

# UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA



## **Buffer-MIL: Robust Multi-instance Learning** with a Buffer-based Approach

Gianpaolo Bontempo<sup>1,2</sup>, Luca Lumetti<sup>1</sup>, Angelo Porrello<sup>1</sup>, Federico Bolelli<sup>1</sup>, Simone Calderara<sup>1</sup>, and Elisa Ficarra<sup>1</sup>

> <sup>1</sup>University of Modena and Reggio Emilia, Italy *[name.surname]*@unimore.it

> > <sup>2</sup>University of Pisa, Italy {name.surname}@phd.unipi.it





Whole-Slide Images (WSIs) present challenges for deep learning frameworks due to their large size and lack of pixellevel annotations.

Multi-Instance Learning (MIL) approaches consider the image slide as a bag composed of many patches, called instances; afterward, they weigh the instances through attention mechanisms and aggregate them into a single representation to provide a classification score for the entire bag.

| DS-MIL [1]        | $0.909 \pm 0.020$                   | $0.955 \pm 0.010$                   | $0.913 \pm 0.005$ | $0.966 \pm 0.002$ |
|-------------------|-------------------------------------|-------------------------------------|-------------------|-------------------|
| <b>BUFFER-MIL</b> | <b>0.940 <math>\pm</math> 0.008</b> | <b>0.969 <math>\pm</math> 0.005</b> | $0.897 \pm 0.020$ | $0.956 \pm 0.010$ |
| AB-MIL [1]        | $0.724 \pm 0.015$                   | $0.744 \pm 0.016$                   | $0.864 \pm 0.009$ | $0.933 \pm 0.004$ |
| DSMIL [2]         | $0.915 \pm 0.013$                   | $0.952 \pm 0.005$                   | $0.888 \pm 0.005$ | $0.951 \pm 0.002$ |
| <b>BUFFER-MIL</b> | $0.935 \pm 0.012$                   | $0.971 \pm 0.005$                   | $0.891 \pm 0.008$ | $0.950 \pm 0.002$ |
| mean-pooling      | $0.723 \pm 0.004$                   | $0.672 \pm 0.100$                   | $0.823 \pm 0.002$ | $0.905 \pm 0.001$ |
| max-pooling       | $0.893 \pm 0.015$                   | $0.899 \pm 0.007$                   | $0.851 \pm 0.008$ | $0.909 \pm 0.002$ |

## Ablations

#### Mean vs Max

| Agg. N | \/slide | Accuracy          | AUC               |
|--------|---------|-------------------|-------------------|
|        | 1       | $0.934 \pm 0.012$ | $0.970 \pm 0.006$ |
| Mean   | 2       | $0.932 \pm 0.012$ | $0.968 \pm 0.006$ |
|        | 10      | $0.935\pm0.012$   | $0.971 \pm 0.005$ |
|        | 1       | $0.925 \pm 0.012$ | $0.966 \pm 0.004$ |
| Max    | 2       | $0.927 \pm 0.020$ | $0.967 \pm 0.005$ |
|        | 10      | $0.020 \pm 0.001$ | $0.007 \pm 0.009$ |

Results reveal that producing the final attention scores by averaging critical representations in the buffer outperforms the use of a

#### **Problem Statement**

**Class Imbalance**: positive instances usually represent a low percentage of the entire set. The model will tend to overfit and might misclassify positive instances. **Covariate Shift**: It occurs when the distribution of instances within positive and negative bags differs between train and test data.

## **Proposed Architecture**



max operator.

### **Buffer Update**

updated too frelf quently, the buffer may have negative effects.

| _ | Freq. | N/slide | Accuracy          | AUC               |
|---|-------|---------|-------------------|-------------------|
| - | 1     | 10      | $0.919 \pm 0.012$ | $0.963 \pm 0.004$ |
|   | 2     | 10      | $0.917 \pm 0.009$ | $0.967 \pm 0.001$ |
|   | 10    | 10      | $0.935 \pm 0.012$ | $0.971 \pm 0.005$ |

## **Sampling Strategy**

|         | Our Method        |                   | Reservoir Sampling |                   |  |
|---------|-------------------|-------------------|--------------------|-------------------|--|
| N/slide | <b>Accuracy</b>   | AUC               | Accuracy           | AUC               |  |
| 1       | $0.934 \pm 0.012$ | $0.970 \pm 0.006$ | $0.922 \pm 0.014$  | $0.962 \pm 0.003$ |  |
| 2       | $0.932 \pm 0.012$ | $0.968 \pm 0.006$ | $0.922 \pm 0.008$  | $0.963 \pm 0.004$ |  |
| 10      | $0.935 \pm 0.012$ | $0.971 \pm 0.005$ | $0.925 \pm 0.012$  | $0.964 \pm 0.004$ |  |
|         | Critical patcl    | nes have a b      | etter effec        | t than a R        |  |

(Random) Strategy.

#### Buffer containing the most critical patches over the entire trainset is used as an anchor for the attention mechanism.

#### References

[1] Li, B., Li, Y., & Eliceiri, K. W. (2021). Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14318-14328). [2] Ilse, M., Tomczak, J., & Welling, M. (2018). Attention-based Deep Multiple Instane Learning. In International Conference on Machine Learning (pp. 2127-2136). PMLR.

22 th International Conference on Image Analysis and Processing

