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Abstract. The adoption of Multi-Instance Learning (MIL) for classi-
fying Whole-Slide Images (WSIs) has increased in recent years. Indeed,
pixel-level annotation of gigapixel WSI is mostly unfeasible and time-
consuming in practice. For this reason, MIL approaches have been prof-
itably integrated with the most recent deep-learning solutions for WSI
classification to support clinical practice and diagnosis. Nevertheless, the
majority of such approaches overlook the multi-scale nature of the WSIs;
the few existing hierarchical MIL proposals simply flatten the multi-scale
representations by concatenation or summation of features vectors, ne-
glecting the spatial structure of the WSI. Our work aims to unleash the
full potential of pyramidal structured WSI; to do so, we propose a graph-
based multi-scale MIL approach, termed DAS-MIL, that exploits mes-
sage passing to let information flows across multiple scales. By means of
a knowledge distillation schema, the alignment between the latent space
representation at different resolutions is encouraged while preserving the
diversity in the informative content. The effectiveness of the proposed
framework is demonstrated on two well-known datasets, where we out-
perform SOTA on WSI classification, gaining a +1.9% AUC and +3.3%
accuracy on the popular Camelyon16 benchmark. The source code is
available at https://github.com/aimagelab/mil4wsi.

Keywords: Whole-slide Images · Multi-instance Learning · Knowledge
Distillation

1 Introduction

Modern microscopes allow the digitalization of conventional glass slides into
gigapixel Whole-Slide Images (WSIs) [18], facilitating their preservation and re-
trieval, but also introducing multiple challenges. On the one hand, annotating
WSIs requires strong medical expertise, is expensive, time-consuming, and labels
are usually provided at the slide or patient level. On the other hand, feeding mod-
ern neural networks with the entire gigapixel image is not a feasible approach,
forcing to crop data into small patches and use them for training. This process

https://github.com/aimagelab/mil4wsi
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Fig. 1. Overview of our proposed framework, DAS-MIL. The features extracted at
different scales are connected (8-connectivity) by means of different graphs. The nodes
of both graphs are later fused into a third one, respecting the rule “part of”. The
contextualized features are then passed to distinct attention-based MIL modules that
extract bag labels. Furthermore, a knowledge distillation mechanism encourages the
agreement between the predictions delivered by different scales.

is usually performed considering a single resolution/scale among those provided
by the WSI image.

Recently, Multi-Instance Learning (MIL) emerged to cope with these limi-
tations. MIL approaches consider the image slide as a bag composed of many
patches, called instances; afterwards, to provide a classification score for the en-
tire bag, they weigh the instances through attention mechanisms and aggregate
them into a single representation. It is noted that these approaches are intrin-
sically flat and disregard the pyramidal information provided by the WSI [15],
which have been proven to be more effective than single-resolution [4,13,15,19].
However, to the best of our knowledge, none of the existing proposals leverage
the full potential of the WSI pyramidal structure. Indeed, the flat concatenation
of features [19] extracted at different resolutions does not consider the substan-
tial difference in the informative content they provide. A proficient learning ap-
proach should instead consider the heterogeneity between global structures and
local cellular regions, thus allowing the information to flow effectively across the
image scales.

To profit from the multi-resolution structure of WSI, we propose a pyrami-
dal Graph Neural Network (GNN) framework combined with (self) Knowledge
Distillation (KD), called DAS-MIL (Distilling Across Scales). A visual represen-
tation of the proposed approach is depicted in Fig. 1. Distinct GNNs provide
contextualized features, which are fed to distinct attention-based MIL modules
that compute bag-level predictions. Through knowledge distillation, we encour-
age agreement across the predictions delivered at different resolutions, while in-
dividual scale features are learned in isolation to preserve the diversity in terms
of information content. By transferring knowledge across scales, we observe that
the classifier self-improves as information flows during training. Our proposal has



DAS-MIL: Distilling Across Scales for MIL Classification of WSIs 3

proven its effectiveness on two well-known histological datasets, Camelyon16 and
TCGA lung cancer, obtaining state-of-the-art results on WSI classification.

2 Related Work

MIL approaches for WSI classification. We herein summarize the most
recent approaches; we refer the reader to [11,26] for a comprehensive overview.

Single-Scale. A classical approach is represented by AB-MIL [16], which em-
ploys a side-branch network to calculate the attention scores. In [28], a similar
attention mechanism is employed to support a double-tier feature distillation ap-
proach, which distills features from pseudo-bags to the original slide. Differently,
DS-MIL [19] applies non-local attention aggregation by considering the distance
with the most relevant patch. The authors of [20] and [25] propose variations of
AB-MIL, which introduce clustering losses and transformers, respectively. In ad-
dition, SETMIL [31] makes use of spatial-encoding transformer layers to update
the representation. The authors of [7] leverage DINO [5] as feature extractor,
highlighting its effectiveness for medical image analysis. Beyond classical atten-
tion mechanisms, there are also algorithms based on Recurrent Neural Networks
(RNN) [4], and Graphs Neural Networks (GNN) [32].

Multi-Scale. Recently, different authors focused on multi-resolution approaches.
DSMIL-LC [19] merges representations from different resolutions, i.e., low in-
stance representations are concatenated with the ones obtained at a higher res-
olution. MS-RNNMIL [4], instead, fed an RNN with instances extracted at dif-
ferent scales. In [6], a self-supervised hierarchical transformer is applied at each
scale. In MS-DA-MIL [13], multi-scale features are included in the same attention
algorithm. [10] and [15] exploit multi-resolution through GNN architectures.

Knowledge Distillation. Distilling knowledge from a more extensive network
(teacher) to a smaller one (student) has been widely investigated in recent
years [21,24] and applied to different fields, ranging from model compression [3]
to WSI analysis [17]. Typically, a tailored learning objective encourages the stu-
dent to mimic the behaviour of its teacher. Recently, self-supervised representa-
tion learning approaches have also employed such a schema: as an example, [5,9]
exploit KD to obtain an agreement between networks fed with different views
of the same image. In [28], KD is used to transfer the knowledge between MIL
tiers applied on different subsamples bags. Taking inspiration from [23] and [30],
our model applies (self) knowledge distillation between WSI scale resolutions.

3 Method

Our approach aims to promote the information flow through the different em-
ployed resolutions. While existing works [19,20,25] take into account inter-scales
interactions by mostly leveraging trivial operations (such as concatenation of re-
lated feature representations), we instead provide a novel technique that builds
upon: i) a GNN module based on message passing, which propagates patches’
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representation according to the natural structure of multi-resolutions WSI; ii) a
regulation term based on (self) knowledge distillation, which pins the most effec-
tive resolution to further guide the training of the other one(s). In the following,
we are delving into the details of our architecture.

Feature Extraction Our work exploits DINO, the self-supervised learning ap-
proach proposed in [5], to provide a relevant representation of each patch. Differ-
ently from other proposals [19,20,28], it focuses solely on aligning positive pairs
during optimization (and hence avoids negative pairs), which has shown to re-
quire a lower memory footprint during training. We hence devise an initial stage
with multiple self-supervised feature extractors f(·; θ1), . . . , fM (·; θM ), one dedi-
cated to each resolution: this way, we expect to promote feature diversity across
scales. After training, we freeze the weights of these networks and use them as
patch-level feature extractors. Although we focus only on two resolutions at time
(i.e., M = 2) the approach can be extended to more scales.

Architecture. The representations yield by DINO provide a detailed descrip-
tion of the local patterns in each patch; however, they retain poor knowledge of
the surrounding context. To grasp a global guess about the entire slide, we allow
patches to exchange local information. We achieve it through a Pyramidal Graph
Neural Network (PGNN) in which each node represents an individual WSI patch
seen at different scales. Each node is connected to its neighbors (8-connectivity)
in the euclidean space and between scales following the relation “part of”3. To
perform message passing, we adopt Graph ATtention layers (GAT) [27].

In general terms, such a module takes as input multi-scale patch-level rep-
resentations X = [X1∥X2], where X1 ∈ RN1×F and X2 ∈ RN2×F are respec-
tively the representations of the lower and higher scale. The input undergoes
two graph layers: while the former treats the two scales as independent sub-
graphs A1 ∈ RN1×N1 and A2 ∈ RN2×N2 , the latter process them jointly by
considering the entire graph A (see Fig. 1, left). In formal terms:

H = PGNN(X ;A,A1,A2, θPGNN)

= GAT([GAT(X1;A1, θ1)∥GAT(X2;A2, θ2)];A, θ3),

where H ≡ [H1∥H2] stands for the output of the PGNN obtained by concatenat-
ing the two scales. These new contextualized patch representations are then fed
to the attention-based MIL module proposed in [19], which produces bag-level
scores yBAG

1 , yBAG
2 ∈ R1×C where C equals the number of classes. Notably, such

a module provides additional importance scores z1 ∈ RN1 and z2 ∈ RN2 , which
quantifies the importance of each original patch to the overall prediction.

Aligning Scales with (Self) Knowledge Distillation. We have hence ob-
tained two distinct sets of predictions for the two resolutions: namely, a bag-level
score (e.g., a tumor is either present or not) and a patch-level one (e.g., which
instances contribute the most to the target class). However, as these learned

3 The relation “part of” connects a parent WSI patch (lying in the lower resolution)
with its children, i.e., the higher-scale patches it contains.
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metrics are inferred from different WSI zooms, a disagreement may emerge: in-
deed, we have observed (see Tab. 4) that the higher resolutions generally yield
better classification performance. In this work, we exploit such a disparity to
introduce two additional optimization objectives, which pin the predictions out
of the higher scale as teaching signal for the lower one. Further than improving
the results of the lowest scale only, we expect its benefits to propagate also to
the shared message-passing module, and so to the higher resolution.

Formally, the first term seeks to align bag predictions from the two scales
through (self) knowledge distillation [14,29]:

LKD = τ2 KL(softmax(
yBAG
1

τ
) ∥ softmax(

yBAG
2

τ
)), (1)

where KL stands for the Kullback–Leibler divergence and τ is a temperature
that lets secondary information emerge from the teaching signal.

The second aligning term regards the instance scores. It encourages the two
resolutions to assign criticality scores in a consistent manner: intuitively, if a low-
resolution patch has been considered critical, then the average score attributed
to its children patches should be likewise high. We encourage such a constraint
by minimizing the Euclidean distance between the low-resolution criticality grid
map z1 and its subsampled counterpart computed by the high-resolution branch:

LCRIT = ∥z1 −GraphPooling(z2)∥22. (2)

In the equation above, GraphPooling identifies a pooling layer applied over the
higher scale: to do so, it considers the relation “part of” between scales and then
averages the child nodes, hence allowing the comparison at the instance level.

Overall Objective. To sum up, the overall optimization problem is formulated
as a mixture of two objectives: the one requiring higher conditional likelihood
w.r.t. ground truth labels y and carried out through the Cross-Entropy loss
LCE(·;y); the other one based on knowledge distillation:

min
θ

(1− λ)LCE(y
BAG
2 ) + LCE(y

BAG
1 ) + λLKD + βLCRIT, (3)

where λ is a hyperparameter weighting the tradeoff between the teaching signals
provided by labels and the higher resolution, while β balances the contributions
of the consistency regularization introduced in Eq. (2).

4 Experiments

WSIs Pre-processing. We remove background patches through an approach
similar to the one presented in the CLAM framework [20]: after an initial seg-
mentation process based on Otsu [22] and Connected Component Analysis [2],
non-overlapped patches within the foreground regions are considered.

Optimization. We use Adam as optimizer, with a learning rate of 2×10−4 and
a cosine annealing scheduler (10−5 decay w/o warm restart). We set τ = 1.5, β =



6 Bontempo et al.

Table 1. Comparison with state-of-the-art solutions. Results marked with “†” have
been calculated on our premises as the original papers lack the specific settings; all the
other numbers are taken from [19,28].

Camelyon16 TCGA Lung

Method Accuracy AUC Accuracy AUC
S
in
gl
e
S
ca
le

Mean-pooling † 0.723 0.672 0.823 0.905
Max-pooling † 0.893 0.899 0.851 0.909
MILRNN [4] 0.806 0.806 0.862 0.911
ABMIL [16] 0.845 0.865 0.900 0.949
CLAM-SB [20] 0.865 0.885 0.875 0.944
CLAM-MB [20] 0.850 0.894 0.878 0.949
Trans-MIL † [25] 0.883 0.942 0.881 0.948
DTFD (AFS) [28] 0.908 0.946 0.891 0.951
DTFD (MaxMinS) [28] 0.899 0.941 0.894 0.961
DSMIL † [19] 0.915 0.952 0.888 0.951

M
u
lt
i
S
ca
le

MS-DA-MIL [13] 0.876 0.887 0.900 0.955
MS-MILRNN [4] 0.814 0.837 0.891 0.921
HIPT † [6] 0.890 0.951 0.890 0.950
DSMIL-LC † [19] 0.909 0.955 0.913 0.964
H2-MIL † [15] 0.859 0.912 0.823 0.917
DAS-MIL (ours) 0.945 0.973 0.925 0.965

1, andλ = 1. The DINO feature extractor has been trained with two RTX5000
GPUs: differently, all subsequent experiments have been performed with a single
RTX2080 GPU using Pytorch-Geometric [12]. To asses the performance of our
approach, we adhere to the protocol of [19,28] and use the accuracy and AUC
metrics. Moreover, the classifier on the higher scale has been used to make the
final overall prediction. Regarding the KD loss, we apply the temperature term
to both student and teacher outputs for numerical stability.

Camelyon16. [1] We adhere to the official training/test sets. To produce the
fairest comparison with the single-scale state-of-the-art solution, the 270 remain-
ing WSIs are split into training and validation in the proportion 9:1.

TCGA Lung Dataset. It is available on the GDC Data Transfer Portal and
comprises two subsets of cancer: Lung Adenocarcinoma (LUAD) and Lung Squa-
mous Cell Carcinoma (LUSC), counting 541 and 513 WSIs, respectively. The aim
is to classify LUAD vs LUSC; we follow the split proposed by DSMIL [19].

4.1 Comparison with the State-of-the-art

Tab. 1 compares our DAS-MIL approach with the state-of-the-art, including both
single- and multi-scale architectures. As can be observed: i) the joint exploitation
of multiple resolutions is generally more efficient; ii) our DAS-MIL yields robust
and compelling results, especially on Camelyon16, where it provides 0.945 of
accuracy and 0.973 AUC (i.e., an improvement of +3.3% accuracy and +1.9%
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Table 2. Impact (AUC, Camelyon16) of
Eq. 3 hyperparameters.

λλλ 20××× 10××× βββ 20××× 10×××

1.0 0.973 0.974 1.5 0.964 0.968
0.8 0.967 0.966 1.2 0.970 0.964
0.5 0.968 0.932 1.0 0.973 0.974
0.3 0.962 0.965 0.8 0.962 0.965
0.0 0.955 0.903 0.6 0.951 0.953

Table 3. Impact (Camelyon16) of KD
temperature (Eq. 1), α = β = 1.0.

τττ
Accuracy AUC

20××× 10××× 20××× 10×××

τ = 1 0.883 0.962 0.906 0.957
τ = 1.3 0.898 0.958 0.891 0.959
τ = 1.5 0.945 0.945 0.973 0.974
τ = 2 0.906 0.914 0.962 0.963
τ = 2.5 0.922 0.914 0.951 0.952

AUC with respect to the SOTA). Finally, we remark that most of the methods in
the literature resort to different feature extractors; however, the next subsections
prove the consistency of DAS-MIL benefits across various backbones.

4.2 Model Analysis

On the Impact of Knowledge Distillation. To assess its merits, we con-
ducted several experiments varying the values of the corresponding balancing
coefficients (see Tab. 2). As can be observed, lowering their values (even reach-
ing λ = 0, i.e., no distillation is performed) negatively affects the performance.
Such a statement holds not only for the lower resolution (as one could expect),
but also for the higher one, thus corroborating the claims we made in Sec. 3 on
the bidirectional benefits of knowledge distillation in our multi-scale architecture.

Table 4. Comparison between scales. The tar-
get column indicates the features passed to the
two MIL layers: the “∥” symbol indicates that
they have been previously concatenated.

Input
Scale

MIL Target(s) Accuracy AUC

10× 10× 0.818 0.816
20× 20× 0.891 0.931

5×, 20× 5×, 20× 0.891 0.938
5×, 20× 5×, [5×∥ 20×] 0.898 0.941
10×, 20× 10×, 20× 0.945 0.973
10×, 20× 10×, [10× ∥ 20×] 0.922 0.953

We have also performed an as-
sessment on the temperature τ ,
which controls the smoothing fac-
tor applied to teacher’s predic-
tions (Tab. 3). We found that the
lowest the temperature, the bet-
ter the results, suggesting that the
teacher scale is naturally not over-
confident about its predictions,
but rather well-calibrated.

Single-Scale vs Multi-Scale.
Tab. 4 demonstrates the contri-
bution of hierarchical represen-
tations. For single-scale experi-
ments, the model is fed only with
patches extracted at a single reference scale. For what concerns multi-scale re-
sults, representations can be combined in different ways. Overall, the best results
are obtained with 10× and 20× input resolutions; the table also highlights that
5× magnitude is less effective and presents a worst discriminative capability.
We ascribe it to the specimen-level pixel size relevant for cancer diagnosis task;
different datasets/tasks may benefit from different scale combinations.
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Table 5. Comparison between DAS-MIL with and w/o (✗) the graph contextualization
mechanism, and the most recent graph-based multi-scale approach H2-MIL, when using
different resolutions as input (5× and 20×).

Camelyon16 TCGA Lung

Feature
Extractor

Graph
Mechanism

Acc. AUC Acc. AUC

SimCLR ✗ 0.859 0.869 0.864 0.932
SimCLR DAS-MIL 0.906 0.928 0.883 0.9489
SimCLR H2-MIL 0.836 0.857 0.826 0.916
DINO ✗ 0.852 0.905 0.906 0.956
DINO DAS-MIL 0.891 0.938 0.925 0.965
DINO H2-MIL 0.859 0.912 0.823 0.917

The Impact of the Feature Extractors and GNNs. Tab. 5 proposes an
investigation of these aspects, which considers both SimCRL [8] and DINO, as
well as the recently proposed graph mechanism H2-MIL [15]. In doing so, we
fix the input resolutions to 5× and 20×. We draw the following conclusions: i)
when our DAS-MIL feature propagation layer is used, the selection of the optimal
feature extractor (i.e., SimCLR vs Dino) has less impact on performance, as the
message-passing can compensate for possible lacks in the initial representation;
ii) DAS-MIL appears a better features propagator w.r.t. H2-MIL.

H2-MIL exploits a global pooling layer (IHPool) that fulfils only the spatial
structure of patches: as a consequence, if non-tumor patches surround a tumor
patch, its contribution to the final prediction is likely to be outweighed by the
IHPool module of H2-MIL. Differently, our approach is not restricted in such a
way, as it can dynamically route the information across the hierarchical structure
(also based on the connections with the critical instance).

5 Conclusion

We proposed a novel way to exploit multiple resolutions in the domain of histo-
logical WSI. We conceived a novel graph-based architecture that learns spatial
correlation at different WSI resolutions. Specifically, a GNN cascade architecture
is used to extract context-aware and instance-level features considering the spa-
tial relationship between scales. During the training process, this connection is
further amplified by a distillation loss, asking for an agreement between the lower
and higher scales. Extensive experiments show the effectiveness of the proposed
distillation approach.
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