et al. [38] 7.59 4.49 2.17 146.31 103.84 52.80
Zharkov et al. [41] 25.85 14.56 6.72 2 120.43 882.50 340.92
YOLO Nano [15] 64.99 40.20 20.82 3 034.27 2 108.00 1 050.38
YOLO Medium [15] 478.92 284.62 135.24 20 083.87 12 091.44 5 570.13
RT-DETR [23] 985.41 604.01 329.26 39 882.45 25 371.39 13 427.26
Faster R-CNN [28] 1 271.93 892.33 599.15 ∞ ∞ ∞
RetinaNet [21] 1 124.11 665.03 319.17 ∞ ∞ ∞

Time on Embedded Device. Many barcode reading applications rely on
embedded CPUs, such as identification marking and retail automatic checkouts.
The use of embedded devices instead of PCs ensures a reduction in costs, latency,
and space requirements. To measure the performance on embedded devices we
run our benchmark on a Raspberry PI 3B+ (1.2GHz quad-core ARMv8 CPU,
1GB DDR2 RAM). Since the tested system is now much slower, we had to test
on a subset of 500 randomly selected images of the dataset, to make the test
run in a reasonable time. The mean area remained 0.284 Megapixels. Single-
core CPU tests were conducted for all detection algorithms, with deep-learning
methods also tested using all four cores of the CPU. Results are presented in
Table 7. Compared to the PC results, execution times increased by 30-50x. Insuf-
ficient RAM prevented Faster R-CNN and RetinaNet from running. No method
currently achieves real-time performance, with Gallo’s method being close. The
comparison between the various methods in terms of timings remains unchanged.
Gallo’s method is the fastest (53.45ms), followed by Yun’s (146.3ms), Soros’
(397.5ms), and Zamberletti’s (1 360ms) algorithms. All the deep-learning meth-
ods are slower. Zharkov et al. is still the fastest network at 2 120ms, followed by
YOLO Nano (3 034ms). YOLO Medium and RT-DETR are incredibly slow, with
processing times of 20 084ms and 39 882ms respectively. Multi-core execution
yielded a modest speed-up of roughly 1.5×, potentially limited by unoptimized
libraries or system bottlenecks such as RAM. We also recorded the single-thread
performance when resizing the longest side to 480 pixels and 320 pixels. The
results are shown in Table 8. The ranking remains the same, apart from Zharkov
et al. surpassing Zamberletti et al. at 320 pixels scaling. At this resolution, the
time required by the smaller neural networks, Zharkov et al. and YOLO Nano,
becomes more reasonable (340.9ms and 1 050ms respectively), but still far from
the real-time applications target.

It is crucial to acknowledge that the speed of these methods could be sig-
nificantly enhanced through optimization. For instance, the C++ methods we
have tested could be optimized with SIMD intrinsics and multi-threaded code,

14 E. Vezzali et al.

while the use of software toolkits for Edge AI or techniques like quantization and
pruning can be employed to boost the speed of neural networks with minimal
impact on accuracy. However, this goes beyond the scope of our paper.

6 Conclusion

The paper contributions include a comprehensive review of the field of barcode
localization, the release of a large dataset of 8 748 images of barcodes with stan-
dardized annotations, and the public release of our benchmark. This benchmark
includes multiple localization algorithms, scripts for training deep learning mod-
els, and diverse performance metrics. This ensures transparency and enables
researchers to easily replicate and expand upon our work. Finally, we performed
multiple tests with our benchmark, using our dataset and trained models, from
which we can draw some interesting conclusions. First, our tests confirmed the
significant accuracy advantage of deep learning methods over hand-crafted ap-
proaches. However, the computational complexity of most deep learning models
remains a challenge for real-time embedded applications, since even fairly small
models require more than one second per detection. Downscaling the image be-
fore localization gives a huge speed-up, but does not solve the problem entirely.
Our findings suggest that small neural networks, such as YOLO Nano, perform
nearly as well as much bigger architectures like RT-DETR and RetinaNet. Our
tests also highlight the big advantage of using pre-trained general models, like
YOLO or RetinaNet, over custom-built models like Zharkov’s. Lastly, among
the methods tailored to barcodes, Yun et al. proposal offers an optimal blend of
accuracy and speed, surpassing Soros’ and Zamberletti’s methods in both met-
rics. The fastest method was Gallo et al., showing that decent accuracy could
be achieved even on very constrained devices.

As a closing remark, we hope this benchmark will be a valuable asset for
further research in this field. Its modular design facilitates the integration of
new algorithms, metrics, and data. We welcome feedback and contributions to
further enhance the proposed benchmark.

Acknowledgements. This work was supported by the University of Mod-
ena and Reggio Emilia and Fondazione di Modena, through the FAR 2023 and
FARD-2023 funds (Fondo di Ateneo per la Ricerca).

References

1. Generate a large labelled dataset of barcodes from open food facts data. https:
//github.com/openfoodfacts/openfoodfacts-ai/issues/15 (2018)

2. Ando, S.: Image field categorization and edge/corner detection from gradient co-
variance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(2),
179–190 (2000)

3. Bodnár, P., Grósz, T., Tóth, L., Nyúl, L.G.: Efficient visual code localization with
neural networks. Pattern Analysis and Applications 21, 249–260 (2018)

4. Chai, D., Hock, F.: Locating and Decoding EAN-13 Barcodes from Images Cap-
tured by Digital Cameras. In: 2005 5th International Conference on Information
Communications & Signal Processing. pp. 1595–1599 (2005)

https://github.com/openfoodfacts/openfoodfacts-ai/issues/15
https://github.com/openfoodfacts/openfoodfacts-ai/issues/15

BarBeR: A Barcode Benchmarking Repository 15

5. Chang, S.K., Yang, C.C.: Picture information measures for similarity retrieval.
Computer Vision, Graphics, and Image Processing 23(3), 366–375 (1983)

6. Chou, T.H., Ho, C.S., Kuo, Y.F.: QR code detection using convolutional neural
networks. In: International Conference on Advanced Robotics and Intelligent Sys-
tems (ARIS). pp. 1–5 (2015)

7. Do, T., Kim, D.: Quick Browser: A Unified Model to Detect and Read Simple
Object in Real-Time. In: 2021 International Joint Conference on Neural Networks
(IJCNN). pp. 1–8 (2021)

8. Dubská, M., Herout, A., Havel, J.: Real-time precise detection of regular grids and
matrix codes. Journal of Real-Time Image Processing 11, 193–200 (2016)

9. Galamhos, C., Matas, J., Kittler, J.: Progressive probabilistic Hough transform for
line detection. In: 1999 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. vol. 1, pp. 554–560 (1999)

10. Gallo, O., Manduchi, R.: Reading 1D Barcodes with Mobile Phones Using De-
formable Templates. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33(9), 1834–1843 (2010)

11. Hansen, D.K., Nasrollahi, K., Rasmussen, C.B., Moeslund, T.B.: Real-Time Bar-
code Detection and Classification using Deep Learning. In: International Joint
Conference on Computational Intelligence. pp. 321–327 (2017)

12. Hu, H., Xu, W., Huang, Q.: A 2D barcode extraction method based on texture
direction analysis. In: 2009 Fifth International Conference on Image and Graphics.
pp. 759–762 (2009)

13. Jain, A.K., Chen, Y.: Bar code localization using texture analysis. In: Proceed-
ings of 2nd International Conference on Document Analysis and Recognition (IC-
DAR’93). pp. 41–44 (1993)

14. Jain, A.K., Karu, K.: Learning texture discrimination masks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 18(2), 195–205 (1996)

15. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023)
16. Kamnardsiri, T., Charoenkwan, P., Malang, C., Wudhikarn, R.: 1D Barcode De-

tection: Novel Benchmark Datasets and Comprehensive Comparison of Deep Con-
volutional Neural Network Approaches. Sensors 22(22), 8788 (2022)

17. Kapsambelis, C.: Bar Codes Aren’t Going Away! (2005)
18. Klimek, G., Vamossy, Z.: QR code detection using parallel lines. In: 2013 IEEE 14th

International Symposium on Computational Intelligence and Informatics (CINTI).
pp. 477–481 (2013)

19. Kubáňová, J., Kubasáková, I., Čulík, K., Štítik, L.: Implementation of barcode
technology to logistics processes of a company. Sustainability 14(2), 790 (2022)

20. Li, J., Zhao, Q., Tan, X., Luo, Z., Tang, Z.: Using Deep ConvNet for Robust 1D
Barcode Detection. In: Advances in Intelligent Systems and Interactive Applica-
tions: Proceedings of the 2nd International Conference on Intelligent and Interac-
tive Systems and Applications (IISA2017). pp. 261–267 (2018)

21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Ob-
ject Detection. In: Proceedings of the IEEE international conference on computer
vision. pp. 2980–2988 (2017)

22. Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. In: Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13. pp. 740–755 (2014)

23. Lv, W., et al.: DETRs Beat YOLOs on Real-time Object Detection. In: 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2024)

16 E. Vezzali et al.

24. McCathie, L.: The advantages and disadvantages of barcodes and radio frequency
identification in supply chain management. Phd thesis, School of Information Tech-
nology and Computer Science (2004)

25. Melek, C.G., et al.: Datasets and methods of product recognition on grocery shelf
images using computer vision and machine learning approaches: An exhaustive
literature review. Engineering Applications of Artificial Intelligence 133 (2024)

26. Muniz, R., Junco, L., Otero, A.: A robust software barcode reader using the Hough
transform. In: Proceedings 1999 International Conference on Information Intelli-
gence and Systems (Cat. No. PR00446). pp. 313–319 (1999)

27. Ottaviani, E., et al.: A common image processing framework for 2D barcode read-
ing. In: Image Processing And Its Applications, 1999. Seventh International Con-
ference on (Conf. Publ. No. 465). vol. 2, pp. 652–655 (1999)

28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. Advances in Neural Information
Processing Systems 28 (2015)

29. Soliman, A., Al-Ali, A., Mohamed, A., Gedawy, H., Izham, D., Bahri, M., Erbad,
A., Guizani, M.: AI-based UAV navigation framework with digital twin technology
for mobile target visitation. Engineering Applications of Artificial Intelligence 123,
106318 (2023)

30. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for
smartphones. In: Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia. pp. 1–8 (2013)

31. Szentandrási, I., Herout, A., Dubská, M.: Fast Detection and Recognition of QR
codes in High-Resolution Images. In: Proceedings of the 28th Spring Conference
on Computer Graphics. pp. 129–136 (2012)

32. Taveerad, N., Vongpradhip, S.: Development of Color QR Code for Increasing
Capacity. In: 2015 11th International Conference on Signal-Image Technology &
Internet-Based Systems (SITIS). pp. 645–648 (2015)

33. Vaishnavi Shyamsundar Mate, S.M.: Barcode Reader Market Size, Share, Com-
petitive Landscape and Trend Analysis Report by Type, by Application : Global
Opportunity Analysis and Industry Forecast, 2023-2032 (2023)

34. Viard-Gaudin, C., Normand, N., Barba, D.: A bar code location algorithm using
a two-dimensional approach. In: Proceedings of 2nd International Conference on
Document Analysis and Recognition (ICDAR’93). pp. 45–48 (1993)

35. Wachenfeld, S., Terlunen, S., Jiang, X.: Robust recognition of 1-d barcodes using
camera phones. In: 2008 19th International Conference on Pattern Recognition.
pp. 1–4 (2008)

36. Weng, D., Yang, L.: Design and Implementation of Barcode Management Infor-
mation System. In: Information Engineering and Applications: International Con-
ference on Information Engineering and Applications. pp. 1200–1207 (2012)

37. Wudhikarn, R., Charoenkwan, P., Malang, K.: Deep Learning in Barcode Recog-
nition: A Systematic Literature Review. IEEE Access 10, 8049–8072 (2022)

38. Yun, I., Kim, J.: Vision-based 1D barcode localization method for scale and rota-
tion invariant. In: TENCON - IEEE Region 10 Conference. pp. 2204–2208 (2017)

39. Zamberletti, et al.: Neural Image Restoration for Decoding 1-D Barcodes using
Common Camera Phones. In: VISAPP (1). pp. 5–11 (2010)

40. Zamberletti, et al.: Robust Angle Invariant 1D Barcode Detection. In: 2013 2nd
IAPR Asian Conference on Pattern Recognition. pp. 160–164 (2013)

41. Zharkov, A., Zagaynov, I.: Universal Barcode Detector via Semantic Segmenta-
tion. In: 2019 International Conference on Document Analysis and Recognition
(ICDAR). pp. 837–843 (2019)

	BarBeR: A Barcode Benchmarking Repository

