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Abstract—Connected Components Labeling represents a fun-
damental step for many Computer Vision and Image Processing
pipelines. Since the first appearance of the task in the sixties,
many algorithmic solutions to optimize the computational load
needed to label an image have been proposed. Among them,
block-based scan approaches and decision trees revealed to be
some of the most valuable strategies.

However, due to the cost of the manual construction of optimal
decision trees and the computational limitations of automatic
strategies employed in the past, the application of blocks and
decision trees has been restricted to small masks, and thus to 2D
algorithms.

With this paper we present a novel heuristic algorithm
based on decision tree learning methodology, called Entropy
Partitioning Decision Tree (EPDT). It allows to compute near-
optimal decision trees for large scan masks. Experimental results
demonstrate that algorithms based on the generated decision
trees outperform state-of-the-art competitors.

I. INTRODUCTION

Connected Components Labeling (CCL) is used in many
modern Computer Vision and Image Processing tasks, when-
ever object recognition and/or measurement is required.

CCL has a unique and exact solution, that every algorithm
must provide as output. The task aims at producing a de-
scription of the objects inside binary images, by generating
a symbolic image where each pixel of a single connected
component is assigned a unique identifier, typically an integer
number. In this scenario, an object is defined as the set of
foreground pixels such that given two of them (p1 and p2) it
is always possible to find a path of connected pixels, belonging
to the same set, that leads from p1 to p2.

Although introduced many years ago [1], CCL is nowadays
employed in several modern scenarios. Applications of such an
algorithm include Object Tracking [2], Video Surveillance [3],
Image Segmentation [4], [5], [6], Medical Imaging [7], [8],
[9], [10], Document Restoration and Indexing [11], [12], [13],
[14], and Graph Analysis [15], [16]. As a matter of fact, most
state-of-the-art solutions on the aforementioned research fields
exploit binary image processing algorithms as fundamental
pre- or post-processing steps to get to the final results [9],
[17], [18], [19] or to prepare training data [20].

The availability of efficient implementations is for this
reason crucial and dozens of new algorithmic solution, both
on sequential [21], [22], [23], [24], [25], [26] and parallel

architectures [27], [28], [29], [30], [31], [32], [33], [34] have
been published since the first proposal in 1966 [1].

Apart from the specific strategy involved, algorithms mainly
differ on the total execution time required to complete the
task. For this reason, an open-source framework that allows to
fairly benchmark and compare new proposals on CCL has been
released in 2016 [35]. The framework, named YACCLAB (Yet
Another Connected Components Labeling Benchmark), has
been employed by many authors since its first appearance [36],
[37], [38], [39], [40], [41].

One of the cornerstones of sequential CCL algorithms has
been released in [22] by Wu et al. with the Scan Array-based
Union-Find algorithm (SAUF). The authors proved an optimal
strategy, based on Decision Trees (DTrees), to reduce the
average number of load/store operations during the scan of the
input image. This scan was driven by the so called Rosenfeld
mask (Fig. 1a). After the appearance of SAUF many authors
proposed new solutions based on DTrees [23], [42], [43], [44],
[45]. Among them, one of the major breakthroughs consists in
the usage of a 2× 2 block-based approach (Fig. 1b), with an
automatic generation of the optimal decision tree associated
to the scanning mask [42]. Strategies based on DTrees have
demonstrated their effectiveness even when applied, with the
necessary variations, to parallel architectures [46], [47].

Extending a 2D algorithm to 3D is just a matter of in-
creasing the size of the scanning mask to cover also the z-
direction. Unfortunately, the generation of optimal decision
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Fig. 1. Example of 2D (a), (c), and 3D (c) scan masks. The 3D Rosenfeld
mask contains 9 pixels in the previous slice (top) and five in the current one
(bottom). Gray squares are the current pixels that needs to be labeled using
the information extracted from white pixels.



trees becomes quickly unfeasible when the size of the scanning
mask increases. In order to compensate the limitation of
the optimal decision tree generation employed in previous
works, this paper proposes a novel heuristic algorithm based
on decision tree learning and named Entropy Partitioning
Decision Tree (EPDT). The proposed solution allows to com-
pute near-optimal decision trees for large scan masks, which
was impossible with previous methods. The effectiveness of
the proposed solution is demonstrated by applying the 2D
block-based approach to a 3D scenario, and generating the
corresponding decision tree.

The comparative evaluation reported in Section V demon-
strates the effectiveness of our strategy. Source code of the
algorithms generated through the proposed heuristic is publicly
available in [48].

II. RELATED WORK

As regards sequential solutions, paper of the last fifteen
years demonstrated the superiority of two scans algorithms
over other approaches, based on multiple scans of the image
or contour tracing. A two scans CCL algorithm performs a first
raster scan, in which each pixel is given a provisional label
based on its neighborhood, and equivalences between labels
are stored in a data structure. Then, a representative label is
chosen for each connected component, and provisional labels
are updated with the final ones during the second scan.

The first proposal of a two scans algorithm was presented
by Rosenfeld and Pfaltz in the sixties [1]. In the first scan,
the provisional label for the current pixel x is decided on the
basis of the 4 already computed adjacent pixels out of the total
8, i.e. the three on the previous row and the one to the left
of x. These pixel positions constitute the so called Rosenfeld
mask (Fig. 1a). After this pioneering work, successive studies
improved the efficiency of pixel neighborhood exploration
and equivalences resolution. In particular, Samet and Tammi-
nen [49] realized that the equivalence resolution problem can
be described as a disjoint-set union problem, and therefore
can be solved by means of the Union-Find algorithm [50].
The Union-Find algorithm provides two basic operations over
a collection of disjoint sets of equivalent labels: Find retrieves
the representative label of a set given an element belonging
to it, and Union joins two sets together. When a pixel is
examined during the first scan, possible new equivalences
between label sets are resolved online, with a Union. Given
its effectiveness and efficiency, Union-Find has been a staple
in connected components labeling proposals thereafter, and
authors proposed different implementations of it [22], [23].

Another substantial improvement was introduced by Wu et
al. [22], in the form of a decision tree. They noticed that,
when scanning the image using the Rosenfeld mask, the label
for the current pixel can often be decided without the need to
visit every neighbor in the mask. Thus, they built an optimal
binary decision tree that minimizes the average number of
pixel checks, by specifying a certain access order. In such a
tree, each node is labeled with a pixel p of the mask, and its
two children denote the next pixel to check in the two cases

that p is background or foreground. Finally, each leaf contains
the proper action to be performed for the current pixel x. He et
al. [23] proposed a similar algorithm to [22] that employs
a different but likewise optimal DTree, and implements the
Union operation in a different way.

Then, Grana et al. [42] observed that foreground pixels in
a 2 × 2 square always share the same label, and designed a
block-based algorithm that works with block labels in the first
scan, to reduce the amount of provisional labels and necessary
Union-Find operations. The application of the Rosenfeld mask
to blocks instead of pixels led to the definition of the Grana
mask (Fig. 1b). Given the larger size of the mask, instead
of building a decision tree by hand the authors generated
an optimal DTree automatically, by means of a dynamic
programming technique.

Another important step towards performance optimization
of the first scan was represented by state prediction, first
introduced by He et al. [51]. Their first scan considers two
possible computations for the current pixel, for the two cases
that the previous one was foreground or background. In [24],
authors enhanced the concept, condensing the information
about previously accessed pixels in a state, and modeled the
first scan as a finite state machine. Then, Grana et al. [45]
applied state prediction to the DTree of [22], obtaining a
forest of reduced DTrees, one for each possible state. In [52],
Jang et al. applied prediction to a block-based algorithm, using
a reduced 10 pixel mask. They identified seven possible states
and manually built a specific DTree for each of them.

Following a different trend, Bolelli et al. [25], [53] defined
the concepts of equal and equivalent DTrees, and noticed that
the merging of equal and equivalent subtrees in the large DTree
employed in [54] could sensibly reduce the overall number of
nodes, at the cost of changing the tree into a Directed Rooted
Acyclic Graph, or DRAG. This optimization, known as code
compression, improves performance reducing the code size,
and therefore increasing the instruction cache hit rate. Then,
in [26], authors exploited code compression to combine the
whole Grana mask and state prediction.

The study of 3D connected components labeling dates
back to the 1980s. When considering three dimensions, the
2D 8-connectivity becomes 26-connectivity: each voxel v is
adjacent to those composing a 3 × 3 × 3 cube, with v as
its center. A raster scan of a volume proceeds slice-by-slice,
and each slice is scanned in the same way as a single image,
but considering also connections along z axis. Lumia [55]
published an extension of a 2D algorithm, which first labels
each slice separately, and then runs a forward and backward
scan on the volume to resolve equivalences between slices. The
algorithm used for equivalences resolution is not specified in
the paper. The solution proposed by Thurfjell et al. [56] is a
two scans algorithm that uses a translation table for storing
label equivalences, and exploits Union-Find operations for
online equivalence resolution. It considers a 3D neighborhood,
which adds to the Rosenfeld mask 9 pixels of the previous
slice, arranged in a 3 × 3 square (Fig. 1c). We will call
this extended mask, composed of 14 pixels, 3D Rosenfeld
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Fig. 2. OR-decision table for the Rosenfeld mask. All the configurations with
x = 0 lead to the same action, and are thus condensed in a single row.

mask. More recently, He et al. [57] applied a DTree to the
3D Rosenfeld mask, obtaining the Label-Equivalence Based
(LEB) algorithm. The mask size makes unfeasible to find
the optimal tree by hand, so the authors employed a strategy
consisting in prioritizing the pixels with the highest number of
neighbors. The method for solving equivalences is the same
variation of Union-Find used in [23]. In the same paper, the
authors also proposed a run based algorithm, named Run-
Based Two-Scan (RBTS), which assigns provisional labels to
pixels runs, storing them in a separate data structure. LEB and
RBTS represent the current state-of-the-art for 3D CCL.

III. PRELIMINARIES

A. Decision Tables

In a two scans CCL algorithm, the operation performed on
each pixel during the first scan can be described as a command
execution metaphor [42]: the values of pixels in the mask
constitute a binary word, where 1 means foreground and 0
means background. These words represent commands, and
each of them is associated to a corresponding action to be
performed on the current pixel or group of pixels. Possible
actions are:
• no action, when the current pixel/block is background;
• new label, assign to the current pixel/block a new provi-

sional label, and must be performed when the rest of the
mask is background;

• assign, copy the label of a foreground neighbor to the
current pixel/block;

• merge, merge the equivalence classes of already labeled
pixels connected through the current pixel/block, which
usually is assigned the minimum of merged labels.

A characteristic of the CCL problem is interchangeable actions
occurrence, each time multiple foreground neighbors share

equivalent labels, and therefore each of those labels can be
indifferently assigned to the current pixel. Thus, commands
are actually linked to sets of equivalent actions. This relation
can be conveniently represented in a OR-decision table, as
Grana et al. observed in [42]. The OR-decision table for the
Rosenfeld mask is reported in Fig. 2. The left part of each row
is the command, in the form of a binary word where each bit
corresponds to a mask pixel, and the right part displays the
equivalent actions associated to the command, marked with 1.

The OR-decision table is a particularly useful representation
of the problem, because a DTree can be built starting from it.
In particular, the dynamic programming approach described
by Grana et al. [54] and derived from [58] takes as input the
OR decision table and outputs an optimal DTree, i.e., a DTree
with the minimum expected path-length from root to leaves.

However, the generation of an optimal decision tree poses
complexity problems as the size of the mask, and therefore
the number of conditions, increases. Existing algorithms fail
to generate optimal DTrees with more than 16 conditions; for
this reason, no author has ever managed to apply the block-
based approach to 3D algorithms.

B. Decision Tree Learning

Let us consider a population of samples, each composed of
an array of discrete features, and each belonging to a certain
class. A decision (or classification) tree is a tree where each
node is labeled with a feature, and has as many children nodes
as the different values for that feature. Finally, leaves are
labeled with class names. Such a tree serves to determine the
class of any sample from the population: this can be done by
traversing the tree from root to leaf, choosing at each node the
edge corresponding to the actual feature value of the sample.

The construction of a classification tree starts from an avail-
able labeled dataset, and usually proceeds top-down, choosing
for the root node the feature that best splits the dataset accord-
ing to a certain metric [59]. The process is repeated recursively
on every node, considering only the subset of the dataset that
reached it, and stops when every sample of the subset belongs
to the same class. A common metric for evaluating splits is the
Information Gain (IG), employed in the ID3 tree generation
algorithm [60], and in its extension C4.5 [61]. The information
gain represents how much uncertainty can be reduced by
splitting on a certain feature. The uncertainty of a set S is
measured by its entropy H(S), defined as:

H(S) =
∑
c∈C
−p(c) log2 p(c) (1)

In the formula, C is the set of classes in S, and p(c) is
the inferred probability of class c, calculated as the number
of samples in class c over the total number of elements in
S. Information Gain IG(S, f) is defined as the difference
between the entropy of S and the weighted average entropy
of its subsets, determined splitting on feature f .

IG(S, f) = H(S)−
∑
t∈T

p(t)H(t) (2)
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Fig. 3. 3D scan masks based on 2 × 1 × 1 blocks. These masks consider
respectively (a) 19 and (b) 22 conditions, which are highlighted in bold. Both
masks spread over two slices: 19c mask contains 7 pixels on the current slice
(bottom) and 12 pixels in the upper one (top), while 22c mask contains 8
pixels on the current slice (bottom) and 14 pixels in the upper one (top).
Gray squares identify the current pixels that need to be labeled using the
information extracted from their neighbors. Non-bold pixels are ignored, as
they cannot cause any connection that is not already detectable through other
pixels.

Where T is the partition of S produced by the split, and
p(t) is the proportion of the cardinality of t to that of S. For
each node, the feature yielding the largest information gain is
chosen for the split. This process is a greedy heuristic, which
performs a best-first search for locally optimal entropy values.
In our specific case, each split will divide the original set S
into two subsets T0 and T1, with p(T0) = p(T1) = 0.5:

IG(S, f) = H(S)− 0.5 ·H(T0)− 0.5 ·H(T1) (3)

IV. OUTLINE OF THE PROPOSED ALGORITHM

A. 3D Block-Based Masks

As discussed in previous works [24], [42], using a block-
based approach allows to reduce the number of pixel look-ups
in the first scan, and the amount of label merges required
to complete the task. This leads to a reduction in the num-
ber of load/store operations required, and to a consequent
performance improvement. Therefore, applying a block-based
approach also to the 3D space is very likely to achieve a
considerable improvement.

When considering 3D volumes, it is possible to define many
different block-based masks with increasing complexity. If we
think about blocks of voxels, the most simple and promising
options are 2× 1× 1, 2× 2× 1 and 2× 2× 2 blocks.

As already mentioned, one of the core principles on which
block-based CCL algorithms are based on is that all pixel-
s/voxels inside a block are connected. This means that blocks
with more that 2 pixels/voxels per edge would have no benefit.

Considering that a 3D mask would contain 14 blocks in
total (9 on the previous plane, 5 on the current plane), the
full masks of the aforementioned block configurations would
contain 14 × (2 × 1 × 1) = 28, 14 × (2 × 2 × 1) = 56,
and 14 × (2 × 2 × 2) = 112 voxels respectively. However,
the idea is to slowly approach bigger masks, due to the
explosion in complexity. Therefore, we start by considering
masks containing only essential voxels, by simply removing
those that are not direct neighbors of any x voxel. Thus, for
the 2× 1× 1 block configuration a mask with 19 conditions,
hereinafter called 19c, can be generated (Fig. 3a). The mask

Ka Kb La Lb Ma Mb

Kc kd Lc Ld Mc Md

Na Nb Oa Ob Pa Pb

Nc Nd Oc Od Pc Pd

Qa Qb Ra Rb Pa Pb

Qc Qd Rc Rd Pc Pd

Ta Tb Ua Ub Va Vb

Tc Td Uc Ud Vc Vd

Wa Wb Xa Xb

Wc Wd Xc Xd

Fig. 4. 3D scan masks based on 2× 2× 1 blocks. This mask considers 26
conditions, which are highlighted in bold. The mask spreads over two slices:
10 pixels on the current slice (bottom) and 16 pixels in the upper one (top).

based on 2× 1× 1 blocks could be extended up to 28 pixels.
Anyway, the corner voxels Ka, Mb, Qa, Sb, Ta, Vb are never
directly responsible for merges or assignments. They can
thus be ignored to reduce the DTree generation complexity
with no other side effects (Fig. 3b); the resulting mask is called
22c. A similar consideration can be applied to the other block
configurations. As an example, the simplified version of the
2× 2× 1 block-based mask (26c) is reported in Fig. 4.

B. Learning Decision Trees from OR-Decision Tables

With some adjustments, it is possible to apply the principles
of decision tree learning to binary image processing. As
discussed in Section III-A, binary image processing algorithms
can be described through the command execution metaphor
by means of an OR-decision table. Considering this table
as a “dataset” and treating the actions as the result classes,
it is possible to apply decision tree learning. This approach
will allow the generation of a DTree that maps commands to
actions, ideally checking the minimum number of conditions.

However, classifying the rule data poses a challenge: given
three rules with actions {3}, {3, 4} and {4}, which classes
exist? Rule 1 and 2 are “equivalent”, because they have a
common intersection. However, rule 2 and 3 are also “equiva-
lent”, but not rule 1 and 3, i.e. equivalence in this case is not
transitive. If all rules remaining after a split are of the same
class, a leaf is created. When only the two rules {{3}, {3, 4}}
or {{3, 4}, {4}} remain after a split, a leaf can be created.
However, the rules {{3}, {3, 4}, {4}} can not be reduced to
a single action. Hence, taking unique action combinations as
classes, e.g. through a bitmapped representation, would not
resolve cases like {{3}, {3, 4}} correctly and would require a
large amount of memory due to the high number of classes.
Therefore, a heuristic for the classification has been employed:
for rules with more than one action, the action with the
previous highest occurrence, i.e. the temporal “most popular”
action, determines the “class” of this rule. Another heuristic
can be applied as well: calculating all single action occurrences



TABLE I
ENTROPY AND INFORMATION GAIN FOR THE GENERATION OF THE SAUF TREE USING THE TEMPORAL POPULARITY CLASSIFIER. EACH ROW

CORRESPONDS TO ONE NODE OF THE TREE. VALUES HAVE BEEN ROUNDED FOR VISUALIZATION REASONS. BOLD VALUES IDENTIFY THE ENTROPY AND
THE IG OF THE CONDITION CHOSEN FOR THE CURRENT NODE IN THE DECISION TREE. THE FINAL RESULTING TREE IS REPORTED IN FIG. 5A.

Node Depth H(S)
p q r s x

H(T0) H(T1) IG H(T0) H(T1) IG H(T0) H(T1) IG H(T0) H(T1) IG H(T0) H(T1) IG

1 0 2.2 2.0 1.4 0.5 2.3 1.5 0.3 1.9 2.1 0.2 2.1 2.1 0.1 0.0 2.4 1.0
2 1 2.4 2.0 0.8 1.0 2.5 1.0 0.7 1.8 2.3 0.4 2.2 2.2 0.2
3 2 2.0 2.0 0.0 1.0 1.5 1.5 0.5 1.5 1.5 0.5
4 2 0.8 1.0 0.0 0.3 0.0 1.0 0.3 0.8 0.8 0.0
5 3 2.0 1.0 1.0 1.0 1.0 1.0 1.0
6 3 1.0 0.0 0.0 1.0 1.0 1.0 0.0
7 4 1.0 0.0 0.0 1.0
8 4 1.0 0.0 0.0 1.0

in a separate pass, and always classifying based on the global
“most popular” action. If there is a tie in popularity, the action
with the lower id is taken in both classifiers. The global
classifier has been found to be the most effective at obtaining
high-quality decision trees, close to the optimal decision trees.
The temporal popularity classifier performs slightly worse, but
it is much faster since it does not require an additional pass for
counting global rules. Using the temporal classifier, the first
two rules of {{3}, {3, 4}, {4}} would be therefore classified
in class 3, and the third rule in class 4, resulting in an entropy
of 0.92 (P3 = 2

3 , P4 = 1
3 ).

In order to demonstrate the application of decision tree
learning to CCL and to binary image processing problems
in general, a small example based on the Rosenfeld mask is
discussed in the following of this Section. The example is
based on IG and temporal popularity classifier, and the step-
by-step execution is reported in Table I.

The Rosenfeld mask (Fig. 1a) has five conditions, and thus
32 different mask configurations (Fig. 2). For the first node,
there are 5 conditions on which the split can be performed:
p, q, r, s and x. Splitting on these conditions results in the
information gain values displayed in the first row of Table I.
Since x has the highest information gain, a condition node
with x is created, and two child nodes are added. Because all
rules with x = 0 result in action 1 (no action), the entropy
is zero and the left child node is a leaf. On the other hand,
rules with x = 1 do not have a common intersection and the
entropy is greater than zero. This results in a non-leaf node.
The procedure is repeated in the child nodes until all leaves
are created (Fig. 5a). As can be noticed from the comparison
with the optimal DTree (Fig. 5b) obtained using the algorithm
presented in [54], in this specific case the heuristic-generated
tree contains only one extra node.

V. EXPERIMENTAL RESULTS

Algorithms generated with the proposed strategy are evalu-
ated using YACCLAB [35], [48], [62], a widely used [39],
[41] open source C++ benchmarking framework for CCL
algorithms. Experimental results discussed in the following are
obtained on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
with Windows 10.0.17134 (64 bit) OS and MSVC 19.15.26730

compiler. All the algorithms have been compiled for x64
architecture with optimizations enabled.

Exploiting the DTree learning strategy presented in Sec-
tion III-B, we generated three different algorithms: EPDT 19c,
EPDT 22c, and EPDT 26c. They exploit a two scan approach
based on the 2 × 1 × 1 (19c, 22c) and the 2 × 2 × 1
(26c) block-based masks. Obtained DTree have also been
compressed as described in [25] to minimize code footprint.
The proposed heuristic solutions have been compared to state-
of-the-art algorithms for 3D CCL: Label-Equivalence-Based
(LEB) and Run-Based Two-Scan (RBTS), by He et al. [57].

Three different 3D datasets are included in YACCLAB, and
have been used to carry out the following comparison evalu-
ation. One is synthetically generated, and the other two come
from the medical domain, which is the main applicationfield
for 3D CCL.

Hilbert contains six volumes of 128×128×128 pixels, filled
with the 3D Hilbert curve obtained at different iterations (1 to
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Fig. 5. (a) decision tree generated using IG and temporal popularity classifier
for the rules given in Fig. 2. The entropy values used for the creation of this
tree are reported in Table I, with yellow numbers indicating the respective
node numbers. (b) one of the optimal decision trees that can be generated
with the algorithm described in [42] starting from the decision table of Fig. 2.
Ellipsis represent the conditions to be checked, and rectangles (leaves) contain
the actions to be performed, which are identified by integer numbers. (1)
x← no action, (2) x← new label, (3) x← p, (4) x← q, (5) x← r, (6)
x← s, (7) x← p+ r, (8) x← r + s.



6) of the construction method. The Hilbert curve is a fractal
space-filling curve, and it represents a challenging test case
for the CCL task. Mitochondria is the Electron Microscopy
Dataset, which contains binary sections taken from the CA1
hippocampus [63]. Volumes are composed by 165 slices, with
a resolution of 1024×768 pixels. OASIS is a dataset of medical
MRI data, taken from the Open Access Series of Imaging
Studies (OASIS) project [64]. It consists of 373 volumes of
256× 256× 128 pixels, binarized with the Otsu threshold.

Table II reports average execution times of the considered
algorithms over the three datasets. In order to discover which
label equivalence solving method works best for the EPDT
algorithms, four different options have been considered: stan-
dard Union-Find (UF), Union-Find with Path Compression
(UFPC) [22], Three Table Array (TTA) [23], and interleaved
Rem algorithm with SPlicing (RemSP) [65]. For what con-
cerns LEB and RBTS, instead, the TTA solver is always
employed since it delivers the best results according to [57].

In order to achieve a deeper understanding of execution
time distribution, two more tests have been performed. Only
one label solver has been considered for EPDT algorithms:
RemSP, which, according to Table II, on average carries out
the best performance. Bar charts of Fig. 6 report average
execution time split between the three steps composing the
algorithms: memory allocation and deallocation, first scan,
and second scan. Finally, Table III compares the amount of
average memory accesses on the binary image, labels image
and equivalence vector of pixel- and block-based algorithms.
RBTS, having a considerably different memory access pattern
due to its run-based nature, has been excluded.

The comparison of raw execution times in Table II demon-
strates that the best EPDT algorithm is 22c. It also outperforms
LEB, the current state-of-the-art, on Hilbert and Mitochondria,
with an average speed-up of 1.25× and 1.15× respectively,
while obtaining the same performance on OASIS.

As can be noticed, EPDT 19c is better than EPDT 26c, but
worse than EPDT 22c in all test cases. In order to explain this
performance gap, several factors must be taken into account.
Among them, the most significant are the number of load/store
operation, the amount of merge required, and code size.

EPDT 22c considers all the meaningful pixels of the
2 × 1 × 1 block-based mask, adding also the pixels ignored
by EPDT 19c. Including missing pixels and generating the
corresponding DTree allows to reduce the total number of
load/store operations required by the algorithm from ∼1%
to ∼3%, depending on the considered dataset. Indeed, using
the information provided by additional pixels, it is possible
to identify equivalence classes earlier during the first scan,
without having to perform expensive merge operations later.

Nevertheless, expanding the size of the mask has a cost: the
generated tree code lines increase from ∼4k for EPDT 19c
to ∼7k for EPDT 22c, negatively impacting the instruction
cache. However, the benefits of reducing merges and in
general load/store operations outclass the disadvantages of the
increased cache miss rate.

On the other hand, when comparing EPDT 19c and

TABLE II
AVERAGE RESULTS IN MS. LOWER IS BETTER.

Hilbert Mitochondria OASIS

EPDT 19c RemSP 4.77 276.72 30.12
EPDT 19c TTA 5.07 281.07 30.54
EPDT 19c UF 4.78 277.66 30.38
EPDT 19c UFPC 4.81 277.63 30.57

EPDT 22c RemSP 4.68 276.48 29.07
EPDT 22c TTA 4.84 276.66 29.00
EPDT 22c UF 4.73 276.79 29.16
EPDT 22c UFPC 4.69 271.62 29.36

EPDT 26c RemSP 7.96 398.39 51.22
EPDT 26c TTA 8.15 398.30 51.45
EPDT 26c UF 8.02 400.45 51.61
EPDT 26c UFPC 7.93 399.57 51.62

LEB TTA 5.84 313.63 29.03

RBTS TTA 8.24 430.46 45.50

TABLE III
AVERAGE NUMBER OF LOAD/STORE OPERATIONS ON THE OASIS DATASET.

QUANTITIES ARE GIVEN IN MILLIONS.

Algorithm Binary
Image

Labels
Image

Equivalences
Vector Total

LEB 11.461 27.182 9.851 48.494
EPDT 19c 14.917 17.760 1.169 33.846
EPDT 22c 14.057 17.753 1.145 32.955
EPDT 26c 13.695 13.145 0.728 27.568

EPDT 26c we face a totally different scenario: the reduction
in load/store operations is much more significant (∼10% ÷
∼19% depending on the dataset), but at the same time the tree
size increases up to more than 41k lines of code. In this case
the cache miss rate prevails, causing an overall performance
degradation. The described effects are magnified by any further
increase in the mask size. For this reason, we limit our analysis
to masks up to 26 conditions.

Comparing EPDT 22c with LEB, conclusions similar to
those above can be drawn. LEB is based on a hand-crafted
decision tree that guarantees the minimum number of accesses
to the input image, while neglecting what concerns merges and
accesses to the output image. Taking the OASIS dataset as a
reference (Table III), LEB requires about 1.4x the load/store
operations of EPDT 22c, on average. On the other hand, the
small tree employed by LEB completely fits instruction cache:
EPDT 22c and LEB have comparable performance on OASIS
dataset. As the number and the complexity of connected
components grow (Mitochondria and Hilbert), the gap in
the number of load/store operations and the improvement of
EPDT 22c over LEB become more evident.

Differentiating time spent in actual algorithm execution
from time used for memory allocation (Fig. 6), it is possible to
draw further interesting conclusions. EPDT 19c, EPDT 22c,
EPDT 26c, and LEB make use of the same data structures,
taking the same time to allocate and deallocate memory
(negligible oscillations are due to measurement accuracy). In
contrast, RBTS requires additional data structures to keep track
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Fig. 6. Average run-time tests with steps in ms (lower is better).

of run information, thus spending about twice the time in
memory allocation. On the other hand, the additional informa-
tion stored by RBTS allows to significantly reduce the number
of merge operations in the first scan, and to early identify final
labels, avoiding to replace provisional ones during the second
scan. Obviously, datasets with few connected components and
few patterns that cause merge occurrence (OASIS) practically
nullify the advantages of runs.

However, the benefits introduced by runs are not sufficient
to compensate for the allocation cost overhead. For this reason,
RBTS is the worst in all considered settings. In very specific
context, where it is realistic to perform memory allocation
only once, like an embedded system which capture fixed size
images, RBTS would be one of the best performing solution.

VI. CONCLUSION

With this paper we introduced a generic heuristic approach
for generating decision trees starting from an OR-decision
table. The resulting approach, Entropy Partitioning Decision
Tree, EPDT in short, has been proven to generate near-optimal
decision trees when applied to connected components labeling.

Through the proposed heuristic it was possible to extend
the block-based approach also to 3D volumes, significantly
improving the state-of-the-art on the field. Source-code of the
EPDT-based algorithms is publicly available in [48].
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