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Abstract—Given the overwhelming impact of machine learning
on the last decade, several libraries and frameworks have been
developed in recent years to simplify the design and training of
neural networks, providing array-based programming, automatic
differentiation and user-friendly access to hardware accelerators.
None of those tools, however, was designed with native and
transparent support for Cloud Computing or heterogeneous
High-Performance Computing (HPC). The DeepHealth Toolkit
is an open source Deep Learning toolkit aimed at boosting
productivity of data scientists operating in the medical field by
providing a unified framework for the distributed training of
neural networks, which is able to leverage hybrid HPC and cloud
environments in a transparent way for the user. The toolkit is
composed of a Computer Vision library, a Deep Learning library,
and a front-end for non-expert users; all of the components are
focused on the medical domain, but they are general purpose and
can be applied to any other field. In this paper, the principles
driving the design of the DeepHealth libraries are described,
along with details about the implementation and the interaction
between the different elements composing the toolkit. Finally,
experiments on common benchmarks prove the efficiency of each
separate component and of the DeepHealth Toolkit overall.

I. INTRODUCTION

The ongoing European Project DeepHealth, funded by the
EC under the topic ICT-11-2018-2019 “HPC and Big Data
enabled Large-scale Test-beds and Applications,” aims to
create a unified framework, completely adapted to exploit un-
derlying heterogeneous High-Performance Computing (HPC)
and Big Data (BD) architectures, in order to boost biomedical
applications using state-of-the-art Deep Learning (DL) and
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Computer Vision (CV) algorithms. One of the core elements
to achieve this ambitious goal is the development of two novel,
integrated software libraries: ECVL (European Computer Vi-
sion Library) and EDDL (European Distributed Deep Learning
Library), respectively designed for computer vision and deep
learning tasks. The two libraries, ECVL and EDDL, together
with a front-end designed for non-expert users, constitute the
DeepHealth Toolkit. The toolkit and its entire ecosystem is
open source and freely available on GitHub [1] under the MIT
license (more details are available in Section IX).

At this point the reader is surely wondering, “Why do
you have to develop new computer vision and deep learn-
ing frameworks?” and “What will these frameworks add to
existing and carefully designed ones?” Let’s skip the possible
analogies with questions such as “Why develop Chrome when
we have Internet Explorer?”, which would be great if they
became reasonable in the future, and let’s focus on concrete
motivations.

Beyond other toolkits available at the time of writing the
DeepHealth proposal, we aim to provide data scientists with
a powerful tool to run distributed Deep Neural Networks
(DNNs) training on hybrid HPC and cloud infrastructures in a
user-transparent way, without requiring a deep understanding
of how DNNs and distributed high-performance computing
work. Overall, the final goal of the DeepHealth Toolkit is
to increase the productivity of data scientists working in the
health sector. A practitioner working together with doctors
should be able to run a training job on his country-donated
HPC service, without writing additional code, and without the
need to set up anything. However, while these requirements
—and thus the current use cases— tend to focus on the health
sector, the DeepHealth libraries are both general-purpose and
can be employed in different domains.

In this paper, we present the rationale behind the de-



velopment of these new libraries and the philosophy that
characterizes them. Further, we present the first qualitative and
quantitative results, revealing their capabilities.

The parallel and distributed computing capabilities of the
DeepHealth Toolkit abstract the computation so that the only
requirement for a DeepHealth Toolkit user is to provide a
file describing the “computing service” – i.e., computing
resources available to train a model. The “computing service”
is specified by the number of CPU-cores, Graphical Processing
Units (GPUs), or Field Programmable Gate Arrays (FPGAs)
accessible on the computer/s where the training process will
run. Remote computers are identified by their IP addresses.
Within the DeepHealth project, the libraries are integrated
into a range of biomedical platforms provided by partners,
such as Open Innovation (PHILIPS), MigraineNet (WINGS),
ExpressIFTM (CEA), PIAF (THALES SIX), Open-DeepHealth
(UNITO), Digital Pathology (CRS4), and everisLumen (EV-
ERIS).

The rest of the paper is organized as follows. In Section II
and Section III EDDL and ECVL are described. Section IV
introduces the interaction between the two libraries within the
scope of the DeepHealth Toolkit. The Python APIs and the
work done to containerize the libraries are respectively detailed
in Section V and Section VI. In Section VII a description of
the RESTful based web service to exploit the functionalities of
the libraries is provided. Section VIII presents the first tests
and evaluations performed on the toolkit, while Section IX
reports distribution and license details. Finally, in Section X
some concluding remarks are drawn.

II. EUROPEAN DISTRIBUTED DEEP LEARNING LIBRARY

The ambitious goal of EDDL is to cover most of the
commonly used deep learning functionalities in the health
sector while preserving simple installation and configuration
processes. The library aims at becoming widely employed,
easy to integrate into existing and future pipelines.

EDDL allows the definition of different neural network
architectures and their execution on different hardware plat-
forms and accelerators, offering tailored implementations that
can be efficiently executed on CPUs, GPUs, and FPGAs.
Additionally, EDDL includes ad hoc methods for serializing
weights and gradients in order to facilitate the network update
between workers and master nodes. Providing such function-
alities, frameworks such as COMPSs [2] can distribute the
work across available accelerators, in a way transparent to the
programmer.

Neural network import and export functionalities are
included employing the Open Neural Network Exchange
(ONNX) format [3]. The Google Protocol Buffers [4] library
is used for model serialization (weights and/or gradients)
according to the ONNX definition of layers, operators and
network topologies.

Given the requirement for fast computation of matrix oper-
ations and mathematical functions, the EDDL library is being
coded in C++. GPU specific implementations are based on
the NVIDIA CUDA language extensions for C++.

1layer in = Input({784});
2

3in = LeakyReLu(Dense(in, 1024));
4in = LeakyReLu(Dense(in, 1024));
5in = LeakyReLu(Dense(in, 1024));
6

7layer out = Softmax(Dense(in, num_classes));
8model net = Model({in}, {out});
9

10// Build model
11build(net,
12sgd(0.01f, 0.9), // Optimizer
13{"soft_cross_entropy"}, // Loss
14{"categorical_accuracy"}, // Metric
15CS_GPU({1}, "low_mem") // One GPU
16);
17

18// Load training and test data
19tensor x_tr = eddlT::load("mnist_trX.bin");
20tensor y_tr = eddlT::load("mnist_trY.bin");
21tensor x_ts = eddlT::load("mnist_tsX.bin");
22tensor y_ts = eddlT::load("mnist_tsY.bin");
23

24// Preprocessing
25x_tr->div_(255.0);
26x_ts->div_(255.0);
27

28// Train model
29fit(net, {x_tr}, {y_tr}, batch_size, epochs);
30

31// Evaluate
32evaluate(net, {x_ts}, {y_ts});

Listing 1. An excerpt of EDDL neural network definition code. This
model trains and evaluates a simple multilayer perceptron using one GPU
as computing service. The resources to be used can be modified by changing
the “computing service” configuration file.

A. Tensor and Neural Networks

The EDDL API is centered around the concepts of Tensor
and Neural Network model. The Tensor class concentrates
all what concerns tensors – e.g., matrix element-wise and
linear algebra operations. Moreover, this class plays the role
of Hardware Abstraction Layer (HAL): models and tensors
will be created and initialized on the device(s) specified
by the “computing service” configuration file. Subsequent
operations involving tensors will be transparently performed
on the specific device, whether this is a (group of) CPU, GPUs,
and/or FPGAs, and using as many cores as specified in the
configuration.

The EDDL library aims to provide the user with a Keras-
like [5] API in order to ease the learning curve, but also
providing the means to work with low-level features. The
documentation of the library lists layers, metrics, losses, and
optimizers currently implemented. Listing 1 shows an example
of a multilayer perceptron network written using EDDL, but
many other examples can be found in the documentation –
for instance, more complex models like ResNet-50 [6] and
U-Net [7].

Data augmentation can be seamlessly integrated as a set
of layers that can be stacked in the neural network topology.
This way, EDDL simplifies the implementation of such op-
erations and provides a unified framework to deal with data
augmentation and tensor operations in the same manner.



1name: MNIST
2description: This is the MNIST dataset.
3classes: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4images:
5- location: "training/0.png"
6label: 5
7- location: "training/1.png"
8label: 0
9split:
10training: [0, 1]

Listing 2. Excerpt of the MNIST dataset defined using the DeepHealth
Dataset Format syntax.

III. EUROPEAN COMPUTER VISION LIBRARY

The European Computer Vision Library has the purpose
of facilitating the integration and exchange of data between
existing state-of-the-art computer vision and image processing
libraries. Moreover, it provides new high-level computer vi-
sion functionalities implementing specialized and accelerated
versions of algorithms commonly employed in conjunction
with deep learning. As for EDDL, ECVL algorithms are
also adapted to hardware accelerators. The library provides
support for multiple operating systems and multiple types of
scientific imaging data and data formats (e.g., jpeg, png, bpm,
ppm, pgm, etc.), with particular reference to medical imaging:
DICOM, NIfTI and many proprietary virtual slides formats are
supported natively. The counterpart to the EDDL Tensor is the
ECVL Image.

A. ECVL Image and Functions

The Image class represents the core of the entire ECVL
library. It is an object that stores data (either images/videos
or raw data) in a multi-dimensional dense numerical single-
or multi-channel tensor. The Image provides a simple but
effective Hardware Abstraction Layer which exploits generic
functions for managing memory, allowing great flexibility
for device differentiation (CPUs, GPUs, and FPGAs) while
keeping the same user interface. The Image class has been
designed for representing and manipulating different kinds of
images with diverse channel configurations, providing both
reading and writing functionalities for all the aforementioned
data formats.

Arithmetic operations between images or between images
and scalars are performed through the Image class. Of course,
all the classic operations for image manipulation such as
rotation, resizing, mirroring, and color space change are
available. Processing functions, like noising, blurring, contour
finding [8], image skeletonization [9], and connected compo-
nents labeling [10], [11], [12] are implemented as well. A
cross-platform GUI based on ECVL and wxWidgets [13] is
also provided to allow simple exploration and test of ECVL
functionalities. Furthermore, a visualizer for 3D volumes, such
as CT scans, allows to observe different slices of a volume
from different views.

Image processing functionalities suitable for data augmenta-
tion in a deep learning pipeline can be wrapped into augmen-

1SequentialAugmentationContainer
2AugResizeDim dims=(100,100)
3AugMirror p=0.5
4OneOfAugmentationContainer p=0.7
5AugGammaContrast gamma=[0,3]
6AugBrightness beta=[0,30]
7End
8OneOfAugmentationContainer p=0.4
9AugElasticTransform alpha=[30,120]
10sigma=[3,6]
11AugGridDistortion num_steps=[2,5]
12distort_limit=[-0.3,0.3]
13End
14AugRotate angle=[-30,30]
15End

Listing 3. Example of ECVL augmentations. Parameters in square
brackets are randomly sampled in the specified interval. Sequential-
AugmentationContainer defines a list of augmentations to be
applied in sequential order. One of the augmentations grouped in the
OneOfAugmentationContainer will be applied with probability p.

tation classes. More details about their usage and advantages
are provided in Section IV-B.

IV. INTERACTION BETWEEN THE TOOLKIT ELEMENTS

A. DeepHealth Dataset Format

In order to make the libraries interoperable and to provide a
straightforward and efficient mechanism to perform distributed
DNNs training, the DeepHealth Dataset Format (DDF) has
been defined and introduced.

DDF is based on the simple and flexible YAML [14] syntax
and describes a dataset. An example is provided in Listing 2.
The file format defines all the information such as name and
description of the dataset, its classes and features,
a list of image or volume paths, and a split indicating
how to divide images into training, validation and
test sets. The classes entry represents all the predictable
categories, while features field describes the additional
information related to each image. In the example above,
MNIST dataset has ten different classes (digits from 0 to 9)
and no features. The DeepHealth Dataset Format also allows
to specify segmentation masks for each input entry, thus also
supporting this fundamental task.

An ECVL module is provided to parse and load DDF-
defined datasets into the specific Dataset class. Moreover, the
library exposes a Generator for the automatic creation of a
Dataset object by traversing a directory tree and dumping the
information onto the YAML file.

B. ECVL-EDDL Interface

The cooperation between EDDL and ECVL is one of the
key elements of the entire project. The libraries interface is
based on two main functions that convert ECVL Image(s)
into EDDL Tensor(s) and vice versa. Additionally, the generic
Dataset has been extended into the so-called DLDataset
to add specific deep learning attributes, such as the batch
size or the augmentations that will be applied to the input
images during the training of a neural network. In fact,
ECVL provides the possibility to apply data augmentation



(a) ISIC (b) SIIM-ACR Pneumothorax

Fig. 1. Example outputs of DeepHealth Toolkit pipelines: (a) ISIC, red polygons delimit the regions of interest (skin lesions), and (b) pneumothorax
segmentation masks where red indicates the prediction area, green is the ground truth, and yellow shows their intersection.

1Image img;
2if (!ImRead("examples/data/test.jpg", img)) {
3return EXIT_FAILURE;
4}
5

6// Loads the augmentation pipeline
7fstream ss("augmentation.txt");
8auto augs = AugmentationFactory::create(ss);
9

10// And applies them to the image
11augs->Apply(img);

Listing 4. Usage of data augmentation containers. In this case, the
transformation list is loaded from file (see Listing 3 as an example).

directly during batch loading. Each dataset split can have
its own augmentations defined through specific containers.
The containers allow the application of the desired set of
transformations, which can be either defined in compiled
code or in a special Domain-Specific Language (DSL) and
read from file at run time. In the latter case we can change
the program behaviour without rebuilding the application.
Listing 3 provides an example of a DSL-defined augmentation
set. As illustrated, different types of containers are available: a
SequentialAugmentationContainer forces the sub-
sequent list of transformations to be executed sequentially;
on the other hand, the OneOfAugmentationContainer
forces the system to choose exactly one transformation from a
specified set and to apply it with a certain probability. Listing 4
is an example of usage of the augmentation containers.

The combination of the libraries allows an easy and effective
programming experience. The combined capabilities of these
two libraries is showcased in the “use case pipeline” code
repository (link in Table IV). This repository contains four
pipeline examples using EDDL and ECVL to train Convolu-
tional Neural Networks on three different datasets (MNIST,
ISIC [15] and SIIM-ACR Pneumothorax [16]), applying dif-
ferent image augmentations, for both classification and seg-
mentation tasks. Sample predictions from these pipelines are
illustrated in Figure 1.

V. PYTHON APIS

In order to make the DeepHealth libraries more accessible
and easier to integrate with other libraries in ML workflows,
Python APIs have been developed. The Python packages are

1import pyecvl.ecvl as ecvl
2import numpy as np
3

4# Image to Array
5img = ecvl.ImRead(img_path)
6a = np.array(img)
7

8# Array to Image
9a = np.arange(12).reshape(3, 4).astype(np.int16)
10img = ecvl.Image.fromarray(a, "xyc",
11ecvl.ColorType.GRAY)

Listing 5. Converting images to numpy arrays and back.

called PyEDDL and PyECVL and are hosted on GitHub as
well.

PyEDDL APIs provide access to the EDDL APIs, which
can be broken down into two main functionality groups: neural
networks (models, layers, regularizers, initializers, dataset han-
dling) and tensor operations (such as creation and serialization,
data copying and mathematical operations). Like in the C++
EDDL API, the neural network training section of the Python
API provides both high-level functions, such as fit and
evaluate, and low-level ones that allow to fine-tune what
happens in individual epochs and batches, providing much
finer control albeit at a slight loss in efficiency (because more
of the execution time is spent in Python code). Similarly,
the PyECVL APIs expose ECVL functionalities in Python:
data types, color types, device types, Image objects, arithmetic
operations, image processing, image input/output, augmenta-
tions, the DeepHealth dataset parser and ECVL-EDDL interac-
tion. To facilitate interoperability between the DeepHealth li-
braries and other Python libraries for data analysis or machine
learning, specific bindings have been implemented to allow
seamless conversion between EDDL Tensor or ECVL Image
objects and NumPy arrays (see Listing 5), enabling complex
workflows where data is exchanged between the different data
structures.

For efficiency, the implementation of the Python APIs
is based on a core binary Python extension module which
provides the Python bindings for the C++ code. The highest
layer of the Python API is implemented in pure Python. This
layer allows Python programmers to easily plug in new code
to implement custom behavior. On the other hand, the binary
core is implemented using pybind11 [17], a header-only library
that allows to efficiently expose C++ types in Python and vice



versa. The binding development process is started with the
Rosetta Commons Binder [18] tool, which generates part of
the code. This generated part is then manually tweaked where
appropriate, and the remainder of the pybind11-based bindings
are written manually (not all parts of the C++ API are
supported by Binder). This partially automated process allows
us to reduce the required effort to develop the Python API
and thus more closely track the development of the underlying
C++ libraries. The overall design of the Python API avoids
introducing significant inefficiencies in execution speed or
memory usage by keeping any computationally intensive code
in C++, while the pure Python code acts as “glue” that joins
together long-running native functions. Thus, users of this API
can benefit from all the advantages of a high-level interpreted
language without sacrificing speed of execution or memory
usage; the performance loss with respect to the fully native
implementation of the DeepHealth libraries is evaluated in
Section VIII.

The code is covered by numerous unit tests and integrated
by several usage examples, most of which are Python port-
ings of the corresponding C++ examples. PyEDDL exam-
ples include network training with various models, ONNX
serialization and deserialization and conversion of tensors
to/from NumPy arrays. Listing 6 shows an example of mul-
tilayer perceptron network training. ECVL examples include
augmentations usage, DeepHealth dataset handling, ECVL-
EDDL interaction, image processing and image I/O. Listing 7
illustrates how to perform a simple image processing task.
Tests are run regularly on continuous integration services
(Jenkins and Travis). In addition, the Python APIs have been
tested by DeepHealth project partners, both during hackathon
events and in the ongoing use cases integration into platforms.

VI. DOCKER IMAGES

To facilitate the use of the DeepHealth libraries, CUDA-
enabled Docker container images are provided on Docker
Hub (links provided in Table IV) and regularly updated.
These images facilitate installation-free and reproducible usage
on container-enabled HPC clusters, containerized platforms
such as Kubernetes (e.g., work to integrate DeepHealth in
Kubeflow [19] workflows is ongoing by other partners within
the project), and even on regular workstations. While Docker
is supported directly, the images can also be used with Singu-
larity by an image conversion. In all cases, the Nvidia Docker
Runtime must be correctly installed on the host system(s) to
run container-based workloads on GPUs supporting CUDA.

Docker images are provided for C++, dhealth/libs,
and Python users, dhealth/pylibs. In both cases, the
images contain the EDDL and ECVL libraries and their
run time dependencies, including CUDA; with respect to the
libs image, pylibs adds the Python bindings and the
Python interpreter itself. Client scripts or applications can be
grafted directly onto these images, as done for the DeepHealth
Toolkit web service described in Section VII. In addition to
the runtime images, a more feature-rich -toolkit flavor
is also provided for all the images. These are built on the

1import pyeddl.eddl as eddl
2import pyeddl.eddlT as eddlT
3

4epochs, batch_size, nclass = 10, 100, 10
5

6# Build model
7in_ = eddl.Input([784])
8layer = in_
9layer = eddl.ReLu(eddl.Dense(layer, 1024))
10layer = eddl.ReLu(eddl.Dense(layer, 1024))
11layer = eddl.ReLu(eddl.Dense(layer, 1024))
12out = eddl.Softmax(eddl.Dense(layer, nclass))
13

14net = eddl.Model([in_], [out])
15eddl.build(net,
16eddl.rmsprop(0.01), # Optimizer
17["soft_cross_entropy"], # Loss
18["categorical_accuracy"], # Metric
19eddl.CS_GPU([1], mem="low_mem")) # One GPU
20

21# Load training and test data
22x_tr = eddlT.load("trX.bin")
23y_tr = eddlT.load("trY.bin")
24x_ts = eddlT.load("tsX.bin")
25y_ts = eddlT.load("tsY.bin")
26

27# Preprocessing
28eddlT.div_(x_tr, 255.0)
29eddlT.div_(x_ts, 255.0)
30

31# Train model
32eddl.fit(net, [x_tr], [y_tr], batch_size, epochs)
33

34# Evaluate
35eddl.evaluate(net, [x_ts], [y_ts])

Listing 6. PyEDDL multilayer perceptron training example.

1import pyecvl.ecvl as ecvl
2img = ecvl.ImRead("sample.png")
3tmp = ecvl.Image.empty()
4ecvl.Rotate2D(img, tmp, 60)
5gamma = 3
6ecvl.GammaContrast(tmp, tmp, gamma)
7ecvl.ImWrite("sample_mod.png", tmp)

Listing 7. PyECVL image processing example.

devel flavor of the nvidia/cuda images and add a full
DeepHealth build environment. Therefore, they are suitable
to compile software built on the DeepHealth libraries without
installing the full set of build time dependencies on the com-
puter. Finally, in addition to the release-tracking images just
described, library-specific images that track the development
process are automatically published. These are most useful for
use cases that need to closely track or want to contribute to
the development process of the libraries.

VII. DEEPHEALTH SERVICE

The DeepHealth Service is a web service that exposes the
functionality of the DeepHealth Toolkit. It has been developed
to facilitate the use of the DeepHealth libraries. Using the
DeepHealth Service, data scientists do not have to write code
for the DeepHealth library APIs or directly manage computing
resources, but directly use ECVL and EDDL functionalities
through a RESTful web service and, optionally, a web-based
GUI.



The Service provides the ability to design, train and test
predictive models and to perform pre- and post- processing
without writing any code. Instead, the REST interface enables
managed service usage scenarios, where a potentially complex
and powerful computing infrastructure (e.g., high-performance
computing, cloud computing or even heterogeneous hardware)
could be transparently used to run deep learning jobs without
the users needing to directly interface with it.

The typical usage scenario of the Service is twofold.
• Inference: the user can see how well a model performs on

his task, by only feeding new data to a pre-trained model
– e.g., learning to classify melanomas using ResNet-
50 [6] model already trained on ImageNet [20] and fine-
tuned on ISIC [15].

• Training: the user trains an existing or newly devised
model from scratch.

The DeepHealth Service API has been defined using Ope-
nAPI [21] to maximize interoperability. The API service is im-
plemented with the Django open source web framework [22].
Training states are stored in a relational database.

User job requests are distributed asynchronously by a
worker microservice based on Celery [23]. The web service
instances and the workers are decoupled through a Rab-
bitMQ broker [24]. This design allows deployments of the
DeepHealth Service to easily scale capacity as required. For
cloud-enabled deployments, the Service has been ported to
Kubernetes, and a configurable Helm chart has been created
for simplified deployment.

VIII. VALIDATION AND EVALUATION

A. Testing and Continuous Integration

The development of all DeepHealth libraries is supported
by extensive test suites and automated Continuous Integration
(CI) pipelines that execute them after every change to the
source code. The pipelines run on the DeepHealth Jenkins
server1 and test the build of C++ code with different com-
pilers (GCC, Clang, MSVC). For the library-specific Docker
container images described in Section VI, the CI pipelines
also implement automated publication on Docker Hub, on
condition that the image passes all tests.

B. Performance Scalability Analysis

In this section we evaluate the performance scalability of the
DeepHealth Toolkit, focusing on the skin cancer melanoma
classification use case based on the ISIC dataset [15]. The
dataset contains 25, 331 dermoscopic images of unique benign
and malignant skin lesions from over 2, 000 patients. In both
training and inference phases, the dataset is split in batches that
are processed in parallel. The use case employs VGG-16 [25]
as reference topology, which won the ILSVRC-2014 [26]
challenge. The input layer is a tensor of size 3 × 224 × 224,
and the output is a vector of 8 values corresponding to the 8
diagnostic categories.

1https://jenkins-master-deephealth-unix01.ing.unimore.it

TABLE I
EXECUTION TIME BREAKDOWN OF THE TRAINING PHASE.

Function Weight Module

im2col 30.96% EDDL
Eigen::internal::gebp kernel 15.63% EDDL
func@0x18810 10.39% OpenMP
func@0x189a0 8.77% OpenMP
get pixel 8.08% EDDL
add pixel 7.42% EDDL
cpu conv2D back. omp fn.4 5.15% EDDL
func@0x18190 3.34% OpenMP
Eigen::internal::blas data mapper 4.97% EDDL
cpu conv2D grad. omp fn.2 1.48% EDDL
cpu d relu. omp fn.1 0.75% EDDL
cpu mpool2D. omp fn.0 0.69% EDDL
cpu fill. omp fn.2 0.62% EDDL
ecvl::RearrangeChannels 0.60% ECVL
cpu relu. omp fn.0 0.59% EDDL
cpu conv2D. omp fn.0 0.56% EDDL

The experiments have been performed on a dual-socket Intel
Xeon Platinum 8160 CPU with 24 cores each, totaling 48 cores
running at 2.10 GHz. Each core has two private L1 caches of
32 KB each (one for data and one for instructions) and a
private L2 cache of 1 MB, and each CPU has an L3 cache of
32 MB shared by its 24 cores. The system is equipped with
96 GB of DDR4 memory distributed in 12 DIMMs, and runs
a SuSE Linux Enterprise Server operating system.

Training. Table I shows the execution time breakdown of
the training phase. The execution time percentage (weight)
and the corresponding module (EDDL, ECVL or OpenMP)
are reported for each relevant function.

It can be observed that most of the execution time of the
training phase is spent for EDDL functions. In particular,
the two most time-consuming functions are im2col, which
takes 30.96% of the total execution time, and the gebp
kernel of the Eigen library (which is called from EDDL)
with a weight of 15.63%. The functions get pixel, add pixel,
cpu conv2D back. omp fn.4 and blas data mapper also take
a relevant portion of the execution time, between 4.97%
and 8.08% each. In contrast, the EVCL library has a very
small weight in the overall execution time of the training
phase, being the RearrangeChannels the most time-consuming
function with a weight of only 0.60%.

Fig. 2. Scalability of the training phase at different batch sizes.

https://jenkins-master-deephealth-unix01.ing.unimore.it


TABLE II
EXECUTION TIME BREAKDOWN OF THE INFERENCE PHASE.

Function Weight Module

Eigen::internal::blas data mapper 46.62% EDDL
im2col 22.37% EDDL
get pixel 10.78% EDDL
func@0x18810 6.98% OpenMP
Eigen::internal::gebp kernel 6.48% EDDL
func@0x189a0 2.66% OpenMP
cpu mpool2D. omp fn.0 0.85% EDDL
ecvl::RearrangeChannels 0.76% ECVL
cpu relu. omp fn.0 0.72% EDDL
cpu conv2D. omp fn.0 0.67% EDDL
func@0x74b90 0.42% OpenMP
decode mcu 0.15% ECVL
cpu conv2D 0.12% EDDL
jpeg idct islow 0.12% ECVL
cpu copy. omp fn.1 0.08% EDDL
fast randn 0.07% EDDL

In addition, it can be noticed that three OpenMP func-
tions also have an important weight on the training step,
consuming 10.39% of the execution in func@0x18810, 8.77%
in func@0x189a0, and 3.34% in func@0x18190. These three
routines are internal OpenMP functions to manage and syn-
chronize threads: this implies that parallelization overheads are
responsible for 22.5% of the total execution time.

Figure 2 details training phase scalability at different batch
sizes, i.e. the speed-up obtained when increasing the number
of threads from 1 to 48. It can be observed that the scalability
improves as the batch size increases, reaching up to 14.7x
speed-up with 48 threads and a batch size of 48. Another
important observation is that the batch size is the main limiting
factor for the scalability of the DeepHealth libraries. The
Figure shows that when the number of threads is greater than
the batch size no performance benefit is gained. This is due
to the parallelization strategy adopted in the libraries, where
each image of the batch is processed by one thread.

Inference. Table II reports how the execution time is dis-
tributed among EDDL, ECVL, and OpenMP functions during
the inference phase.

As in the training phase, the execution time is dominated
by function calls from EDDL. Four of the five most time-
consuming functions are the blas data mapper Eigen kernel,

Fig. 3. Scalability of the inference phase at different batch sizes.

TABLE III
WALL CLOCK TIME IN SECONDS COMPARING C++ AND PYTHON

IMPLEMENTATIONS OF THREE EXAMPLE NETWORK TRAINING JOBS.

Job C++ Python Relative

MNIST mlp 26.6 26.2 -1.5%
MNIST mlp train batch 27.2 28.2 3.7%
MNIST conv 332.0 330.6 -0.4%

the im2col function, the get pixel function, and the gebp
Eigen kernel, with respective weights of 46.62%, 22.37%,
10.78% and 6.48%. These four functions clearly dominate the
execution time of the inference phase, as they combine for a
total weight of 86.25%. Contrarily, the ECVL functions have
a very limited weight on the execution time of the inference
phase, with very modest contributions of up to 0.76% in
RearrangeChannels, 0.15% in decode mcu and 0.12% in
jpeg idct islow.

Results in Table II also show that the OpenMP paralleliza-
tion overheads represent a low percentage of the execution
time of the inference phase. The three most time-consuming
OpenMP functions are func@0x18810, func@0x189a0, and
func@0x74b90, with weights of 6.98%, 2.66% and 0.42%,
respectively. Thus, the parallelization overheads add up to only
10.06% of the total execution time.

Figure 3 shows the inference phase scalability at different
batch sizes. The results are almost identical to those observed
in Figure 2 for the training phase, reaching a maximum speed-
up of 14.8x with 48 threads and a batch size of 48. As in the
training phase, the scalability of the libraries is limited by the
batch size, and using more threads than the number of images
does not provide any performance benefit due to the adopted
parallelization strategy.

C. Overhead of Python API

To measure the overhead imposed by the Python API
with respect to the native C++ DeepHealth libraries, we
have measured the execution times of three different train-
ing jobs: MNIST mlp is the multilayer perceptron training
shown in Listing 6, MNIST mlp train batch is the same
job implemented with the finer grained API, MNIST conv
is a convolutional neural network training example. Table III
shows the measurements from the experiment, averaged over
five iterations. In all cases, the difference between the bare
C++ API and Python API is negligible; as expected, though,
a slight decrease in performance can be seen when the job is
implemented in Python with the lower level batch-by-batch
API. All tests were run with PyEDDL 0.7.0 which maps
EDDL 0.5.4a on an Nvidia GeForce RTX 2080 Ti GPU.

IX. AVAILABILITY

The entire DeepHealth Toolkit is open-source software
released under the terms of the MIT license. The source code
and online documentation —including installation instructions,
API specification, and tutorials— are available on GitHub
(see Table IV for details). Docker images of all components



TABLE IV
LINKS TO SOURCE CODE REPOSITORIES AND ONLINE DOCUMENTATION.

Source Code Repositories

EDDL https://github.com/deephealthproject/eddl
ECVL https://github.com/deephealthproject/ecvl
PyEDDL https://github.com/deephealthproject/pyeddl
PyECVL https://github.com/deephealthproject/pyecvl
DeepHealth Service https://github.com/deephealthproject/backend

Documentation

EDDL https://deephealthproject.github.io/eddl
ECVL https://deephealthproject.github.io/ecvl
PyEDDL https://deephealthproject.github.io/pyeddl
PyECVL https://deephealthproject.github.io/pyecvl

Docker Images

dhealth/libs https://hub.docker.com/r/dhealth/libs
dhealth/libs-toolkit https://hub.docker.com/r/dhealth/libs-toolkit
dhealth/pylibs https://hub.docker.com/r/dhealth/pylibs
dhealth/pylibs-toolkit https://hub.docker.com/r/dhealth/pylibs-toolkit

Applications

Use Case Pipeline https://github.com/deephealthproject/use case pipeline
ECVL Applications https://github.com/deephealthproject/ecvl-applications

are published on Docker Hub under the dhealth organi-
zation. Installable pre-compiled versions of the EDDL and
PyEDDL libraries are available as Conda packages under the
https://anaconda.org/dhealth organization.

X. CONCLUSION

The main objective of the DeepHealth project is to offer
a unified framework completely adapted to exploit underly-
ing heterogeneous HPC and Big Data architectures to boost
biomedical applications using state-of-the-art deep learning
and computer vision algorithms. At the time of writing, the
project is passing its mid-term review, the development of
the whole DeepHealth Toolkit is progressing according to the
work plan, and the estimate is that the pending developments
will be completed in the remaining 18 months of the project.

ECVL and EDDL are already being used in several of the
fourteen use cases of the project. The accuracy obtained by the
tested models on distinct use cases shows that the implementa-
tions are correct. The implementation is not complete yet as we
are halfway through the project, and more work is necessary to
improve the performance (running times) of EDDL and ECVL
and implement pending operators and optimizers.

An interesting outcome to highlight is the ECVL-EDDL
interface, a software component that falls in the scope of
both libraries and is devoted to build data-processing pipelines
in order to run both training and inference procedures with
data augmentations on-the-fly. The ECVL-EDDL interface
improves GPU utilization by using the CPU to pre-fetch
upcoming batches (loading samples from the file systems
and applying data-augmentation transformations). The imple-
mented pipelines demonstrate the advantages of this approach,
addressing different classification and segmentation tasks.

Finally, we can conclude that the DeepHealth Toolkit and its
HPC and cloud complements will be an alternative framework
for data scientists working in the health sector, or any other
sector, to implement solutions based on deep learning.
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