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Whole-Slide Images (WSlIs) present challenges for deep
learning frameworks due to their large size and lack of pixel-
level annotations.

Results reveal that pro-

Multi-Instance Learning (MIL) approaches consider the Age. N/slide  Accuracy AUC . .
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stances within positive and negative bags differs between
train and test data.

Sampling Strategy

Proposed Architecture
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Critical patches have a better effect than a Reservoir
(Random) Strategy.
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Buffer containing the most critical patches over the entire
trainset is used as an anchor for the attention mechanism.
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