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Abstract. Several algorithmic solutions for the optimization of Con-
nected Components Labeling have been proposed in literature. Among
them, one of the most effective is a block-based mask to drastically reduce
the number of memory accesses during the labeling procedure. This pa-
per proposes a systematic approach for labeling multiple pixels at once,
automatically generating the actions to be performed on the current
pixel/block given the mask values. The proposed strategy allows to ex-
tend existing techniques for the generation of optimal decision trees to
much more complex masks, where the connectivity between pixels inside
a block is not guaranteed. A showcase application, consisting in the de-
sign of an efficient CCL algorithm for bitonal images, demonstrates the
effectiveness of our proposal in terms of speed and memory footprint.

Keywords: Connected Components Labeling · Bitonal Images · Opti-
mal Decision Trees

1 Introduction

The task of labeling connected components, also known as Connected Compo-
nents Labeling or CCL in short, aims at producing a description of the objects
inside binary images, by generating a symbolic image where each pixel of a single
connected component (object) is assigned a unique identifier. Objects inside bi-
nary images are usually defined according to the pixel neighborhood, which can
be either 4- or 8-neighborhood for 2D-images. The rest of the paper will focus
on the 8-neighborhood.

Connected components labeling represents a fundamental pre- and post-
processing step for many Computer Vision and Image Processing pipelines [3,
6, 8, 11, 12, 14, 18, 25, 26, 28, 29, 31]. CCL has an exact output, and therefore dif-
ferent algorithmic solutions are only compared in term of speed and memory
footprint. After the introduction of the task in the Sixties, several proposals
were made in the course of decades to optimized its computational load, both
for sequential [5, 20, 24, 32] and parallel architectures [1, 23, 27, 33]. Among the
different algorithmic solutions, block-based scan approaches (i.e. label a block
of 2× 2 pixels at once) [9, 10, 17], decision trees [19, 32] and state prediction [15,
22] (i.e. reuse the information gathered during the previous step when labeling
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Fig. 1. Example of scan masks. Gray squares identify current pixels to be labeled
using information extracted from white pixels. (a) and (b) are very common masks
employed in CCL (c) is an extended version of the Rosenfeld mask that is proposed
and analyzed in this paper. In this specific case, the current pixels, i.e. x0, x1, x2, x3,
do not necessarily share the same label. Dashes identify meaningless pixels.

the current pixel/block) revealed to be some of the most valuable strategies,
especially when combined together [4].

Binary images can be efficiently stored with only 1 bit per pixel (“1-bit
graphics” format, or bitonal images). This representation is especially useful in
embedded systems with limited resources, where memory usage must be reduced
to a minimum. In banking, as an example, the bitonal image is the legally rec-
ognized standard for electronic check clearing in the United States and many
other countries. Working with 1-bit per pixel images (also denoted as 1-bpp or
bitonal images) allows to considerably reduce the amount of memory accesses;
on the other hand, it also requires additional bitwise operations for retrieving
single pixel values.

In the context of 1-bpp images, being able of labeling an entire byte as a single
block would guarantee a significant performance improvement, without requiring
to convert the input into a 1-byte per pixel image. Unfortunately, the assumption
that foreground pixels are always connected inside a block does not hold in
such a case, and algorithms proposed in literature for the automatic generation
of binary decision trees are not feasible. This paper introduces a systematic
approach for generating all the possible actions associated to a scanning mask,
which is employed to design an extremely fast CCL algorithm for bitonal images
capable of labeling four consecutive pixels at once.

The rest of this paper is organized as follows. Section 2 resumes the latest
contributions on connected components labeling; the proposed strategy is de-
scribed in Section 3, and the result is evaluated in Section 4. Finally, in Section
5 conclusions are drawn.



Connected Components Labeling on Bitonal Images 3

2 Related Work

Originally introduced by Rosenfeld and Pfaltz [30], connected components label-
ing has a very long story, full of different strategies and proposals. Since its first
appearance in 1966, many papers showed algorithms to improve the efficiency of
the task. Traditionally, the fastest CCL algorithms employ a two scan strategy.
In the first scan, each pixel is assigned a provisional label determined using a
mask of already visited pixels, such as the one in Fig. 1a, and possible equiv-
alences between labels are recorded. Then, a representative label is established
for each connected component, and the second scan replaces provisional labels
with final ones.

Several strategies have been proposed for the resolution of label equivalence,
and the most commonly seen in literature employ some variation of the union-
find. The union-find data structure, first applied to CCL by Dillencourt et al. [13],
provides two convenient procedures to deal with equivalence classes of labels:
Find, which retrieves the representative label of an equivalence class, and Union,
which merges two equivalence classes into one, ensuring that they share the same
representative label.

After the introduction of union-find, a significant improvement was provided
by Wu et al. in [32]. The authors proved an optimal strategy, based on a manually
identified decision tree, to reduce the average number of load/store operations
during the first scan of the input image, driven by the Rosenfeld mask (Fig. 1a).
The resulting algorithm have been christened Scan Array-based Union Find, or
SAUF in short.

In 2010, Grana et al. [17] introduced a major breakthrough, consisting in a
2× 2 block-based approach (Fig. 1b). The problem was modeled as a command
execution metaphor : values of pixels in the scanning mask constitute a rule (bi-
nary string), which is associated to a set of equivalent actions in an OR-decision
table (Fig. 2). Given this decision table, an algorithm can simply read all the
pixels inside the mask, identify the rule, and find the action to be performed in
the corresponding column. In [19], a dynamic programming approach to convert
OR-decision tables into optimal binary decision trees was proposed, in order to
minimize the average number of conditions to be checked when choosing the cor-
rect action to be performed. The resulting algorithm is denoted as Block-Based
Decision Tree, or BBDT. Many improvements were published since then [21].

In 2014, He et al. [22] demonstrated the possibility to use a finite state
machine to summarize the value of already inspected pixels during the horizontal
mask movement.

In [15], decision trees and configuration transitions are combined in a deci-
sion forest, where each previous pattern allows to “predict” some of the current
configuration pixel values, thus allowing for automatic code generation. The first
scan phase of the algorithm is ruled by a forest of decision trees connected into
a single graph, where each tree derives from a reduction of the complete optimal
decision tree.
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Fig. 2. OR-decision table for the Rosenfeld mask.

Additionally, in [7] Bolelli et al. demonstrated that switching from decision
trees to Directed Rooted Acyclic Graphs (DRAGs) allows for a reduction of
machine code footprint, thus lessening the impact on instruction cache.

Finally, in [4] authors managed to combine the block-based mask with state
prediction and code compression: the resulting algorithm, known as Spaghetti
Labeling, was modeled as a Directed Rooted Acyclic Graph with multiple entry
points, automatically generated without manual intervention.

3 Method

In this section, the proposed method for labeling multiple pixels at once is pre-
sented. As usual, CCL is performed with two raster scans of the input, here
briefly summarized.

The first scan employs a mask moving in discrete steps, which highlights the
current pixel(s) to be labeled and its neighborhood, composed of already ana-
lyzed and labeled pixels; at each step, the current pixel is assigned a provisional
label, and if it connects two or more connected components, their labels are
recorded as equivalent by means of some variation of Union-Find [7]. This set of
operations carried out for a certain mask position is known as action, and de-
pends on the values of pixels inside the mask, which form a binary word known
as command [17].

Then, the second scan simply replaces each provisional label with the cho-
sen representative for the equivalence class, thus completing the task. While
the second scan is usually fixed and nearly identical for most algorithms, the
first scan is where algorithmic proposals differ the most: here several optimiza-
tions can take place, such as the aforementioned decision tree (decide the action
without reading the whole command word), block-based strategy (label multiple
connected pixels at once), prediction (avoid to re-read neighbor pixels known
from the previous step), and compression (reduce machine code size by merging
equivalent subtrees of a larger decision tree).

The new technique proposed with this work extends the block-based ap-
proach, by overcoming the limitation that all pixels to be labeled at once must
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be connected. In fact, with respect to previous proposals [9, 10, 17], limited to a
block size of at most 2×2 pixels, the devised algorithm can be applied to blocks
of any shape.

In the following, the term macroblock identifies the pixels of the mask to be
labeled during the current step. A macroblock can be divided into disjoint blocks,
each of which always contains pixels connected to each other. This ensures that
a block can always be assigned only one label.

On the other hand, it is not possible to assume that only one single action is
performed on the current macroblock. Taking the mask of Fig. 1c as an example,
the macroblock is composed by pixels x0, x1, x2, and x3 which can be divided
into two different blocks: x0, x1 ∈ X0 and x2, x3 ∈ X1.

In this context, it may happen that, e.g., block X0 requires a new label,
while X1 must be assigned the result of a merge —the union procedure of the
union-find data structure— of two different existing label classes.

In literature, no attempt has been made to systematically generate the set
of actions associated to a macroblock-based scan mask. The block-based mask
proposed in [17] (Fig. 1b), for example, shares the same actions of the Rosenfeld
mask, with the only addition of some merge operations that have no effect in a
pixel-based context.

Let us start with some formal definitions. Be I : L → {B,F} a binary
image, i.e., a function defined over a 2-dimensional square lattice L, where pixels
only assume two possible values, background (B) and foreground (F ), usually
represented by integers 0 and 1 respectively.

The 8-neighborhood of pixel p = (pr, pc) ∈ L, denoted as N8(p), is the set of
pixels sharing an edge or vertex with p:

N8(p) = {q = (qr, qc) ∈ L | max(|pr − qr|, |pc − qc|) ≤ 1} (1)

Given S ⊂ L, pixels p, q ∈ S are connected in S, denoted as p �S q, if a path
of neighbor foreground pixels exists, all belonging to S and leading from p to q:

p �S q ⇔ ∃{si ∈ S | I(si) = F ∧ s1 = p, sn+1 = q, si+1 ∈ N8(si),∀i = 1, ..., n}
(2)

Connectivity in S is an equivalence relation, since the properties of reflexivity,
symmetry and transitivity hold. Equivalence classes of this relation are called
Connected Components (CCs) of S. When S = L, we omit the subscript in the
notation p � q, and CCs of L are referred to as just CCs.

To better detail the proposed algorithmic solution, we divide the pixels in
the mask in two subsets:

– Outer Pixels (PO), pixels inside the mask but outside the macroblock. Outer
pixels already have a provisional label, since they have already been analyzed
by the algorithm.

– Inner Pixel (PI), pixels inside the macroblock. Inner pixels must be assigned
a provisional label in the current step.

As an example, in Fig. 1c, PO = {p, q0, q1, q2, q3, r, s}, while PI = {x0, x1, x2, x3}.
In order to proceed with the generation of the action set, the following operations
are required for each configuration of the mask:
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Fig. 3. Example of the proposed action(s)-generation algorithms when applied to the
mask configuration depicted in (a). Gray squares identify foreground pixels inside the
mask. The pixels to be labeled using the information extracted from all the others are
x0, x1, x2, and x3. Together they constitute the inner part of the mask. Remaining
pixels are the outer part of the mask. Dashes identify meaningless values.

– Identify the CCs of PO; this set of outer connected components is denoted
as CO;

– Identify connected components of PI ; these inner connected components are
denoted as CI ;

– Identify the connected components for the whole mask, i.e., CCs for PO∪PI ;
these are denoted as CT ;

– For each t ∈ CT , consider all inner pixels belonging to t (i.e. the set t ∩ PI);
all these pixels must be assigned the same label l. This label is determined
analyzing the set of outer connected components contained in t, denoted as
Ct

O = {c ∈ CO | c ⊂ t}. If Ct
O = ∅, then a new label is created for l. If

#Ct
O = 1, then l can be assigned the label of any pixel of c ∈ Ct

O. Finally,
if #Ct

O > 1, all CCs in Ct
O must be merged, meaning that their labels are

marked as equivalent and l is set to any of them (typically the smallest).

It is important to stress that CT 6= CO ∪ CI , and that the external com-
ponents are defined without considering connections through pixels currently
under examination (the pixels of the macroblock). The same goes for internal
components, where we do not consider connections due to external pixels. Those
connections are considered only for CT .

An example of action generation is reported in Fig. 3. In Fig. 3a, a mask
configuration is shown: the gray squares represent foreground pixels, x0, x1, x2,
x3 are the pixels in the “current” macroblock, and dashes identify meaningless
pixels. The process starts with the detection of the connected components in the
outer part of the mask, i.e. ignoring the current macroblock (Fig. 3b). In this
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specific example, three different objects are in CO, respectively named 1, 2, 3.
Then, inner connected components are identified inside the macroblock: a and b
as in Fig. 3c. Finally global connected components (CT ), x and y, are depicted in
Fig. 3d. In particular, CC x contains both the inner component a and the outer
component 1, so from this configuration we can derive the first operation to be
performed, a = 1, that easily translates into action x0 = p. This action means:
assign to x0 the same label previously assigned to p. Moreover, CC y contains
inner component b and outer components 2 and 3. In this case the operation
is b = 2 + 3: assign to all the pixels of connected component b the result of the
merge between components 2 and 3. Translating this operation into an action,
we obtain x2 x3 = q2 + r, that is assign to pixels x2 and x3 the merge of labels
previously assigned to pixels q2 and r.

In order to give the reader an additional example, we can consider the same
configuration of Fig. 3a and add q1 as foreground. In this case, outer and inner
components are the same of Fig. 3b and Fig. 3c, but component 2 is made of
two pixels (q1 and q2) instead of just one. On the other hand, we obtain just
one single global component. This causes the algorithm to generate the action
x0 x2 x3 = p+ q1 q2 + r: x0, x2, and x3 must be assigned the result of the merge
between p, one between q1 and q2, and r. Actually, the or between q1 and q2 is
responsible for the generation of two equivalent actions, x0 x2 x3 = p+q1+r and
x0 x2 x3 = p + q2 + r. Most equivalence cases can be resolved with the block-
based approach described in the following; the others are treated during the
generation of the optimal decision tree, as explained in [19]. Basically, each global
connected component generates one or multiple equivalent actions, responsible
for the labeling of all pixels belonging to one or more internal components.

3.1 Reducing Actions with Blocks

The number of actions generated with the proposed approach grows very quickly
as the mask size increases, making the generation of the optimal decision tree
extremely hard or even impossible. In order to reduce the number of actions
and simplify the problem, we introduce a block-based approach. As described
above, macroblocks are divided into blocks, and pixel-based actions are replaced
with block-based ones, eliminating possible duplicates. This way, many of the
previous actions translate into the same one, and can be removed.

As an example, let us consider the following pixel-based actions: x0 = q0 and
x1 = q0 q1, the latter actually representing the two equivalent actions x1 = q0
and x1 = q1. Since x0 and x1 are always connected, they can be viewed as part
of the single block X0, and the same applies to q0 and q1, which are part of the
block Q0. Thus all the three aforementioned pixel-based actions can be fused
into X0 = Q0, producing the same outcome.

As previously described in literature [17, 4], when working with block-based
actions the second scan of an algorithm requires a slight overhead to correctly
handle blocks, i.e. assigning the block label to all foreground pixels belonging to
that block. Obviously, the reduction in the number of actions can be more or
less significant depending on the mask features. For what concerns the mask of
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Fig. 4. Average run-time tests with steps in ms (lower is better).

Fig. 1c, actions reduce of about 80% (from 413 to 85 actions) when moving to
the block-based approach. After generating all the possible actions associated to
a scan mask and the corresponding OR-decision table, the algorithm described
in [19] can be employed for the generation of an optimal decision tree, which
maps the mask configuration to an action, minimizing the average number of
load/store operations required.

The described approach has been employed to generate an optimal decision
tree for the mask of Fig. 1c, which constitutes the core of a new CCL algorithm,
specifically designed for 1-bpp images. Since it shares the general structure of
SAUF, but operates on 4-pixel macroblocks, it is referred to as SAUF4 1BPP.
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4 Experimental Results

The performance evaluation of the proposed algorithm has been carried out with
an extended version of the YACCLAB benchmark [7, 16], an open source C++
framework specifically designed to test CCL algorithms. In order to incorporate a
standard well-known implementation of bitonal images, the benchmark has been
integrated with Leptonica, an open-source image processing library employed in
several projects (e.g. Tesseract OCR by Google). The extended version of the
YACCLAB benchmark, including the proposed algorithm implementation, is
available at https://github.com/prittt/YACCLAB.

Experimental results discussed in the following were obtained on an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz with Windows 10.0.17134 (64 bit) OS and
MSVC 19.15.26730 compiler. Our proposal is evaluated on three datasets: Fin-
gerprints, Medical and Tobacco800, which cover the most common CCL appli-
cation fields, a full description can be found in [2]. Fig. 4 highlights how the
performance of algorithms is influenced by the different phases they are com-
posed of: memory management, first scan and second scan.

The selected algorithms for comparison are SAUF, BBDT, Spaghetti, and the
CCL implementation available in Leptonica. The first three algorithms, men-
tioned in Section 2, represent the state of the art regarding 1-byte per pixel
images; for a fair comparison, their first scan times also include a conversion of
the input to their preferred format. SAUF 1BPP and SAUF4 1BPP, finally, are
the 1-bpp algorithms introduced in this paper. The former is a simple adapta-
tion of SAUF, which iterates over the eight pixels stored in each byte; the latter
employs a decision tree generated starting from the mask of Fig. 1c, employing
the action generation algorithm introduced with this paper. All the algorithms
employ the classic union-find label solver [32].

The Leptonica algorithm is based on a seedfill approach which, as can be
observed, is extremely inefficient when connected components extend vertically
(e.g. Fingerprints), causing a series of non cache-friendly memory accesses. On
the other hand, when small size CCs constitute the images, Leptonica has com-
parable performance with SAUF 1BPP.

The main proposal of this work, SAUF4 1BPP, considerably exceeds the
performance of Leptonica, with a speedup ranging from 1.13 to 4.81 depending
on the dataset, and thus represents the currently most efficient CCL algorithms
designed to work on bitonal images. Moreover, SAUF4 1BPP has comparable
performance to Spaghetti (current state of the art for CCL on binary images),
when the latter needs a prior conversion of the input. However, SAUF 1BPP
only requires about 1/9× memory for the input data, making it an excellent
choice for use cases where memory size is constrained.

5 Conclusion

An effective solution to automatically map a connected components labeling scan
mask configuration with the actions to be performed has been presented, which
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allows to label multiple pixels at each mask shift. A CCL algorithm generated
using this systematic approach is presented, which outperforms competitors on
bitonal images, confirming the effectiveness of the method.
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14. Fabbri, M., Brasó, G., Maugeri, G., Cetintas, O., Gasparini, R., Ošep, A., Calder-
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