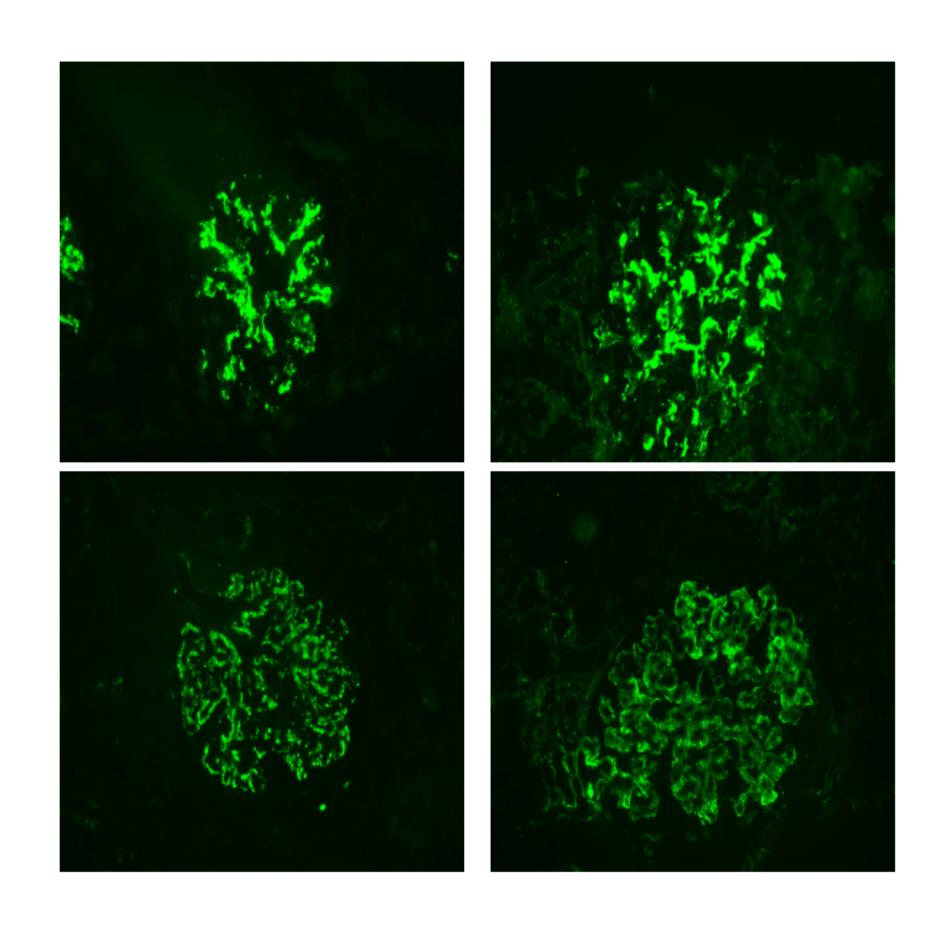


Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image Classification


Federico Pollastri¹, Juan Maroñas², Federico Bolelli¹, Giulia Ligabue¹, Roberto Paredes², Riccardo Magistroni¹, and Costantino Grana¹

> ¹Università degli Studi di Modena e Reggio Emilia, Italy ²Universitat Politècnica de València, Spain

Immunofluorescence in Renal Biopsy

- Immunofluorescence is a powerful technique for light microscopy that makes use of fluorescent-labeled antibodies
- Pattern of antibody deposits require strong expertise to be analyzed

Almage^{Lab}

This work focuses on using **Convolutional Neural** Networks (CNNs) for the automatic identification of two deposit patterns:

- Mesangial Top Row
- Parietal Bottom Row

Deep Learning in Medical Imaging

- Convolutional Neural Networks have been widely employed in several Medical Imaging tasks such as image classification, detection, segmentation, and others
- Neural Networks are often seen as black boxes: this does not suit our task

Inter-rater agreement (Cohen's Kappa) between expert practitioners is very low

	GT	P 1	P2		GT	P1	P2
P3	0.50	0.70	0.34	P3	0.40	0.60	0.60
P2	0.50	0.50		P2	0.40	0.42	
P1	0.80			P1	0.60		
	(a) Mo	esangial			(b) P	arietal	

 Binary predictions are thus an extremely underwhelming tool for immunofluorescence image analysis

The Proposed Method

- Dataset:
 - 11k images
 - 3k exhibit parietal pattern
 - 2k exhibit mesangial pattern
 - 1k exhibit both patterns
- Two mutually non-exclusive classification tasks
- One residual blocks neural network per task
- We want to obtain reliable outputs; we thus apply model recalibration^[1] and aim to obtain:
- LeNet (1998) ResNet (2016) CIFAR-100 CIFAR-100 Outputs Accuracy 9.0 4.0 Error=44.9
 - Confidence
 - calibrated probabilities low Expected Calibration Error (ECE)
 - good discriminative power high accuracy

[1] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, "On Calibration of Modern Neural Networks," in Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2017, pp. 1321–1330.

Qualitative Results

Expert practitioners provided likelihood scores of the mesangial pattern

GT: yes Pred: no	<i>Calib</i> Uncalib	GT: no Pred: yes	<i>Calib</i> Uncalib	GT: yes Pred: yes	<i>Calib</i> Uncalib <i>Human</i>
	0.830 0.992		0.781 0.980	THE STATE OF THE S	0.965 0.999 1.000
	0.771 0.977		0.774 0.964	TO THE PARTY OF TH	0.771 0.977 0.400
	0.571 0.707		0.572 0.711		0.658 0.883 0.600
	0.562 0.684		0.560 0.679		0.558 0.673 0.400

Quantitative Results

TABLE I PERFORMANCE FOR MESANGIAL PATTERN CLASSIFICATION.

				Uncali	brated			TS						
Model	Drop	Acc	Prec	Rec	F1-S	AUC	ECE	Acc	Prec	Rec	F1-S	AUC	ECE	ECE
DenseNet-121	$0 \\ 0.5$	81.00	76.70	70.90	73.70	79.00	13.19	77.50	81.00	52.30	63.50	72.50	4.96	2.31
DenseNet-121		82.20	76.50	75.70	76.10	80.90	4.19	78.80	86.90	51.2	64.40	73.30	5.27	3.00
ResNet-101	$0 \\ 0.5$	82.10	75.40	77.60	76.50	81.20	8.86	80.00	85.40	56.30	67.80	75.30	3.08	2.67
ResNet-101		82.10	79.20	70.90	74.80	79.90	12.64	78.80	85.00	52.80	65.10	76.30	3.77	3.06
ResNet-18	$0 \\ 0.5$	81.30	78.30	69.30	73.50	78.90	1.62	79.40	85.70	54.10	66.30	74.30	4.40	1.41
ResNet-18		81.90	76.40	74.90	75.60	80.50	3.35	78.50	83.60	53.10	64.90	73.40	6.33	2.96
ResNet-50	$0 \\ 0.5$	81.60	72.70	81.60	76.90	81.60	7.59	79.70	85.20	55.50	67.20	74.90	4.71	2.19
ResNet-50		81.70	77.30	72.50	74.80	79.90	3.62	79.60	85.90	55.20	67.20	74.90	3.83	2.58
ResNet-152	$0 \\ 0.5$	81.60	75.50	75.50	75.50	80.40	10.40	79.80	85.30	55.70	67.40	75.00	4.45	3.00
ResNet-152		82.10	73.80	81.10	77.30	81.90	2.22	80.00	86.90	54.90	67.30	75.00	4.53	2.29
EfficientNet-b3	0.3	78.40	72.50	68.30	70.30	76.40	12.54	77.60	82.10	51.50	63.30	72.40	4.94	3.13
EfficientNet-b4	0.4	79.60	75.20	68.00	71.40	77.30	14.54	78.40	85.00	51.50	64.10	73.00	4.78	4.00
EfficientNet-b5	0.4	79.40	75.50	66.70	70.80	76.90	13.16	76.70	81.40	49.10	61.20	71.20	7.02	5.70

- Eight Convolutional Neural Network architectures:
 - DenseNet-121
- ResNet-18
- EfficientNet-b3
- ResNet-50 ResNet-101
- EfficientNet-b4 EfficientNet-b5
- ResNet-152
- Two dropout probabilities:
 - 0
- 0.5
- Two re-calibration techniques:
 - Platt Scaling (PS) Temperature Scaling (TS)

TABLE II PERFORMANCE FOR PARIETAL PATTERN CLASSIFICATION.

				Uncali	brated				TS					
Model	Drop	Acc	Prec	Rec	F1-S	AUC	ECE	Acc	Prec	Rec	F1-S	AUC	ECE	ECE
DenseNet-121	$0 \\ 0.5$	76.80	79.90	64.70	71.50	75.70	15.42	76.40	83.40	59.30	69.30	74.80	6.97	5.73
DenseNet-121		80.30	78.70	77.10	77.90	80.00	13.25	77.20	85.60	59.30	70.10	75.60	4.20	3.21
ResNet-101	$0 \\ 0.5$	77.30	75.40	73.60	74.50	77.0	17.31	76.00	83.40	58.20	68.60	74.40	4.57	3.88
ResNet-101		75.90	82.60	58.90	68.70	74.40	18.93	75.20	84.50	54.70	66.40	73.20	5.04	3.77
ResNet-18	$0 \\ 0.5$	75.60	76.50	66.00	70.90	74.70	15.04	75.60	82.60	58.00	68.10	74.00	4.85	4.36
ResNet-18		78.20	79.00	70.20	74.30	77.50	11.37	76.10	83.10	58.90	68.90	74.50	5.36	4.19
ResNet-50	$0 \\ 0.5$	76.80	82.10	62.00	70.60	75.50	17.38	75.20	86.10	53.80	66.20	73.30	5.34	3.66
ResNet-50		76.90	82.10	62.20	70.80	75.60	16.78	75.80	84.30	56.00	67.30	73.70	5.55	4.52
ResNet-152	$0 \\ 0.5$	77.60	81.20	65.30	72.40	76.50	18.59	76.00	84.30	57.30	68.20	74.30	4.23	4.06
ResNet-152		76.00	80.00	62.20	70.00	74.70	19.00	74.70	82.40	56.00	66.70	73.10	5.53	4.53
EfficientNet-b3	0.3	78.20	74.90	77.60	76.20	78.10	8.52	74.40	83.20	54.00	65.50	72.50	5.80	2.35
EfficientNet-b4	0.4	77.50	77.80	70.00	73.70	76.80	12.37	74.30	82.90	54.00	65.40	72.50	6.36	3.69

77.50 70.40 73.80 76.90 14.62 75.10 82.70 56.40 67.10 73.40 5.77

- Good classification accuracy on both tasks with every CNN
- Minor boost in accuracy with dropout probability set to 0.5
- Good balance between recall and precision
- Temperature Scaling outperforms Platt Scaling
- Calibrated probabilities are closer to human-assigned likelihood scores w.r.t. uncalibrated outputs