

Marco-Sola, Lluc Alvarez, Miguel Moreto, and Costantino Grana

The DeepHealth Project

- Put HPC computing power at the service of biomedical applications
- Increase the productivity of medical personnel and IT professionals
- Offer a unified framework adapted to exploit underlying heterogeneous HPC and Cloud architectures

Kev facts

Duration: 36 months Starting date: Jan 2019

Budget: 14.642.366 € EU funding: 12.774.824 €

22 partners from 9 countries:

Research Organizations

ות==

The DeepHealth Toolkit

- The *DeepHealth Toolkit* is composed of two libraries designed for computer vision and deep learning tasks:
 - ECVL European Computer Vision Library
 - EDDL European Distributed Deep Learning Library
- Plus, a **front-end** designed for nonexpert users, which consists of:
 - A RESTful web service.
 - A web-based GUI.
- The entire toolkit is open-source and available at github.com/deephealthproject

DEEPHEALTH

European Computer Vision Library

 Mainly designed to integrate existing state-of-the-art Computer Vision and Image Processing libraries

 Support for multiple medical imaging formats (NIfTI, DICOM, TIFF, whole-slide)

 Core functionalities implemented for both 2D images and 3D volumes:

- Reading and writing
- Processing
- Visualizing
- Domain-Specific Language for data augmentation

- PyEDDL and PyECVL have been designed for binding Python code to existing C++ code
- Python APIs avoid introducing significant inefficiencies in execution speed or memory usage by keeping any computationally intensive code in C++

 Seamless conversion between EDDL Tensor or ECVL Image objects and NumPy arrays

Benchmarking

