
1

One DAG to Rule Them All
Federico Bolelli, Member, IEEE, Stefano Allegretti, and Costantino Grana, Member, IEEE,

Abstract—In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These
strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code
implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework
can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction
and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow
to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and
widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing
approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than previous state-of-
the-art algorithms, both on CPU and GPU.

Index Terms—GRAPHGEN, Directed Rooted Acyclic Graphs, Optimal Decision Trees, Decision Tables, Connected Components
Labeling, Thinning, Chain-Code.

F

1 INTRODUCTION

D EEP Learning, and (Convolutional) Neural Networks
(CNN) in general, whose growth in popularity be-

gan in the early 2010s, have marked a shift of Computer
Vision, permeating most of the academic research fields
of the last decade. Thanks to their ability of learning a
hierarchical representation of raw input data without rely-
ing on handcrafted features, CNNs have rapidly become a
methodology of choice for analyzing medical images [1], [2],
[3], [4], [5], perceiving and elaborating an interpretation of
dynamic scenes [6], [7], [8], [9], [10], handwriting analysis
and speech recognition [11], [12], surveillance, traffic moni-
toring and autonomous driving [13], [14], [15], [16], people
tracking [17], [18], skeletonization [19], image synthesis [20]
and so on. This became possible thanks to the increase
of processing capabilities, aided by the fast development
of Graphics Processing Units (GPUs), and thanks to the
collection of massive amounts of datasets [16], [17], [21],
[22], required during the training of the models.

Nowadays, numerous start-ups and new industrial ap-
plications come to life thanks to deep learning. Therefore,
important questions come to mind: “Is computer vision
and binary image processing without machine learning
still worth it?”, “How significant is the improvement of
these kind of algorithms, both in terms of performance and
accuracy, in the deep learning era?”. As a matter of fact,
most of the state-of-the-art solutions on the aforementioned
research fields exploit binary image processing algorithms
as fundamental pre- or post-processing steps to get to the
final results [5], [13], [15], [17], [23] or to prepare training
data [20]. When segmenting images, a highly relevant task
in medical imaging [2], Connected Components Labeling (CCL)
is usually exploited together with voting strategies [24] to
remove noise and produce the final segmentation map [5]

• The authors are with the Dipartimento di Ingegneria “Enzo Ferrari,”
Università degli Studi di Modena e Reggio Emilia, Italy. E-mail:
{name.surname}@unimore.it

or to count objects [13]. Thinning, instead, is often used
together with contour-tracing, morphological operators, and
CCL, whenever a compact representation of the objects
inside an image is required [20], as in fingerprint analy-
sis [25], vasculature geometry detection [26], [27], and road
mapping [15].

Therefore, also deep learning pipelines can benefit from
efficient implementations of binary image processing algo-
rithms. Moreover, given that image processing algorithms
represent the base step of many real-time applications [28],
[29], they are required to be as fast as possible. Thus,
research in the field moved towards optimizing the perfor-
mance of these algorithms, i.e., the execution speed.

In this paper, we introduce a novel suite of algorithms
that allows to automatically apply the most appropriate op-
timization strategies to any problem modelled with Decision
Tables (DTs), with further techniques applicable specifically
to binary image processing problems. These algorithms are
released with this paper as an open-source framework,
called GRAPHGEN (the all encompassing GRAPH GENerator),
which takes a definition of the problem, in terms of condi-
tions that need to be checked and actions to be performed,
and produces state-of-the-art solutions, directly providing
the optimized C++ source code.

To showcase the capabilities of our proposal, we selected
the three aforementioned fundamental image processing
algorithms: connected components labeling, image skele-
tonization (thinning) and contours extraction, also known
as chain-code extraction. We thus demonstrate the ability of
the framework to automatically generate the previous state-
of-the-art algorithms, starting only from the formal problem
definition, and then further enhance their performance, thus
setting the new reference. To prove the generality of the
proposed techniques, the presented benchmarks are not
limited to 2D, but also include 3D image processing algo-
rithms and GPU applications. Moreover, the possibility of
applying GRAPHGEN to additional binary image processing
algorithms, such as morphological operators, is described in
Appendix A, available online.

2

Our contributions can be summarized as follows:

1) A novel suite of algorithms that allows to generate
extremely optimized code for any problem that can
be formalized with decision tables.

2) GRAPHGEN, a generalized open-source framework
that integrates all the proposed algorithmic solu-
tions, and allows to automatically generate opti-
mized code for the selected task.

3) An improvement to the compression strategy of
trees and forests described in [30].

4) New GRAPHGEN-generated binary image process-
ing algorithms, which significantly improve state-
of-the-art on 2D and 3D CCL, Thinning and Chain-
Code, both in CPU and GPU environments.

5) An extensive set of experiments highlighting
strengths and weaknesses of the GRAPHGEN-
generated algorithms on different scenarios.

The rest of the paper is organized as follows: in Sec-
tion 2 the framework is presented, with an explanation of
the rationale behind the optimization strategies involved.
Three different applications of GRAPHGEN are presented in
Section 3, together with a review of the advances of the last
decades on the fields. Finally, in Section 4 conclusions are
drawn. The source code of the GRAPHGEN framework is
available in [31].

2 ONE DAG TO RULE THEM ALL: GRAPHGEN
In the analysis of binary images, most algorithms share the
same general structure: for each (group of) pixel x, some
action must be performed, which depends on the value of x
and its neighborhood. The term action is a general concept
to describe specific algorithm operations: for Connected
Components Labeling, it could be the recording of the
equivalence between two label classes and the assignment of
a provisional label to x; for thinning, it could be the removal
of x, and so on. The set of pixels whose value can condition
the action constitutes the mask (Fig. 1). Different algorithms
will obviously perform diverse actions based on the neigh-
borhood, but even when the task is the same, algorithmic
solutions may differ in the neighborhood exploration.

Given the simplicity of the operations to be performed,
one of the main elements to keep in mind is the number and
the order of data load/store operations, which affect perfor-
mance the most. Therefore, cache and branch prediction are
critical elements that have to be considered in assessing the
computational requirements of these algorithms.

(a) 3x3 (b) Rosenfeld (c) Grana

Fig. 1. Example of scan masks. Gray squares identify current pixels to be
labeled using information extracted from white pixels. (a) is the classical
mask adopted when exploring a 3×3 neighborhood in 8-connectivity, (b)
and (c) are improved versions commonly employed in CCL.

Many implementations available in literature have al-
ready observed this, providing solutions to perform cache
friendly accesses, limiting the number of conditional jumps
or reusing the information of already read pixels when the
mask moves through the image. Most of them implement
ad hoc solutions, specifically designed for a given task,
without providing general strategies. GRAPHGEN introduces
a unified approach, able to automatically apply and combine
the most effective solutions to access, at each step of an
algorithm, only the pixels which are strictly required, while
reducing the corresponding machine code.

2.1 Modeling Algorithms with Decision Tables

The class of algorithms GRAPHGEN deals with can be de-
scribed with a command execution metaphor [32]. Values of
pixels in the mask constitute a rule (binary string), which
is associated to an action or, in general, a set of equivalent
actions.

Considering a mask with L pixels, the set of possi-
ble rules is a L-dimensional boolean space denoted by
R, where each element r has a probability pr to occur,
with

∑
r∈R pr = 1. Given a set of actions A, the linking

between rules and actions is represented by a function
DT : R → P(A) \ {∅}, that can be described with an OR-
decision table.

Given the decision table, an algorithm can simply check
the value of every pixel in the mask, identify the rule, and
find the action to perform in the corresponding column
(Fig. 2). The OR-decision table can be easily translated into a
Look-Up Table (LUT) where each rule is an index mapping
to a vector of equivalent actions.

If the same action is associated to multiple rules, it may
not be necessary to know all bits of the rule to identify the
correct action. As an example, if we consider a mask with
3 pixels, p, x, q, and both rules 110 and 111 lead to action
a, when p = 1 and x = 1 the action to be performed is
already known, and there is no need to check q. Conse-
quently, some processing time can be saved by removing
unnecessary pixel checks, and exploiting a strategy that
stops accessing pixels of the mask after it has gathered
enough information to identify the correct action. A directed
binary rooted tree, where each node is a condition (pixel),
and each leaf contains an action, is an example of such a
strategy. We call it Decision Tree, or DTree. The problem
of building decision trees from a binary decision table has
been addressed by Schumacher and Sevcik in [33] with a

Fig. 2. OR-decision table for the Rosenfeld mask adopted in CCL.

3

X3

X2

000010

001011

100

101

110

111

000

001

010

011

X1

111 101

110 100

110 100111 101

110 100

Fig. 3. Example of 3-dimensional hypercube partitioning. In this case
splits are performed, in order, on index j = 0, j = 2, and j = 1 of the
k-cubes. Underlined values represent the concept of indifference.

dynamic programming approach, and extended in [34] to
OR-decision tables.

The conversion of a decision table (with L conditions)
to a DTree can be interpreted as the partitioning of an L-
dimensional hypercube (L-cube in short), where vertexes
correspond to the 2L rules in R. We define a set K ⊆ R as a
k-cube if it is a cube in {0, 1}L of dimension k. The k-cube
can be represented as a L-vector containing k dashes (-) and
L − k values 0 and 1, where dashes represent the concept
of indifference. The positions of dashes identify a set called
DK , while PK =

∑
r∈K pr is the occurrence probability of

the cube. Given a decision table DT , set AK contains the
common actions to all rules in K : AK = ∩r∈KDT (r).

Definition 1 (Decision Tree). Given a DT and a k-cube K , a
Decision Tree for K is a binary tree T where:

1) Each leaf ` corresponds to a k-cube, denoted by
K` ⊆ K , and the set of K` is a partition of K ;

2) Each leaf ` has a non empty set of actions AK`
,

associated to cube K` by DT ;
3) Each internal node is labeled with an index i ∈ DK

and is weighted by wi (which represents the cost
of testing the i-th condition), with left and right
outgoing edges labeled respectively with 0 and 1;

4) Root to leaf paths uniquely identify cubes associated
to leaves by means of nodes and edges labels.

A tree for a k-cubeK can be recursively built in this way:
select an index j ∈ DK and label the root of the tree with j,
divide cube K into two cubes Kj,0 and Kj,1, with dash in
position j respectively set to 0 and 1, and recursively build
the two subtrees from Kj,0 and Kj,1, stopping when a cube
has a non-empty associated set of actions (i.e., AK 6= ∅). A
simple example of a 3-cube partitioning is reported in Fig. 3.

Multiple decision trees can be constructed from the same
k-cube, and each can be evaluated on the basis of the
average amount of condition tests that it allows to save with

X3

X2

000010

001011

100

101

110

111

000

001

010

011

X1

111 101

110 100

110 100111 101

110 100

Fig. 4. Optimal DTree obtained using the algorithm presented in Sec-
tion 2.1 and starting from the OR-decision table of Fig. 2. Internal nodes
(ellipsis) represent the conditions to be checked, and leaves (rectangles)
contain the actions to be performed, which are identified by integer
numbers. The root of the tree, also a condition, is represented by a
octagon.

respect to the LUT, which represents the gain of the tree. This
gain is defined by the following formula:

gain(T) =
∑
`∈L

PK`

∑
i∈DK`

wi

 (1)

A tree with maximum gain for a k-cube is called Optimal
Decision Tree (ODTree), and can be built by means of a
recursive procedure. At step 0, all 0-cubes are associated
to a gain of 0. At step n, the algorithm builds all possible
n-cubes, each of them obtainable by merging two (n − 1)-
cubes in n different ways, and keeps track of the maximum
gain obtainable for every n-cube S:

GainS = max
i∈DS

(GainSi,0
+GainSi,1

+ δwiPS) (2)

Where δ equals 0 if AS = ∅ and 1 otherwise. The procedure
stops when n = k, and the optimal decision tree is con-
structed by tracing back through the merges that produce
the maximum gain at each n-cube, until a cube S with
AS 6= ∅ is found, which is a leaf. Fig. 4 depicts the ODTree
generated by means of the described approach starting from
the OR-decision table of Fig. 2. Grana et al. proved the
correctness of the algorithm in [34].

In order to provide an implementation, we need to as-
sign the occurrence probability pr for all rules. The simplest
approach consists of considering every rule to be equally
probable (i.e., pr = 2−L,∀r ∈ R). Another possibility is to
perform a statistical inference, deducing probabilities from
a data sample representative of the expected input for the
algorithm. A collection of datasets of real and synthetic
images, covering most binary image processing application
fields, is included in GRAPHGEN for this purpose.

The generation of an optimal decision tree is the first step
of any optimization process provided by the framework.

4

This requires a general and flexible mean to describe the
problem in a machine readable way. The modeling of a
binary image processing problem with a decision table can
be performed by feeding a regular function with all possible
combinations of inputs and producing the corresponding
actions, but other problems may require different and more
complex strategies. Therefore, GRAPHGEN accepts different
means to produce the list of rules: a YAML file can be used
to define a task in terms of conditions and actions (Listing 1).
Please refer to [31] for detailed examples of both use cases.

2.2 State Prediction in Binary Image Processing

The second optimization step of GRAPHGEN, prediction,
concerns the exploitation of the information gathered in
the previous scan step, which can also be useful for the
current one. Prediction can be used whenever some pixels
are still part of the mask after the shift. In fact, if such pixels
were checked in the previous step, there is no need to read
them again. As an example, if we consider the 3×3 mask
in Fig. 5, pixels from p1 to p6 may be used again after a
unitary shift, but their identity will change accordingly. For
example, if p4 has been read, its value can be used instead of
reading p1 in the next step. This approach is commonly used
with average/box filtering and running median [35]. He et
al. [36] designed a CCL algorithm where the information
provided by the values of already seen pixels is condensed
in a configuration state, and the transition is modeled with
a finite-state machine.

Grana et al. [37] proposed a paradigm to leverage already
seen pixels, which combines prediction with decision trees.
They noticed that the knowledge of pixels checked in the
previous step could result in a simplification of the DTree
for the current pixel. A reduced DTree can be computed for
each possible set of known pixels, and then the trees can
be connected to generate a single forest, which drives the
execution of the algorithm.

In order to generalize the state prediction technique to
every mask and shift, GRAPHGEN defines a standardized
mask description structure and pixel naming, which allows
the automatic tree reduction and forest generation.

2.2.1 Prediction of Already Accessed Pixels
The information about already known pixels is represented
by a set of constraints, which are ordered pairs (p, v), where
p is a pixel inside the mask, and v is its known value. A
reduced tree is created from a more general one by applying
the set of constraints: every node that contains a condition
over a pixel included in the constraint set is substituted with
the child corresponding to the known value. For example,
if (p, 1) is included in the constraint set, each node with

Fig. 5. Unitary horizontal shift for the 3 × 3 mask during image scan.
Pixels named with “X” were inside the mask in the previous iteration
while pixels named with “Y” are currently inside.

1 pixel_set:
2 pixels:
3 - {name: p, coords: [-1, -1]}
4 - {name: x, coords: [0, 0]}
5 - ...
6 shifts: [1, 1]
7 conditions: [p, q, r, s, x]
8 actions: [nothing, x<-newlabel, x<-p, x<-q, x<-r, x

<-p+r, x<-s, x<-r+s]
9 rules: [[1], [1], ..., [2], [3], [4], [3, 4], [5],

..., [3, 4, 5, 7]]

Listing 1. Example of YAML configuration file which defines the SAUF
CCL algorithm [38] in GRAPHGEN. pixel set identifies pixel names, their
position inside the scanning mask and the mask shift size along x and y
axes. conditions and actions represent respectively the list of conditions
to check and actions to perform. For each rule, a set of equivalent
actions is provided (rules).

condition p is replaced with its child on branch 1. The
information gathered in each algorithm step is coded in
the path from the DTree root to the selected leaf. In fact,
already read pixels correspond to DTree nodes, and their
values can be inferred from the chosen branches. Therefore,
a constraint set is filled for each leaf of the general DTree,
and is used to create a reduced version of it, meant to replace
the complete tree in determining the action for the next
pixel. Each reduced DTree is identified by an index, that is
recorded in the leaf from which it was generated, in a field
named next. This process creates a forest of reduced DTrees,
which allows to apply state prediction to any algorithm.
The complete DTree is only used for the first pixel of the
row. Then, after a leaf has been reached and the proper
action has been performed, the execution flow jumps to the
root of the next reduced DTree associated to the leaf, and
only reduced DTrees are used until the end of the row. The
forest generated applying prediction on the DTree of Fig. 4
is reported in Fig. 6a.

2.2.2 Prediction of External Pixels
It can happen that, at some point during the execution,
the mask exceeds one or more borders of the image. In
that situation, pixels outside the image are considered to
have a fixed value outv (usually 0). This observation leads
to the construction of special constraint sets that are to be
employed in specific areas of the image. For example, first
row constraints set pixels in the upper part of the mask,
which are outside the image when the first row is processed,
to outv . In the same way, last row, first col, last col constraint
sets can be created, and when working on three dimensions,
also first slice or last slice. The prediction of external pixels
allows to avoid checks on pixel existence: in fact, every
reduced DTree only considers pixels that are guaranteed to
not exceed the borders of the input image. Thus, boundary
checks can be removed.

2.3 From Trees to DRAGs
The ODTree generated in the first step of GRAPHGEN op-
timization procedure (Section 2.1) can contain identical or
equivalent subtrees. These subtrees can be merged together,
reducing the size of the compiled machine code.

The problem can be formalized as follows. The set of
decision trees for the set of conditions C and actions A is

5

0 -

X3

X2

000010

001011

100

101

110

111

000

001

010

011

X1

111 101

110 100

110 100111 101

110 100

(a) DTree forest

0 -

X3

X2

000010

001011

100

101

110

111

000

001

010

011

X1

111 101

110 100

110 100111 101

110 100

(b) DRAG

Fig. 6. (a) forest of DTrees obtained by applying state prediction on the ODTree of Fig. 4. In this example also the tree used for the first pixel of
the row (tree to the left) is reduced considering external pixels constraints (Section 2.2.2). (b) is the DRAG originated from the compression of the
forest (a). Leaves contain the action to be performed (left) and the index of the next tree/node (right). Root nodes are identified by an octagon (the
starting one) or by circles (all the others) and have an index (left) plus the condition to be checked (right).

called T (C,A). N is the set of nodes and L is the set of
leaves. The condition of a node is denoted with c(n) ∈ C ,
with n ∈ N , and the set of equivalent actions of a leaf is
denoted with a(`) ∈ P(A) \ {∅}, with ` ∈ L. Each node n
has a left subtree l(n) and a right subtree r(n), each rooted
in the corresponding child of n.

Definition 2 (Equal Decision Trees). Two decision trees
t1, t2 ∈ T , having corresponding roots r1 and r2, are
equal if either:

1) r1, r2 ∈ L and a(r1) = a(r2), or
2) r1, r2 ∈ N , c(r1) = c(r2) and l(r1) is equal to l(r2)

and r(r1) is equal to r(r2).

Definition 3 (Equivalent Decision Trees). Two decision trees
t1, t2 ∈ T , having corresponding roots r1 and r2, are
equivalent if either:

1) r1, r2 ∈ L and a(r1) ∩ a(r2) 6= ∅, or
2) r1, r2 ∈ N , c(r1) = c(r2) and l(r1) is equivalent to

l(r2) and r(r1) is equivalent to r(r2).

A pair of equal or equivalent trees can be merged into a
single one, and both their parent nodes can point to it. The
result of this transformation does not satisfy the definition of
tree anymore, but it falls into the more common category of
Directed Rooted Acyclic Graphs. As anticipated above, the
conversion from tree to DRAG has the benefit of reducing
the machine code size. The purpose is to make better use
of the instruction cache, obtaining a more efficient code
compression than that achievable by a compiler, which can
merge identical pieces of code but cannot exploit equiva-
lence between subtrees. This compression can be directly
applied to an ODTree or to a decision forest obtained
through state prediction. In the latter case, the merging
procedure can involve subtrees of different trees, as long
as corresponding leaves share the same next value.

The compression of a forest into a multi-rooted DRAG
(Fig. 6b) is performed in two steps. The first step concerns
the merging of equal subtrees. This is done by traversing

the forest in any order, and merging each subtree with every
equal one. The result of this operation is optimal and is al-
ways the same, whatever traversing order is chosen, because
tree equality is a transitive relation [39]. Equivalent trees
could be merged in a similar manner, taking the intersection
of actions in the corresponding leaves. However, since tree
equivalence is not transitive, this procedure would depend
on the traversal order. Our aim is to find the optimum,
which is the forest with the least nodes.

With respect to previous proposals [30], [40], our ap-
proach is a dynamic programming algorithm which guar-
antees to reach the optimal compression. In order to save
computation time, we use a memoization technique that
consists of a compact representation of trees in string form.
The compression procedure starts creating a list of all the
“stringized” subtrees in the forest that are equivalent to at
least another tree. The list is sorted in descending order, so
that larger trees come first. In recursive step n, the algorithm
merges every couple of equivalent trees one at a time, and
for each resulting forest continues the compression in step
n+1. The recursion ends when no couple of equivalent trees
remains.

This procedure ensures to find the compressed multi-
rooted DAG with the minimum number of nodes. Moreover,
sorting subtrees in decreasing order allows for a faster,
greedy strategy, obtainable by stopping the procedure after
it has reached the end of the recursion once. This is based
on the heuristic assumption that it is better to merge larger
subtrees first, which holds true in our experience: in all
the examples that we tried, the best solution found by the
algorithm is the first one.

2.4 Generating Algorithm Source Code

Regardless of the task addressed, any algorithm generated
by GRAPHGEN scans the input image in a raster fashion.
The processing starts at the beginning of each row with
the corresponding start tree identified by index 0. The first
operation performed is the increment of the column index,

6

Fig. 7. Sample images from the YACCLAB datasets. From left to right 3DPeS, Fingerprints, Hamlet, Medical, MIRflickr, Tobacco800, XDOCS,
Hilbert, Mitochondria, and OASIS.

1for (int r = 1; r < rows; ++r) {
2int c = -1;
3tree_0: // Start from tree 0
4...
5tree_2: // When processing tree 2
6c += 1; // Move to next pixel
7if (c >= cols - 1) {
8goto last_column_2; // Manage last column
9}
10if (CONDITION_X) {
11// Name this node, its needed later
12NODE_1:
13if (CONDITION_R) {
14ACTION_8 // Leaf: do action and
15goto cl_tree_3; // jump to next root
16}
17else {
18...
19tree_4: // When processing tree 4
20c += 1; // Move to next pixel
21if (c >= cols - 1) {
22goto last_column_4; // Manage last column
23}
24if (CONDITION_X) {
25if (CONDITION_Q) {
26ACTION_4 // Leaf: do action and
27goto cl_tree_4; // jump to next root
28}
29else {
30// Jump to existing subtree
31goto NODE_1;
32}
33}
34...
35}

Listing 2. Excerpt of the C++ code generated by GRAPHGEN for the
DRAG of Fig. 6b. This example depicts the image scanning approach
employed by GRAPHGEN-generated algorithms, the action performed in
the leaves, the jump to the next tree, and the jump within conditions to
reuse existing subtrees.

followed by an end-of-row check to decide whether a special
last column tree should be used in place of the current one.

After processing one pixel, i.e., the traversal of the cur-
rent tree is finished, a goto statement moves the execution
flow to the beginning of the appropriate next tree, and the
process continues for the next pixel. Then, after the current
row has been entirely processed, the for loop moves the
scanning process to the next one, until the whole image has
been processed.

An excerpt of the C++ GRAPHGEN-generated code for the
DRAG of Fig. 6b is provided in Listing 2 and exemplifies the
whole process. As can be noticed, GRAPHGEN translates the
concept of DTree and DRAG into running code as a bunch of
nested if , else and goto statements, that leads the execution
flow of an algorithm.

3 THREE SHOWCASE APPLICATIONS

In this section, three use case applications of GRAPHGEN are
presented and the algorithms generated by the framework
are exhaustively evaluated in comparison with state-of-the-
art solutions. The results discussed in the following have
been obtained on a desktop computer running Windows 10
Pro (x64, build 10.0.18362) with an Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz and an NVIDIA Quadro K2200 GPU using
MSVC 19.15.26730 and CUDA 10.0.130 compiler (x64) with
optimizations enabled.

All discussed algorithms (unless noted otherwise) use
decision trees or forests generated by GRAPHGEN. They have
been proved to be correct, i.e., the output result is exactly the
one required by the given task.

The experiments are performed on the publicly avail-
able YACCLAB dataset [41], which covers most of the 2D
and 3D applications of the analyzed tasks: video surveil-
lance (2D-3DPeS [42]), fingerprints, (2D-Fingerprints [43]),
medical (2D-Medical [44], 3D-OASIS [45], and 3D-
Mitochondria [46]) and document (2D-Tobacco800 [47], 2D-
Hamlet, 2D-XDOCS [48]) analysis, real-world images (2D-
MIRflickr [49]), and synthetic generated ones (3D-Hilbert
curves). The datasets have highly variable resolution, den-
sity and amount of components. They originate from highly
different sources, captured through various means (scans,
photos, microscopy). Full description in [50] and example
images in Fig. 7.

3.1 Connected Components Labeling

Connected Components Labeling aims at transforming an
input binary image into a symbolic one, in which all pixels
of the same object (connected component) are given the
same label. The task has been originally introduced by
Rosenfeld and Pfaltz [51] in 1966 and since then many
papers designed algorithms to improve the efficiency of
CCL [36], [40], [52], [53], [54], [55]. The CCL problem has
a unique and exact solution, meaning that algorithms can
use different strategies, but they must always provide the
same output symbolic image, except for the specific label
assigned to each connected component. The only difference
among them is thus the time required to obtain the result.

For comparing the GRAPHGEN generated algorithms
with existing ones, the open-source benchmarking system
YACCLAB [41], [56], [57] has been used. It provides many
state-of-the-art solutions, and allows to fairly compare the
performance of CCL algorithms under various points of
view.

The first significant improvement on CCL has been
provided in [58] with the SAUF algorithm. The authors
generated an optimal decision tree for the Rosenfeld mask

7

TABLE 1
Average run-time experimental results on 2D CCL algorithms in milliseconds. ASU is the Average Speed-Up over SAUF. The star identifies novel

algorithmic solutions generated with the proposed techniques, all available in GRAPHGEN. Lower is better.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

SAUF 0.885 0.377 6.900 3.194 0.373 10.611 41.369 1.000
PRED 0.865 0.312 6.297 2.831 0.326 10.126 38.535 1.103
PRED++* 0.866 0.312 6.299 2.831 0.326 10.127 38.531 1.103
BBDT 0.656 0.253 5.065 2.169 0.245 8.200 32.221 1.396
DRAG 0.650 0.253 5.019 2.177 0.247 8.121 32.185 1.399
Tagliatelle* 0.659 0.243 4.975 2.141 0.236 8.077 31.638 1.425
Spaghetti 0.612 0.234 4.766 2.055 0.226 7.702 30.435 1.492
SpaghettiF * 0.610 0.230 4.711 2.026 0.224 7.653 30.225 1.507

(Fig. 1b) to reduce the average number of load/store op-
erations during the scan of the input image. In [32] a sub-
sequent major breakthrough was introduced (BBDT), con-
sisting in a 2×2 block-based approach (Fig. 1c), again based
on decision trees. In [36], He et al. demonstrated that it is
possible to use a finite-state machine to summarize the value
of pixels already inspected by the horizontally moving scan
mask, and in [37] the authors combined the decision trees
and configuration transitions in a decision forest generated
from Rosenfeld mask (PRED). In [41], the conversion of a
decision tree into a Directed Rooted Acyclic Graph (DRAG)
has proved to be an effective technique to reduce the ma-
chine code footprint and lessen its impact on the instruction
cache when considering large neighborhoods. Finally, the
application of the state prediction approach to the 2×2 mask
(Spaghetti) [30] further improved performance, setting the
state-of-the-art on CCL.

Starting from the Rosenfeld mask (Fig. 1b), the gener-
ation of an ODTree (Fig. 4) recreates SAUF, the reference
algorithm for the following Average SpeedUp (ASU) com-
parisons (Table 1). Then, the application of state prediction
provides the PRED algorithm (Fig. 6a, ASU=1.103), and the
final compression of the forest into a DRAG (Fig. 6b) pro-
duces PRED++. In this specific case, the effect of compres-
sion is not significant: because the PRED forest is already
very small, reducing the code size does not affect instruction
cache usage.

Tackling the problem with the Grana mask already
proved to be an effective idea, and its GRAPHGEN-generated
ODTree recreates BBDT (ASU=1.396), currently the default
algorithm in OpenCV. Marginal improvements can be ob-
tained by compressing this tree into a DRAG (ASU=1.399).
Generating a prediction forest which is an uncompressed
version of Spaghetti (we called this Tagliatelle) allows again
to reduce the average number of memory accesses and
conditional ifs when dealing with borders, while preserving
the benefit of the block-based approach (ASU=1.425). Since
the Tagliatelle tree is larger than that of BBDT, apply-
ing compression (Spaghetti) yields a bigger improvement
(ASU=1.492). As explained in Section 2.1, our proposal is
also able to consider image frequencies when generating
the ODTree. Thanks to this, we are able to include them
in the Spaghetti algorithm, further improving its speed,
and thus outperforming the state-of-the-art with SpaghettiF
(ASU=1.507). It is important to notice that frequencies are
calculated in this case with the YACCLAB dataset, but it
is also possible to compute them for specific problems,

TABLE 2
Average run-time experimental results of Thinning algorithms in

milliseconds. The star identifies novel algorithmic solutions generated
with the proposed techniques, all available in GRAPHGEN. Lower is

better.

Fingerprints Hamlet Tobacco800

GH 8.27 143.95 594.70
GH LUT 3.60 72.89 296.85
GH Tree* 2.62 48.70 192.11
GH Spaghetti* 2.39 47.08 186.59
GH SpaghettiF * 2.43 50.97 206.59

ZS (OpenCV) 7.22 115.21 452.38
ZS LUT 3.79 66.15 250.89
ZS Tree 2.78 45.76 170.75
ZS Spaghetti* 2.48 43.15 160.73
ZS SpaghettiF * 2.45 42.98 159.88

CH 5.78 119.75 452.77
CH LUT 2.81 65.10 239.90
CH Tree* 3.23 48.56 174.66
CH Spaghetti* 1.99 48.02 173.55
CH SpaghettiF * 1.95 47.78 172.63

opening to further improvements.

3.2 Image Skeletonization

Image skeletonization, another fundamental algorithm used
in many computer vision and image processing tasks, aims
at providing an approximate and compact representation of
the objects inside images, reducing them to one pixel wide
“skeletons”. A common strategy to obtain it, called thinning,
iteratively removes the outermost layers of connected com-
ponents [59].

The algorithm proposed by Zhang and Suen (ZS) in [60]
is one of the most famous and widely used, given its
efficiency and simplicity. It is based on the 8-connectivity
and exploits two sub-iterations performed alternatively to
remove pixels. Chen and Hsu (CH) fixed some corner cases,
and proposed a Look-Up Table (LUT) to speed up the
process [61]. Furthermore, Guo and Hall [62] proposed a
solution to better cope with 2×2 squares and diagonal lines,
obtaining skeletons with less stair case artifacts. Besides the
already mentioned LUT technique, iterations based on de-
cision trees have been proposed in [63], to further speedup
the ZS algorithm. These solutions have been proposed some
decades ago, but are still commonly used [25], [26], [27]
and included in many image processing libraries, such as
OpenCV.

8

TABLE 3
Average run-time experimental results on chain-code algorithms in milliseconds. ASU is the Average Speed-Up over OpenCV. The star identifies

novel algorithmic solutions generated with the proposed techniques, all available in GRAPHGEN. Lower is better.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

Suzuki85 (OpenCV) 0.814 1.332 9.252 3.436 1.291 10.089 50.578 1.000
Cederberg LUT 2.392 1.733 18.378 7.980 1.960 27.262 118.311 0.499
Cederberg LUT PRED 1.524 1.376 12.652 5.371 1.458 17.682 82.825 0.705
Cederberg Tree* 0.613 1.092 6.749 2.950 1.136 7.534 47.545 1.231
Cederberg Spaghetti* 0.596 1.052 6.535 2.728 1.069 7.307 46.079 1.284
Cederberg SpaghettiF * 0.596 1.051 6.528 2.726 1.068 7.304 46.054 1.286

Contrary to CCL, each thinning proposal provides dif-
ferent outputs and the choice depends on the application
needs. ZS, CH, and GH algorithms (all using the mask of
Fig. 1a) have been optimized with GRAPHGEN and com-
pared with the open-source framework THeBE (THinning
evaluation BEnchmark) [64]. Since the base algorithms pro-
duce different outputs, the comparison between execution
times should be done only within each version of the
single algorithm. For each technique, two variants have
been manually implemented (naı̈ve and LUT variant, both
implementing basic prediction) and three others have been
generated using GRAPHGEN: the Tree version only employs
an ODTree, while the Spaghetti variants include state pre-
diction and forest compression with DRAGs.

When comparing the various implementations within
each algorithm (Table 2), LUT performs better than the base
variant and Tree performs better than LUT by skipping
unnecessary condition checks. Finally, Spaghetti further
improves Tree by applying compression and prediction.
Through image frequencies, the execution speed of the
Spaghetti implementation can be slightly improved. Some-
times, however, frequencies slightly worsen the execution
time, which can be attributed to the complex iterative nature
of thinning: at every iteration, the distribution of patterns
in the image changes, limiting the information gain of
frequencies.

3.3 Contours Extraction

In a binary image, a contour is a sequence of foreground
pixels that separates a connected component from the back-
ground. Several methods have been proposed for the rep-
resentation of a contour, among which the chain-code is
one of the most common. The first chain-code variation
was proposed by Freeman [65]; it encodes the coordinates
of one pixel belonging to the contour, and then follows the
boundary, encoding the direction in which the next pixel
shall be found.

Solutions to efficiently retrieve the chain-code from a bi-
nary image have been widely studied in literature. Sobel [66]
proposed an algorithm that stores an 8-bit neighborhood
code for each pixel, and performs a table-lookup to generate
any neighborhood function. Suzuki and Abe [67] developed
an extended border following algorithm, which discrimi-
nates between outer and hole borders, and also determines
surroundness relations; this is the solution currently imple-
mented in OpenCV. Zingaretti et al. [68] built a chain-code
algorithm able to concurrently process all region boundaries
in a single scan, providing a unified scheme for binary and

gray-level images. Cederberg [69], in particular, proposed an
alternative representation of chain-code, called Raster-scan
Chain-code (RC-code), which can ease the retrieval when
examining the image in a raster scan fashion, and presented
an algorithm implementing this representation. Given its
raster scan nature, which makes possible the application of
state prediction, Cederberg algorithm has been chosen to
undergo GRAPHGEN optimization.

In the RC-code, several coordinates are listed for each
contour, and represent the first pixels that are hit in the
border during the raster scan. Each of these pixels is called
max-point, and is linked to two chains (R-chains), a left
and a right one. A max-point can either be an outer max-
point, when it is a transition from background to object, or
an inner max-point, when at object-background transition.
Every contour pixel met during the scan can either be a max-
point (if it is not connected to any already known R-chain)
or the next link of some existing R-chain. The same pixel can
be a link for multiple R-chains; specifically, a border point
that is a link for both a left and a right R-chain is called min-
point, and determines the end of the two R-chains, which
can then be merged. It also means that the left R-chain
continues the same contour traced by the right R-chain, and
therefore establishes an ordering between max-points of the
same contour.

An RC-code is consequently composed of a list of max-
points with their R-chains. The reconstruction of a contour
starts from a max-point and follows its right R-chain until
the end; then it follows, in reverse order, the connected left
R-chain, and the process goes on until the starting max-point
is met again. When computing the RC-code, is it sufficient
to look at the mask of Fig. 1a to know the nature of the pixel,
i.e., whether it is a max-point, a min-point or a chain link,
and consequently know which action must be performed.
With GRAPHGEN, a decision tree minimizing the average
number of load/store operations needed to identify the state
of a pixel has been generated. Then, prediction and code
compression have been applied to this optimal decision tree.

In order to characterize the contour tracing performance,
THeBE has been modified into BACCA (Benchmark An-
other Chain-Code Algorithm). The source code is available
in [70]. The reference algorithm is the one implemented by
OpenCV 3.4.7 [67], which uses an extremely optimized con-
tour following approach, while the algorithm proposed by
Cederberg [69] has been implemented in multiple variants:
using lookup tables with and without basic state prediction
(LUT PRED and LUT), a version based on optimal decision
trees and another one again with state prediction and com-
pression (Spaghetti).

9

As can be observed in the experiments (Table 3), LUT
implementations fail to compete with the carefully de-
signed algorithm in OpenCV (ASU < 1). The GRAPHGEN-
generated ODTree already provides a significant speedup
(ASU=1.23), which is further improved by the Spaghetti
versions (ASU=1.28).

The complexity of the algorithm requires a careful design
of the decision table, since one pixel may be a min-point and
a max-point and a chain continuation, requiring multiple
actions to be performed in order. We thus encoded all
possible cases in a bitmapped action number, which in turn
selects the corresponding behavior.

3.4 What About 3D and GPUs?
Our proposal is not limited to 2D images and sequential
CPU processing. While GPUs usually call for ad hoc mas-
sively parallel algorithms, we still evaluated trees generated
by GRAPHGEN on a GPU implementation of CCL. Because
of the parallel nature of GPU processing, state prediction
is not feasible. Therefore, only the optimizations provided
by the ODTree, its compression, and frequencies have been
employed.

We compared the GPU-based BBDT and DRAG imple-
mentations to state-of-the-art CCL algorithms: Distanceless
Label Propagation (DLP) by Cabaret et al. [71], Optimized
Label Equivalence (OLE) by Kalentev et al. [72], Komura
Equivalence1 (KE) by Komura [74], Union Find1 (UF) by
Oliveira and Lotufo [75], Line Based Union Find (LBUF)
by Yonehara and Aizawa [76], Block Equivalence (BE) by
Zavalishin et al. [77]. Results are reported in Fig. 8. All
GRAPHGEN-generated versions of BBDT and DRAG obtain
a significant speed-up over KE, which has the lowest exe-
cution time among state-of-the-art algorithms. Since DRAG
uses compression over BBDT, a slight advantage in run-time
can be observed. Using image frequencies, DRAGF achieves
the best run-time over all algorithms, 18% faster than KE,
the state-of-the-art approach.

The high amount of if - and goto-statements in the gen-
erated decision tree do not allow for efficient massively
parallel and synchronized thread execution, but we have
to consider the fact that branches depend on the pixel
distribution in the mask. Neighboring pixels get processed
concurrently, but they are not i.i.d.. Indeed, they are par-
tially overlapped and definitely correlated. Thus, it is likely
that most of the time, threads will traverse the same path
through the tree/DRAG without causing any divergence. A
similar behavior can be observed on other datasets (Fig. 10).

GRAPHGEN bases all of its processing on user-defined
sets of rules and therefore enables to construct optimal
decision trees and apply optimizations even on 3D-based
algorithms. We report results only on 3D CCL, but our
proposal can be easily applied to other 3D algorithms.

Due to the increased complexity that comes with 3D
CCL, only algorithms using the Rosenfeld mask can be con-
sidered. For a block-based mask, the number of conditions
and therefore the amount of different cases is too high to
be computed within a reasonable time frame with current
computing capabilities. For instance, a complete version of

1. Originally designed for 4-connectivity and later extended to 8-
connectivity in [73].

 0

 1

 2

 3

 4

 5

 6

 7

BE UF
 OLE

KE DLP
]

BBDT*

BBDT
F *

DRAG*

DRAG
F *

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan
All Scans

2.61

1.08
1.54

1.08 1.08 1.08 1.08 1.08 1.08 1.08

1.15
0.49

1.32

0.83
1.27

0.76

2.26 4.18

1.65
1.23 1.19 1.20 1.18

4.87

3.06

5.72

2.84 2.73
3.16

2.31 2.27 2.28 2.26

LBUF

Fig. 8. Average run-time experimental results on 2D CCL algorithms on
GPU on the Hamlet dataset in milliseconds. The star identifies novel
algorithms generated with GRAPHGEN. Lower is better.

 0

 2

 4

 6

 8

 10

naive_3D

LEB_3D

SAUF_3D*

SAUF++_3D*

PRED_3D*

PRED++_3D*

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

2.18 2.17 2.19 2.16 2.20 2.18

4.40
2.91 2.39 2.43 2.00 1.94

1.94

1.01
1.04 1.01

1.04 1.01

8.52

6.09 5.62 5.60 5.24 5.13

(a) Hilbert

 0
 100
 200
 300
 400
 500
 600
 700

naive_3D

LEB_3D

SAUF_3D*

SAUF++_3D*

PRED_3D*

PRED++_3D*

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

150.74 150.79 150.73 150.23 150.43 150.25

454.07

148.65 115.75 116.80 99.63 99.30

112.37

61.55
60.86 61.63 60.82 61.55

717.18

360.99 327.34 328.66 310.88 311.10

(b) Mitochondria

 0

 20

 40

 60

 80

 100

 120

naive_3D

LEB_3D

SAUF_3D*

SAUF++_3D*

PRED_3D*

PRED++_3D*

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Alloc Dealloc
First Scan

Second Scan

9.12 9.11 9.11 9.11 9.11 9.10

102.83

17.88 15.51 15.58 14.61 13.63

7.48

4.05 4.08 4.06 4.08 4.06

119.43

31.04 28.70 28.75 27.80 26.79

(c) OASIS

Fig. 9. Average run-time experimental results on 3D CCL algorithms in
milliseconds. The star identifies novel algorithmic solutions generated
with the proposed techniques, all available in GRAPHGEN. Lower is
better.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Ex
ec

ut
io

n
Ti

m
e

[m
s]

1.06

0.33

0.68

0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.16 0.11
0.23

0.13 0.16
0.12

0.59

0.69

0.23 0.20 0.20 0.19 0.19

1.65

0.62

1.37

0.60
0.68

0.53

Alloc Dealloc
First Scan

Second Scan
All Scans

0.56 0.53 0.52 0.52

BE UF
 OLE

KE DLP
BBDT

]

B

*
RAG

F *

DRAG
D

*
BDT

F *

LBUF

(a) 3DPeS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Ex
ec

ut
io

n
Ti

m
e

[m
s]

0.74

0.27

0.62

0.27 0.27 0.27 0.27 0.27 0.27 0.27

0.17
0.09 0.14

0.11
0.17 0.09

0.57
0.67

0.20 0.19 0.19 0.18 0.18

1.31

0.55

1.29 Alloc Dealloc
First Scan

Second Scan
All Scans

BE UF
 OLE

KE DLP
BBDT

]

B

*
RAG

F *

DRAG
D

*
BDT

F *

LBUF

0.460.47 0.50 0.46 0.45 0.450.500.53

(b) Fingerprints

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Ex
ec

ut
io

n
Ti

m
e

[m
s]

1.90

0.60
1.02

0.60 0.60 0.60 0.60 0.60 0.60 0.60

0.94

0.33
0.74

0.55

0.82
0.41

1.25

2.30

1.03
0.64 0.59 0.61 0.60

3.15

2.09

3.32

BE UF
 OLE

KE DLP
BBDT

]

B

*
RAG

F *

DRAG
D

*
BDT

F *

LBUF

1.75 1.63 1.75

1.24 1.201.211.19

Alloc Dealloc
First Scan

Second Scan
All Scans

(c) Medical

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Ex
ec

ut
io

n
Ti

m
e

[m
s]

0.66

0.27

0.62

0.27 0.27 0.27 0.27 0.27 0.27 0.27

0.27
0.10 0.18

0.14

0.19
0.16

0.65 0.81

0.24 0.25 0.23 0.22 0.22

1.31

0.68

1.43

0.61

BE UF
 OLE

KE DLP
BBDT

] *

DRAG
F *

BBDT
F

DRAG
*

LBUF

Alloc Dealloc
First Scan

Second Scan
All Scans

0.56 0.51 0.52 0.50 0.49 0.49

(d) MIRflickr

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Ex
ec

ut
io

n
Ti

m
e

[m
s]

3.41

1.68 2.14 1.68 1.68 1.68 1.68 1.68 1.68 1.68

1.50
0.72

2.05

1.17
1.53

1.32
2.98

6.34

2.30
1.66 1.61 1.61 1.60

6.39

4.35

8.48

5.05

3.93 3.98
3.34 3.29 3.29 3.28

Alloc Dealloc
First Scan

Second Scan
All Scans

BE UF
 OLE

KE DLP
BBDT *

DRAG
F **

BBDT
F

DRAG
*

LBUF

(e) Tobacco800

 0

 5

 10

 15

 20

 25

 30

 35

Ex
ec

ut
io

n
Ti

m
e

[m
s]

8.34
5.37 5.86 5.37 5.37 5.37 5.37 5.37 5.37 5.37

6.99
2.76

7.77

4.93

6.89

5.01
12.19

29.65

9.99
6.85 6.53 6.55 6.51

20.53
17.29

35.51

18.15

Alloc Dealloc
First Scan

Second Scan
All Scans

BE UF OLE
KE DLP

BBDT* *
RAG

F *

DRAG
DBBDTF *

LBUF

15.0215.36
12.2211.9011.9211.88

(f) XDOCS

Fig. 10. Average run-time experimental results on 2D CCL algorithms on GPU in milliseconds. The star identifies novel algorithms generated with
GRAPHGEN. Lower is better.

the BBDT mask in 3D would contain 112 voxels requiring
approximately 1024.68TB of memory. The 3D version of
the Rosenfeld mask contains 14 conditions: 9 voxels on the
previous plane, 3 voxels in the previous row on the same
plane, 1 voxel in the same row and same plane as x, and x
itself.

The algorithms for 3D CCL generated with the strategy
proposed in this paper are SAUF 3D, using the optimal
decision tree, its DRAG-compressed version SAUF++ 3D,
PRED 3D, which adds state prediction, and its compressed
version PRED++ 3D. As a comparison, a naive 3D im-
plementation of CCL that reads all neighbors and tries
to merge all labels and the state-of-the-art for 3D CCL,
Label-Equivalence-Based CCL by He et al. [78] (LEB) were
benchmarked. LEB employs a handmade decision tree for
the Rosenfeld 3D mask, built with a strategy that prioritizes
pixels with the most neighbors. Fig. 9 shows the effective-
ness of our proposal also in this case.

4 CONCLUSION

We presented a suite of algorithms that allows to generate
optimal decision trees, and to automatically apply state pre-
diction, compression and path-length optimization based on
frequencies to any binary image processing problem. The
only requirement for the user is to model his needs as a
set of rules. The effectiveness of the proposed solution has
been showcased on three different common binary image
processes, covering both 2D and 3D scenarios. The GRAPH-
GEN-generated algorithms significantly improve the state-
of-the-art. The source code of the proposed framework and
its documentation are available in [31].

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI 2015.
Springer, 2015, pp. 234–241.

11

[2] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis,”
Medical image analysis, vol. 42, pp. 60–88, 2017.

[3] L. Canalini, F. Pollastri, F. Bolelli, M. Cancilla, S. Allegretti, and
C. Grana, “Skin Lesion Segmentation Ensemble with Diverse
Training Strategies,” in Computer Analysis of Images and Patterns,
vol. 11678. Springer, 2019, pp. 89–101.

[4] Y. Zhou, X. He, L. Huang, L. Liu, F. Zhu, S. Cui, and L. Shao,
“Collaborative Learning of Semi-Supervised Segmentation and
Classification for Medical Images,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2079–
2088.

[5] F. Pollastri, F. Bolelli, R. Paredes, and C. Grana, “Augmenting Data
with GANs to Segment Melanoma Skin Lesions,” Multimedia Tools
and Applications, vol. 79, no. 21-22, pp. 15 575–15 592, 2019.

[6] L. Baraldi, C. Grana, and R. Cucchiara, “Hierarchical Boundary-
Aware Neural Encoder for Video Captioning,” in 2017 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 1657–1666.

[7] F. Bolelli, L. Baraldi, and C. Grana, “A Hierarchical Quasi-
Recurrent approach to Video Captioning,” in 2018 IEEE Inter-
national Conference on Image Processing, Applications and Systems
(IPAS). IEEE, 2018, pp. 162–167.

[8] B. Wang, L. Ma, W. Zhang, W. Jiang, J. Wang, and W. Liu, “Con-
trollable Video Captioning with POS Sequence Guidance Based
on Gated Fusion Network,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 2641–2650.

[9] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and
R. Girshick, “Long-Term Feature Banks for Detailed Video Un-
derstanding,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 284–293.

[10] X. Yang, X. Yang, M.-Y. Liu, F. Xiao, L. S. Davis, and J. Kautz,
“STEP: Spatio-Temporal Progressive Learning for Video Action
Detection,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 264–272.

[11] A. K. Bhunia, A. Das, A. K. Bhunia, P. S. R. Kishore, and P. P. Roy,
“Handwriting recognition in low-resource scripts using adversar-
ial learning*,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 4767–4776.

[12] T. Wilkinson, J. Lindstrom, and A. Brun, “Neural Ctrl-F:
Segmentation-Free Query-By-String Word Spotting in Handwrit-
ten Manuscript Collections,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4433–4442.

[13] I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and
M. Schmidt, “Where are the Blobs: Counting by Localization with
Point Supervision,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 547–562.

[14] B. Li, W. Ouyang, L. Sheng, X. Zeng, and X. Wang, “GS3D:
An Efficient 3D Object Detection Framework for Autonomous
Driving,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 1019–1028.

[15] G. Máttyus, W. Luo, and R. Urtasun, “DeepRoadMapper: Extract-
ing Road Topology from Aerial Images,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 3438–3446.

[16] A. Palazzi, D. Abati, F. Solera, R. Cucchiara et al., “Predicting
the Driver’s Focus of Attention: the DR (eye) VE Project,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 7, pp. 1720–1733, 2018.

[17] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, and
R. Cucchiara, “Learning to Detect and Track Visible and Occluded
Body Joints in a Virtual World,” in European Conference on Computer
Vision (ECCV), 2018.

[18] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Per-
formance Measures and a Data Set for Multi-target, Multi-camera
Tracking,” in Computer Vision – ECCV 2016 Workshops. Springer,
2016, pp. 17–35.

[19] C. Liu, F. Wan, W. Ke, Z. Xiao, Y. Yao, X. Zhang, and Q. Ye,
“Orthogonal Decomposition Network for Pixel-Wise Binary Clas-
sification,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 6064–6073.

[20] W. Chen and J. Hays, “SketchyGAN: Towards Diverse and Real-
istic Sketch to Image Synthesis,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 9416–9425.

[21] P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset,
a large collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions,” Scientific data, vol. 5, 2018.

[22] G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, and B. Zhou,
“DrivingStereo: A Large-Scale Dataset for Stereo Matching in
Autonomous Driving Scenarios,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 899–908.

[23] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi,
A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald et al., “U-Net: deep
learning for cell counting, detection, and morphometry,” Nature
Methods, vol. 16, no. 1, pp. 67–70, 2019.

[24] F. Milletari, S.-A. Ahmadi, C. Kroll, A. Plate, V. Rozanski,
J. Maiostre, J. Levin, O. Dietrich, B. Ertl-Wagner, K. Bötzel et al.,
“Hough-CNN: Deep learning for segmentation of deep brain
regions in MRI and ultrasound,” Computer Vision and Image Un-
derstanding, vol. 164, pp. 92–102, 2017.

[25] J. Khodadoust and A. M. Khodadoust, “Fingerprint indexing
based on minutiae pairs and convex core point,” Pattern Recog-
nition, vol. 67, pp. 110–126, 2017.

[26] F. Uslu and A. A. Bharath, “A recursive Bayesian approach to
describe retinal vasculature geometry,” Pattern Recognition, vol. 87,
pp. 157–169, 2019.

[27] X. Wang, X. Jiang, and J. Ren, “Blood vessel segmentation from
fundus image by a cascade classification framework,” Pattern
Recognition, vol. 88, pp. 331–341, 2019.

[28] S. Hannuna, M. Camplani, J. Hall, M. Mirmehdi, D. Damen,
T. Burghardt, A. Paiement, and L. Tao, “DS-KCF: a real-time
tracker for RGB-D data,” Journal of Real-Time Image Processing,
vol. 16, no. 5, pp. 1439–1458, Oct 2019.

[29] W.-C. Tu, S. He, Q. Yang, and S.-Y. Chien, “Real-Time Salient
Object Detection with a Minimum Spanning Tree,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016, pp. 2334–2342.

[30] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti La-
beling: Directed Acyclic Graphs for Block-Based Connected Com-
ponents Labeling,” IEEE Transactions on Image Processing, vol. 29,
no. 1, pp. 1999–2012, 2019.

[31] GRAPHGEN source sode. Accessed on 2020-12-15. [Online].
Available: https://github.com/prittt/GRAPHGEN

[32] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized Block-
based Connected Components Labeling with Decision Trees,”
IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1596–1609,
2010.

[33] H. Schumacher and K. C. Sevcik, “The Synthetic Approach to
Decision Table Conversion,” Communications of the ACM, vol. 19,
no. 6, pp. 343–351, Jun. 1976.

[34] C. Grana, M. Montangero, and D. Borghesani, “Optimal decision
trees for local image processing algorithms,” Pattern Recognition
Letters, vol. 33, no. 16, pp. 2302–2310, 2012.

[35] T. Huang, G. Yang, and G. Tang, “A Fast Two-Dimensional Median
Filtering Algorithm,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 27, no. 1, pp. 13–18, 1979.

[36] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Im-
age Processing, vol. 23, no. 2, pp. 943–951, 2014.

[37] C. Grana, L. Baraldi, and F. Bolelli, “Optimized Connected Com-
ponents Labeling with Pixel Prediction,” in Advanced Concepts for
Intelligent Vision Systems (ACIVS). Springer, 2016, pp. 431–440.

[38] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis and Applications,
vol. 12, no. 2, pp. 117–135, 2009.

[39] S. R. Buss, “Alogtime Algorithms for Tree Isomorphism, Compari-
son, and Canonization,” in Kurt Gödel Colloquium on Computational
Logic and Proof Theory. Springer, 1997, pp. 18–33.

[40] F. Bolelli, L. Baraldi, M. Cancilla, and C. Grana, “Connected Com-
ponents Labeling on DRAGs,” in 2018 24th International Conference
on Pattern Recognition (ICPR). IEEE, 2018, pp. 121–126.

[41] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Towards reliable
experiments on the performance of Connected Components La-
beling algorithms,” Journal of Real-Time Image Processing, vol. 17,
no. 2, pp. 229–244, 2018.

[42] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPeS: 3D People
Dataset for Surveillance and Forensics,” in Proceedings of the 2011
joint ACM workshop on Human gesture and behavior understanding.
ACM, 2011, pp. 59–64.

[43] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer Science & Business Media, 2009.

[44] F. Dong, H. Irshad, E.-Y. Oh et al., “Computational Pathology to
Discriminate Benign from Malignant Intraductal Proliferations of
the Breast,” PloS one, vol. 9, no. 12, p. e114885, 2014.

12

[45] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open Access Series of Imaging Studies (OASIS):
Longitudinal MRI Data in Nondemented and Demented Older
Adults,” J. Cognitive Neurosci., vol. 22, no. 12, pp. 2677–2684, 2010.

[46] A. Lucchi, Y. Li, and P. Fua, “Learning for Structured Prediction
Using Approximate Subgradient Descent with Working Sets,” in
2013 IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 1987–1994.

[47] D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and
J. Heard, “Building a test collection for complex document infor-
mation processing,” in Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2006, pp. 665–666.

[48] F. Bolelli, G. Borghi, and C. Grana, “XDOCS: An Application
to Index Historical Documents,” in Italian Research Conference on
Digital Libraries (IRCDL). Springer, 2018, pp. 151–162.

[49] M. J. Huiskes and M. S. Lew, “The MIR Flickr Retrieval Evalua-
tion,” in International Conference on Multimedia Information Retrieval.
New York, NY, USA: ACM, 2008, pp. 39–43.

[50] S. Allegretti, F. Bolelli, and C. Grana, “Optimized Block-Based
Algorithms to Label Connected Components on GPUs,” IEEE
Transactions on Parallel and Distributed Systems, pp. 423–438, 2019.

[51] A. Rosenfeld and J. L. Pfaltz, “Sequential Operations in Digital
Picture Processing,” Journal of the ACM, vol. 13, no. 4, pp. 471–494,
1966.

[52] C. Grana, D. Borghesani, and R. Cucchiara, “Fast block based
connected components labeling,” in 2009 16th IEEE International
Conference on Image Processing (ICIP). IEEE, 2009, pp. 4061–4064.

[53] L. He and Y. Chao, “A Very Fast Algorithm for Simultaneously
Performing Connected-Component Labeling and Euler Number
Computing,” IEEE Transactions on Image Processing, vol. 24, no. 9,
pp. 2725–2735, 2015.

[54] F. Bolelli, M. Cancilla, and C. Grana, “Two More Strategies to
Speed Up Connected Components Labeling Algorithms,” in Image
Analysis and Processing – ICIAP 2017. Springer, 2017, pp. 48–58.

[55] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The
connected-component labeling problem: A review of state-of-the-
art algorithms,” Pattern Recognition, vol. 70, pp. 25–43, 2017.

[56] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
Another Connected Components Labeling Benchmark,” in 2016
23rd International Conference on Pattern Recognition (ICPR). ICPR,
2016, pp. 3109–3114.

[57] YACCLAB source code. Accessed on 2020-12-15. [Online].
Available: https://github.com/prittt/YACCLAB

[58] K. Wu, E. Otoo, and K. Suzuki, “Two Strategies to Speed up
Connected Component Labeling Algorithms,” Pattern Analysis
Application, vol. 0, no. LBNL-59102, 2005.

[59] E. S. Deutsch, “Thinning Algorithms on Rectangular, Hexagonal,
and Triangular Arrays,” Communications of the ACM, vol. 15, no. 9,
pp. 827–837, 1972.

[60] T. Zhang and C. Y. Suen, “A Fast Parallel Algorithm for Thinning
Digital Patterns,” Communications of the ACM, vol. 27, no. 3, pp.
236–239, 1984.

[61] Y.-S. Chen and W.-H. Hsu, “A modified fast parallel algorithm for
thinning digital patterns,” Pattern Recognition Letters, vol. 7, no. 2,
pp. 99–106, 1988.

[62] Z. Guo and R. W. Hall, “Parallel Thinning with Two-Subiteration
Algorithms,” Communications of the ACM, vol. 32, no. 3, pp. 359–
373, 1989.

[63] C. Grana, D. Borghesani, and R. Cucchiara, “Decision Trees for
Fast Thinning Algorithms,” in 2010 20th International Conference on
Pattern Recognition, 2010, pp. 2836–2839.

[64] THeBE source code. Accessed on 2020-12-15. [Online]. Available:
https://github.com/prittt/THeBE

[65] H. Freeman, “On the Encoding of Arbitrary Geometric Configura-
tions,” IRE Transactions on Electronic Computers, vol. EC-10, no. 2,
pp. 260–268, June 1961.

[66] I. Sobel, “Neighborhood Coding of Binary Images for Fast Con-
tour Following and General Binary Array Processin,” Computer
Graphics and Image Processing, vol. 8, no. 1, pp. 127–135, 1978.

[67] S. Suzuki and K. Abe, “Topological Structural Analysis of Digi-
tized Binary Images by Border Following,” Computer Vision, Graph-
ics, and Image Processing, vol. 30, no. 1, pp. 32–46, 1985.

[68] P. Zingaretti, M. Gasparroni, and L. Vecci, “Fast Chain Coding
of Region Boundaries,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 4, pp. 407–415, 1998.

[69] R. L. Cederberg, “Chain-Link Coding and Segmentation for Raster
Scan Devices,” Computer Graphics and Image Processing, vol. 10,
no. 3, pp. 224–234, 1979.

[70] BACCA source code. Accessed on 2020-12-15. [Online]. Available:
https://github.com/prittt/BACCA

[71] L. Cabaret, L. Lacassagne, and D. Etiemble, “Distanceless Label
Propagation: an Efficient Direct Connected Component Labeling
Algorithm for GPUs,” in Seventh International Conference on Image
Processing Theory, Tools and Applications. IPTA, 11 2017.

[72] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Connected
component labeling on a 2D grid using CUDA,” Journal of Parallel
and Distributed Computing, vol. 71, no. 4, pp. 615–620, 2011.

[73] S. Allegretti, F. Bolelli, M. Cancilla, and C. Grana, “Optimiz-
ing GPU-Based Connected Components Labeling Algorithms,” in
2018 IEEE International Conference on Image Processing, Applications
and Systems (IPAS). IEEE, 2018, pp. 175–180.

[74] Y. Komura, “GPU-based cluster-labeling algorithm without the
use of conventional iteration: Application to the Swendsen–Wang
multi-cluster spin flip algorithm,” Computer Physics Communica-
tions, vol. 194, pp. 54–58, 2015.

[75] V. M. Oliveira and R. A. Lotufo, “A Study on Connected Compo-
nents Labeling algorithms using GPUs,” in SIBGRAPI, vol. 3, 2010,
p. 4.

[76] K. Yonehara and K. Aizawa, “A Line-Based Connected Compo-
nent Labeling Algorithm Using GPUs,” in 2015 Third International
Symposium on Computing and Networking (CANDAR). IEEE, 2015,
pp. 341–345.

[77] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, “Block Equiv-
alence Algorithm for Labeling 2D and 3D Images on GPU,”
Electronic Imaging, vol. 2016, no. 2, pp. 1–7, 2016.

[78] L. He, Y. Chao, and K. Suzuki, “Two Efficient Label-Equivalence-
Based Connected-Component Labeling Algorithms for 3-D Binary
Images,” IEEE Transactions on Image Processing, vol. 20, no. 8, pp.
2122–2134, 2011.

Federico Bolelli received the B.Sc. and M.Sc.
degrees in Computer Engineering from Univer-
sità degli Studi di Modena e Reggio Emilia, Italy.
He pursued the Ph.D. degree from the same
university where he is currently working as a
postdoctoral researcher within the AImageLab
group at Dipartimento di Ingegneria “Enzo Fer-
rari”. His research interests include image pro-
cessing, algorithms and optimization, medical
imaging, deep learning, and historical document
analysis.

Stefano Allegretti received the B.Sc. and M.Sc.
degrees in Computer Engineering from Univer-
sità degli Studi di Modena e Reggio Emilia, Italy.
He is currently pursuing the Ph.D. degree at
the AImageLab Laboratory at Dipartimento di In-
gegneria “Enzo Ferrari” of Università degli Studi
di Modena e Reggio Emilia, Italy. His research
interests include image processing, algorithms
and optimization, deep learning, and medical
imaging.

Costantino Grana graduated at Università degli
Studi di Modena e Reggio Emilia, Italy in 2000
and achieved the Ph.D. in Computer Science
and Engineering in 2004. He is currently Full
Professor at Dipartimento di Ingegneria “Enzo
Ferrari” of Università degli studi di Modena e
Reggio Emilia, Italy. His research interests are
mainly in computer vision and multimedia and in-
clude medical imaging, image processing, analy-
sis of digital images of historical manuscripts and
other cultural heritage resources, multimedia im-

age and video retrieval, and color based applications. He published 5
book chapters, 38 papers on international peer-reviewed journals and
more than 100 papers on international conferences.

13

TABLE 4
Average run-time experimental results on morphological operators Erosion and Dilation in milliseconds. ASU is the Average Speed-Up over
OpenCV. The star identifies novel algorithmic solutions generated with the proposed techniques, all available in GRAPHGEN. Lower is better.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

Dilation OpenCV 0.797 0.282 5.774 2.554 0.365 9.884 35.783 1.000
Dilation LUT 0.643 0.489 6.017 2.702 0.464 8.843 36.216 0.945
Dilation Tree* 1.227 0.504 9.270 3.667 0.463 15.401 56.054 0.657
Dilation Spaghetti* 0.367 0.244 3.558 1.460 0.210 5.446 21.546 1.702

Erosion OpenCV 0.797 0.282 5.776 2.555 0.364 9.887 35.818 1.000
Erosion LUT 0.677 0.480 6.185 2.797 0.463 9.181 36.476 0.922
Erosion Tree* 0.393 0.299 4.041 2.108 0.378 5.948 24.374 1.387
Erosion Spaghetti* 0.243 0.206 2.870 1.275 0.202 4.122 16.981 2.139

APPENDIX A
During the review process, we have been asked to add fur-
ther experiments to prove that the proposed framework is
not limited to the three showcase applications discussed in
the paper. For this reason, a ubiquitous family of algorithms
for binary image processing, i.e., mathematical morphology,
has been selected. In particular, we focused on the two
basic operations of Erosion and Dilation [79], because they
represent the foundations for many other morphological
operators. These algorithms require selecting a structuring
element, so it is impossible to optimize all of the possible
implementations with GRAPHGEN. However, following a
common practice in computer vision libraries, the special-
ized algorithm for most frequent cases can be generated
with our framework.

In OpenCV (version 3.4.7), the common 3 × 3 square
structuring element has a specialized implementation. We
thus select it as a candidate for optimization and apply
GRAPHGEN to such a hard case, for which the DTree falls
into a degenerate case, i.e., a list of conditions, giving alone
no significant optimization.

The experimental results reported in Table 4 have been
obtained with the same environment configuration de-
scribed in Section 3. They show that the combination of

prediction and compression strategies provided by GRAPH-
GEN allows for a significant improvement w.r.t. the perfor-
mance of the OpenCV CPU implementation. In particular,
the Spaghetti-like version reduces the total execution time
providing an ASU of 1.7 for Dilation and 2.1 for Erosion,
without resorting to hardware accelerators.

Given the importance of these two morphological oper-
ations, implementations leveraging the structuring element
separability, applying SIMD or OpenCL vectorization and
parallelization exist, leading to enormous performance im-
provements [80], [81]. However, the experiments reported
in this Appendix demonstrate that further binary image
processing algorithms could benefit from GRAPHGEN with
extremely little design effort.

REFERENCES

[79] J. Serra and P. Soille, Mathematical Morphology and Its Applications to
Image Processing. Springer Science & Business Media, 2012, vol. 2.

[80] M. Van Herk, “A fast algorithm for local minimum and maximum
filters on rectangular and octagonal kernels,” Pattern Recognition
Letters, vol. 13, no. 7, pp. 517–521, 1992.

[81] J. Gil and M. Werman, “Computing 2-D min, median, and max fil-
ters,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, no. 5, pp. 504–507, 1993.

	2020_TPAMI_One_DAG_to_Rule_Them_All(8)
	2020_TPAMI_One_DAG_to_Rule_Them_All_Appendix(1)

