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Abstract—Connected Components Labeling is an essential step
of many Image Processing and Computer Vision tasks. Since
the first proposal of a labeling algorithm, which dates back to
the sixties, many approaches have optimized the computational
load needed to label an image. In particular, the use of decision
forests and state prediction have recently appeared as valuable
strategies to improve performance. However, due to the overhead
of the manual construction of prediction states and the size of
the resulting machine code, the application of these strategies has
been restricted to small masks, thus ignoring the benefit of using
a block-based approach. In this paper, we combine a block-based
mask with state prediction and code compression: the resulting
algorithm is modeled as a Directed Rooted Acyclic Graph with
multiple entry points, which is automatically generated without
manual intervention. When tested on synthetic and real datasets,
in comparison with optimized implementations of state-of-the-art
algorithms, the proposed approach shows superior performance,
surpassing the results obtained by all compared approaches in
all settings.

Index Terms—Connected Components Labeling, Optimal De-
cision Trees, Direct Acyclic Graphs, Image Processing

I. INTRODUCTION

ONNECTED Components Labeling (CCL) is a funda-

mental image processing algorithm that transforms an
input binary image into a symbolic one in which all pixels
of the same connected component (object) are given the
same label. Introduced by Rosenfeld and Pfaltz [1], sequential
CCL on binary images has been in use for more than 50
years in multiple image processing and computer vision tasks,
including Object Tracking [2], Video Surveillance [3], Image
Segmentation [4], [5], Medical Imaging Applications [6], [7],
[8], [9], Document Restoration [10], [11], Graph Analysis [12],
[13], and Environmental Applications [14].

The CCL problem has a unique and exact solution. Different
algorithms can be used to obtain the symbolic image, which
will always have the same content, except for the specific label
assigned to each connected component. The only difference is
thus the time required to obtain the result.
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Fig. 1. Example of scan masks. Gray squares identify current pixels to be
labeled using information extracted from white pixels.

Since 1966, many papers showed algorithms to improve
the efficiency of CCL and, given the relevance of the task,
this still represents a hot research topic [15], [16], [17],
[18], [19], [20], [21]. The first significant improvement has
been provided by Wu er al. [22], who proved an optimal
strategy to reduce the average number of load/store operations
during the scan of the input image, driven by Rosenfeld mask
(Fig. 1a). They exploited a manually identified Decision Tree
(DTree) to minimize the number of neighboring pixels to be
visited in order to evaluate the label of the current one. This
algorithm has been named SAUF (Scan Array-based Union
Find). Grana er al. [23] subsequently introduced a major
breakthrough, consisting in a 2 x 2 block-based approach
(Fig. 1b), which modeled the CCL problem as a decision
problem, and applied decision tables and trees to automatically
generate the algorithm source code. They named this algorithm
BBDT (Block-Based with Decison Trees).

Many improvements have been proposed since then [20],
and few of them introduced significantly novel ideas, in
particular:

— aproved algorithm to produce optimal decision trees [24];

— realizing that it is possible to use a finite state machine
to summarize the value of pixels already inspected by the
horizontally moving scan mask [16];

— combining decision trees and configuration transitions in
a decision forest, in which each previous pattern allows to
“predict” some of the current configuration pixels values,
thus allowing automatic code generation [25];

— switching from decision trees to Directed Rooted Acyclic
Graphs (DRAGsS), to reduce the machine code footprint
and lessen its impact on the instruction cache [26].

Prediction, as introduced by He et al. [27] and later
improved in [16] and [28], has proven to be one of the
most useful additions, as it allows to exploit already available
information, save expensive load/store operations, and reduce
execution time consequently. The idea behind prediction is tied
to the fact that most existing algorithms scan the image and
look at the neighborhood of a pixel through a mask. For each
step of the scan process, an action is performed depending on
the values of pixels inside the mask. When the mask is shifted
along a row of the image it always contains some of the pixels
it already contained in the previous step, though in different
locations. If those pixels were indeed checked in the previous
mask step, a second read of their value can be avoided by their
removal from the decision process.

Anyway, in [16] the mask used was smaller than the one
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Fig. 2. AND-decision table for Rosenfeld mask. A different action for each
condition outcome (mask configuration) is provided. To produce a more
compact visualization the redundant logic have been reduced by means of
the indifferent condition (represented by “~”). A condition marked with “-”
does not affect the decision.

used in BBDT, because it was unfeasible to manually analyze
all possible combinations produced by the prediction states.
On the other hand, the procedure proposed in [25] is suitable
to be automatized, but still a small mask was employed.
The reason, in this case, is that the larger the mask is, the
more decision trees will populate the resulting forest, and the
higher every tree will be. The machine code that implements
the algorithm resulting from the application of prediction to
BBDT would be very large, and may have a negative impact
on instruction cache. Therefore, despite load/store operations
being less, the overall performance on real case datasets may
be worse than that of the single tree variation. This was also
observed in [28], an extension of [16]. For this reason, all
works on prediction chose to avoid the complexity of the
BBDT mask, and simplified it in various ways.

In this paper, we manage to combine the BBDT original
mask and the state prediction paradigm by taking advantage
of the code compression technique that converts a directed
rooted tree into a DRAG [26]. The resulting process is
modeled by a directed acyclic graph (DAG) with multiple
entry points (roots), which correspond to the knowledge that
can be inferred from the previous step. This guarantees a
significant reduction of the machine code, which is better
than that achievable by a compiler, since it can leverage the
presence of equivalent actions in the trees leaves, and compress
not only equal subtrees, but also equivalent ones.

Furthermore, the code which chooses the action to perform
is automatically generated from the DAG with multiple entry
points. The result is an incomprehensible sequence of ifs and
gotos, as in the dreaded “spaghetti code”. This is the reason
why we christen this algorithm Spaghetti Labeling.

The rest of this paper is organized as follows: Section II
sums up the latest contributions on CCL, Section III describes
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Fig. 3. OR-decision table for Rosenfeld mask.

the proposed algorithm, which is then exhaustively evaluated
in Section IV. Finally, in Section V conclusions are drawn.

II. PRELIMINARIES

CCL algorithms have a clear and single result, thus algo-
rithms differ in the number of load/store operations required
to obtain it. Load operations are needed to get the input
image pixel values, the provisional labels of already processed
neighbours, and to access the data structures for managing
the equivalences. Store operations are needed to write the
provisional and final labels and to update the equivalences data
structures. These often correspond to accesses in main memory
or data cache, and must be considered along with the accesses
required to get the instructions to be executed, which are in
main memory and quickly move to the instruction cache, if its
size suffices. In the following we review how these load/store
operations may be reduced and how to reduce the algorithm
code footprint.

A. Optimal Decision Trees

The procedure of collecting labels and solving equivalences
is described in [23] as a command execution metaphor: the
current and neighboring pixels in the mask provide a binary
word, where 1 represents foreground pixels and 0 background.
Each word represents a command that leads to the execution
of a corresponding action, which can operate on pixels or
over entire blocks with respect to the adopted mask. The
possible actions are: no action if the current pixel/block is
background, new label if it has no foreground neighbors,
assign or merge based on the label of neighboring foreground
pixels/blocks. In [29], Schutte showed that decision tables
may conveniently be used to describe the relation between
commands and corresponding actions. Additionally, Grana et
al. [23] extended the classical concept of AND-decision tables
to OR-decision tables. The former require all actions to be
performed (e.g. perform action 3 and action 5 and . ..), while
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Fig. 4. Optimal DTree obtained using the algorithm presented in [24] and the mask of Fig. 1b. Best viewed online.

the latter associate to every binary word (rule) a set of possible
equivalent actions (e.g. perform action 1 or action 7 or ...)

An OR-decision table describes a distinctive characteristic
of the CCL problem: when multiple foreground neighbors in
the scan mask share equivalent labels, alternative actions can
be performed to label the current pixel or block. Consider-
ing the Ronsenfeld mask (Fig. 1a), the associated AND/OR-
decision tables are respectively reported in Fig. 2 and Fig. 3.

The AND-decision table can be converted into an Optimal
Decision Tree (ODT) through the use of the dynamic pro-
gramming approach introduced by Schumacher et al. [30].
The process described by Schumacher ensures to obtain a
DTree that minimizes the average number of conditions to
check when choosing the correct action to be performed. This
strategy has been then extended to OR-decision tables by
Grana et al. in [24], as we already mentioned. In that paper,
the authors prove the optimality of the conversion from OR-
decision tables to DTree and provide a mechanism to auto-
matically convert a DTree into running code. It may happen
that, after the optimization, a leaf still contains equivalent
actions, so the authors suggest that a random one can be
chosen without affecting the result. This automatic procedure
allows to extend the algorithm to complex masks, as the one
in Fig. 1b. This mask allows the labeling of four pixels (o, p, s
and t) at the same time, thus reducing the number of load/store
and merge operations required. Indeed, labels equivalence is
automatically solved within 2 x 2 blocks without requiring
additional merges.

The ODT obtained with the aforementioned strategy and
using Grana mask is reported in Fig. 4. Here, the total number
of nodes is 136 and leaves are 137. Differently from what
previously presented in [24], this tree still shows all the
equivalent actions in its leaves, which will be exploited later
for further optimizations.

B. State Prediction

He et al. [27] were the first to realize that, when the mask
shifts horizontally through the image, it contains some pixels
that were already inside the mask in the previous iteration.

Considering the Rosenfeld scan mask, it can be observed
that pixel x will be the next s, ¢ will be the next p, and pixel
r will be the next ¢q. See Fig. 5 as a reference. A similar
observation can be drawn for the other masks. Then, in the
case those pixels were indeed checked in the previous step,
a repeated read can be avoided. He et al. [16] addressed this
problem condensing the information provided by the values
of already seen pixels in a configuration state, and modeled
the transition with a finite state machine. The algorithm was
designed for the specific task, and no provision of a general
methodology is provided in the paper.

Grana et al. [25], instead, proposed a general paradigm to
leverage already seen pixels, which combines configuration
transitions with the decision trees. Algorithms that make use
of a DTree usually traverse the same tree for each pixel
of the input image. In that paper, authors noticed that the
exploitation of values seen in the previous iteration could result
in a simplification of the decision tree for the current pixel.
A reduced DTree can be computed for each possible set of
known pixels. Then, trees can be connected into a single graph
(forest), which drives the execution of the CCL algorithm on
the whole image. It is noteworthy that, for a certain position
of the mask, the set of pixels that theoretically do not need
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Fig. 5. Unitary horizontal shift for Rosenfeld mask during image scan. Pixels
named with “1” were inside the mask in the previous iteration while pixels
named with “2” are currently inside the mask: q1 — p2, r1 — g2, and
Tr1 — S2.



to be read are not only the already seen ones, but also pixels
that are outside the input image, which are usually considered
background. In fact, Grana et al. also exploited the information
about the position of the mask in the image, and built special
reduced DTrees that are only used in correspondence with
borders. The whole optimization strategy has been applied by
hand to the SAUF algorithms, i.e. using the Rosenfeld mask.

The use of reduced DTrees that leverage any possible a
priori knowledge about pixel values has two advantages in
terms of execution time. The first one is the saving of load/-
store operations, which are the major performance bottleneck
of this kind of CCL algorithms. The second advantage is the
saving of pixel existence checks: every reduced DTree only
contemplates pixels that for sure do not exceed the borders of
the input image. Thus, boundary checks, that would otherwise
be necessary every time a pixel is accessed to ensure it is
inside the image, can be removed.

C. From Trees to DRAGs

In [19], authors noticed the existence of identical and
equivalent subtrees in the optimal decision tree obtained using
the algorithm by [24]. They observed that identical subtrees
were merged together by the compiler optimizer, with the
introduction of jumps in machine code. The result of such
a merging is the conversion of a tree into a Directed Rooted
Acyclic Graph, which they called DRAG.

While the code compression operated by the compiler
optimizer is aimed at the reduction of code footprint, the
compiler is only capable of recognizing identical pieces of
code. In [19], this optimization is enhanced by merging not
only identical subtrees, but also equivalent ones. The formal
statement of the problem is as follows.

The set of decision trees for the set of conditions C' and
actions A is called DT (C, A). These are trees in which every
node that is not a leaf has two children, also known as full
binary trees. N is the set of nodes and £ is the set of leaves.
The condition of a node is denoted with ¢(n) € C, with n €
N, and the set of equivalent actions of a leaf is denoted with
a(l) e P(A)\ {@}, with | € L, where P(A) is the power set
of A. Each node n has a left subtree /(n) and a right subtree
#(n), each rooted in the corresponding child of n.

Definition (Equal Decision Trees). Two decision trees t1,to €
DT, having corresponding roots r; and ro, are equal if either:
1) r1,79 € £ and a(ry) = a(rg), or
2) r1,70 € N, c(r1) = c(r2) and £(r1) is equal to £(rs)
and 2(rq) is equal to #(rs).

Definition (Equivalent Decision Trees). Two decision trees
t1,to € DT, having corresponding roots 7; and ry, are
equivalent if either:
1) ri,72 € £ and a(ry) Na(re) # &, or
2) r1,r2 € N, c(r1) = c(rz) and £(r1) is equivalent to
L(ry) and 2(rq) is equivalent to #(rs).

A pair of equal or equivalent trees can be merged into a
single one, to which both their parents can point. The aim of
the conversion of a decision tree to a DRAG is the exploitation

of such merging operations, in order to minimize the total
number of nodes. One possibility consists of traversing the
tree in a chosen order, and merging each subtree with every
possible equal one. Since DT equality is a transitive relation,
the result of this operation does not depend on the order chosen
for traversing the tree [31].

An analogous procedure could merge equivalent trees in-
stead, taking the intersection of actions in the corresponding
leaves. However, since D7 equivalence is not a transitive
relation, this procedure would depend on the order in which
the tree is traversed. Trying all possible orders would lead to
the optimum, but it is clearly not feasible. Thus, the authors
chose another way: first, they operate the merging of only
equal trees, whose result is optimal because it does not depend
on the traversing order. In this way, an initial DRAG is
obtained, which keeps the entire sets of equivalent actions in
the leaves. From that one, many variations can be generated
by selecting a single action from leaves with more than one, in
all possible ways. After the generation of all equivalent DRAG
variations, the merging of equal subtrees is performed on each
of them separately. Then, the one with the minimum number
of nodes, which represents the optimal solution to the original
problem, is selected.

III. OUTLINE OF THE PROPOSED METHOD

In this paper, we propose a new CCL algorithm that
combines the BBDT original mask and the state prediction
paradigm, by taking advantage of the technique that merges
together equal and equivalent subtrees, in order to minimize
code footprint. This allows to minimize load/store and merge
operations, and if statements required by the labeling proce-
dure, and to increase instruction cache hits, thus improving
the overall execution time.

A. State Prediction with Grana Mask

In the previous work by Grana er al. [25], the Rosenfeld
mask is adopted, and both the forest and the graph that links
trees together are manually built. In order to implement the
same approach with a different and more complex mask,
such as the BBDT one, we employ a generic algorithm
that automatically generates forests of reduced DTrees and
connects them into graphs. This approach is described in the
following of this section.

1) Forest of Reduced Trees: We represent the information
about an already known pixel through a constraint, which is
an ordered pair (p,v), where p is a pixel of the mask, and
v is its value. For each leaf of the complete tree, we build a
set of constraints that stores the information about pixels that
have been read in the path to the leaf. These constraints are
modified according to the mask shift. Considering for example
the simplified case with unitary shift in Fig. 5, a constraint over
the pixel « will turn into a constraint on pixel s. For each leaf,
a reduced tree is then generated through the application of the
corresponding set of constraints to the original tree.

A reduction is performed traversing the original tree, from
root to leaves, recursively. Each node that contains a condition
over a pixel included in the constraints set is substituted



Fig. 6. Reduced tree obtained from the optimal DTree (Fig. 4) through the
application of the set of constraints {(h,0), (n, 1), (¢,1)}. Leaves contain
equivalent actions to perform (to the left) and the index of the next tree to
use (to the right) separated by a dash.
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Fig. 7. Grana mask configuration at the begin of a line. Dotted line represents
the left border of the image.

with its child that corresponds to the constraint value. This
reduction, that is a pruning of the original tree, allows to
remove the checking of already known pixels. As an example,
if a constraints set contains (,0), each node of the original
tree with condition ¢ is replaced with its child associated to
branch 0. Every reduced tree is given a unique index.

Obviously, after the reduction it is possible for a node of
a reduced tree to have two identical branches. Those can
therefore be merged together, by substituting the parent node
with one of its equal children. Then, possible pairs of identical
reduced trees are looked for, and duplicates are deleted. An
example of a reduced tree is shown in Fig. 6.

In the CCL process, after a certain decision tree has been
traversed to a leaf in order to perform an action for a certain
pixel (or group of pixels), the linked tree is traversed for
the next pixel of the row. We call the reduced decision trees
generated in this step main trees, to distinguish them from
ones that will be discussed further on. The set of main trees
is called main forest.

2) Beginning of Rows: At the beginning of the row, no
information is available about previously seen pixels. Thus,
the complete decision tree could be used. Anyway, we know
that some pixels of the mask are out of the borders of the input
image. For the BBDT mask, the case is shown in Fig. 7. Since
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Fig. 8. Possible configurations of Grana mask when it reaches the end of
a line. The dotted line represents the right border of the image. Configura-
tions (a) and (c) will occur when image has an even number of columns.
Configurations (b) and (d) are required with odd number of columns.

those pixels are always considered to be background, there
is no need to use the complete tree. Conversely, a reduced
tree to be used at the beginning of the row is built, imposing
constraints that set to 0 every pixel outside the image. We call
this tree start tree. The start tree is added to the main forest,
and is considered a main tree to all effects.

3) End of Rows: An analogous reasoning can be applied
to the end of rows, where the mask pixels to the right can be
outside the input image. However, this case is different from
the beginning of row, and presents two more issues.

The first one is that, in addition to end of row constraints,
we may also have information about pixels already seen in the
previous iteration. Such information has already been coded
in a main tree. Therefore, for every main tree, a further
reduction is performed by applying the end of row constraints,
to generate the corresponding end of row tree. End of row trees
from now on will simply referred to as end trees, and together
they compose the end forest. During the CCL procedure,
whenever the traversing of a main tree starts, a preliminary
check is done on the column index, to establish whether the
corresponding end tree should be used instead.

The second problem is tied to the specific mask chosen
by the CCL algorithm. When using BBDT mask, we notice



Fig. 9. Grana mask configuration at the first line. The dotted line represents
the upper border of the image.
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Fig. 10. This figure shows which trees/forests should be used in each part of
the image. For what concerns first row, “A” is the start tree, “B” represents the
main forest and “C” is the end forest which automatically handle the odd/even
number of cols. “D”, “E”, “F” have a similar meaning but for middle rows.
When image has an odd number of rows an additional group of forests is
required: the end line forests. In that case “G” represents the last row start
tree, “H” is the main forest and “L” is the end forest.

that end of row constraints depend on whether the number of
columns of the input image is even or odd (Fig. 8). Thus, for
each main tree, two different end trees are generated, one to
be used when the columns are odd and one for when they are
even. The end forest is therefore divided into two disjoint sets,
that we will call end forest even and end forest odd.

The merging of identical branches and removal of duplicate
trees are performed on end trees too.

4) First Row and Last Row: It is also possible to observe
that when the first row is scanned, the upper part of the mask is
outside of the image (Fig. 9). Similarly, if the number or rows
is odd, when the last row is scanned the bottom line of the
mask exceeds the lower border of the image. This observation
leads to the construction of first row forests and last row
forests, which can be obtained from the main forest and the
end forest through the application of first line constraints or
last line constraints.

Finally, in the far-fetched but possible case that the input
image has only one row, a special set of forests is needed in
which both first line and end line constraints are considered.
Those were created and included in the algorithm, for such
uncommon situations. The way in which different forests
alternate during the scan of an image is depicted in Fig. 10.

B. DRAGs

Since main and end forests described in the previous section
have a very large number of nodes, we exploit the merging of
equal and equivalent subtrees in order to reduce code footprint
and make a better use of the instruction cache. Differently
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(d) Node

(b) Root (main tree)  (¢) Root (end tree)

16-5 16

(e) Leaf (main tree) (f) Leaf (end tree)

Fig. 11. (a) is the root of a start tree with the corresponding condition to
check (o in this example). (b) and (c) are the symbols used for the roots of
a generic tree inside the forest: in (b) are specified the index of the tree (2
in this example) and the condition to be checked (o in this example), in (c)
the group to which the tree belongs is also reported (1 in this example). See
Section III-B for details about tree groups. Nodes of the tree, and associated
conditions to check, are represented as in (d). (c) and (f) are the symbols
for leaves: the first one contains both the action to be performed (16 in this
example) and the index of the next tree (5 in this example), the second one
contains only the action. (b) and (c) are used inside the main forest, while (c)
and (f) are required to depict end line forests.

from the original work by Bolelli et al. [19], however, we
do not have a single tree, but three whole forests for each
line case (i.e. first row, last row, and middle rows). In fact,
equivalent subtrees can be merged together even if they belong
to different trees. This approach leads to the conversion of a
forest into a DAG with multiple entry points (roots). Another
peculiarity of our specific case is that leaves of main trees
do not only contain actions, but also a link to the root of the
subsequent tree to use after the mask shift. Thus, in order
for two leaves to be considered equal or equivalent, it is also
required that they point to the same next tree. A consequence
is that a subtree of a main tree will never have an equivalent
one in the end forests, since end trees leaves do not have
pointers to other trees. Anyway, it is possible for a subtree
in the end forest even to have an equivalent one in the end
forest odd. A choice had to be made on whether to reduce
the two end forests jointly or separately. Theoretically, this
choice should not impact instruction cache, because only one
end forest is needed for a certain image, so pieces of code that
implement trees belonging to different end forests will never
conflict for a cache line during the labeling of an image. We
tried both the possibilities anyway, and experimental tests did
not show performance discrepancies. In the following, the two
end forests will be considered separately, but every operation
can be adapted to the joint option by simply substituting the
two sets of end trees with a single set that represents their
union.

The conversion of a forest to a DAG with multiple roots
consists of two steps. The first one is the merging of equal
subtrees, as described in Section II-C. The sole difference is
that we do not traverse a tree only, but a set of trees one
by one, and for each subtree we search for equal ones in
the whole forest. This operation is guaranteed to be optimal,
because it does not depend on the order in which subtrees
are traversed. The second step involves equivalent subtrees
reduction. Similarly as described in Section II-C, if during
the tree traversal, equivalent subtrees are merged together
as soon as they are found, there is the risk to change the
list of equivalent actions so that now it is impossible to
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Fig. 12. Forest of main trees connected into a single DAG with multiple entry points (roots). See Fig. 11 for details about notation used. Best viewed online.

perform another substitution of larger subtrees. The exhaustive
optimal solution adopted in [19] is not applicable to our case,
because the amount of equivalent forests is too large for the
execution time to be reasonable. To solve the problem, we
use a heuristic greedy algorithm which tries to prioritize more
valuable substitutions, meaning that larger equivalent subtrees
get substituted before smaller ones. This is heuristic since
there is no guarantee that many smaller substitutions could
be performed if the large one had not been performed, but we
could not spot any counter example in practice. The process
follows these steps:

1) all trees in the forests are traversed and each of them is
unrolled into a string with a memoizing strategy, along
with a list of the possible actions and the next tree
reference. Each element has also got a pointer to the
subtree it represents;

2) the list of “stringized” subtrees is heuristically sorted by
string length (prefer larger trees) and then lexicograph-
ically;

3) now we can move through the list and remove all
the elements whose strings do not appear more than
once, since no subtree shares the same conditions. This
shortened list will contain possible substitutions;

4) going through the list, we now check if two entries
with the same string have a non empty actions lists

intersection. In this case, one of the subtrees can be
replaced by a pointer to the other after intersecting the
actions lists;

5) the process starts again after the removal, because now
the graph structure is different and some of the smaller
equivalences have already been resolved. The memoiza-
tion step is not required again, since the strings are the
same as before, but the list is recreated with the now
reduced structure.

The process ends when no substitution is possible. The main
and the end forests, specific for middle rows and converted to
DAGs, are depicted respectively in Fig. 12 and Fig. 13.

C. Implementation

A tree is translated into code as a sequence of nested if
and else statements, that leads to the execution of exactly one
action. After that, a goto statement allows the execution flow
to jump to the next tree.

The labeling process starts, at the beginning of each row,
with the proper start tree, as shown in Fig. 10.

At the beginning of every main tree, the column index is
incremented and an end of row check is performed, in order to
decide whether an end tree should be used in place of the main
tree. Anyway, two different end trees correspond to any main
tree. This allows to cover both the case the image columns
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are in even number and the case they are odd. Therefore, if
an end of row condition is really met, a check on the number
of column is needed. Then, a goto statement causes a jump to
the proper end tree. The two possible end trees are fixed for
each main tree.

After the traversal of an end tree, the column index is reset,
the row index is increased and an end of column check is
performed. If the image is not over yet, a goto statement moves
the execution flow to the beginning of the appropriate start tree,
and the aforementioned process continues on the next row. The
C++ like pseudo-code provided in Listing 1 exemplifies all the
process.

IV. COMPARATIVE EVALUATION

In this section the benefits of the proposed strategy are eval-
uated using YACCLAB [26], [32], [33], a widely used [34],
[35] open source C++ benchmarking framework for CCL
algorithms. YACCLAB allows researchers to test state-of-the-
art algorithms on real and synthetic generated datasets. The
fairness of the comparison is guaranteed by compiling the
algorithms with the same optimizations and by running them
on the same data and over the same machine.

Experimental results discussed in the following are obtained
on an Intel(R) Core(TM) 17-4790 CPU @ 3.60GHz (4x32 KB
L1 data cache, 4x32 KB L1 instruction cache, 4x256 KB L2
cache, and 8 MB of L3 cache) with Windows 10.0.17134 (64
bit) OS and MSVC 19.15.26730 compiler. All the algorithms

have been compiled for x86 architecture with optimizations
enabled.

The algorithms provided by YACCLAB cover most of the
paradigms for CCL explored in the past. We selected the most
significant ones, i.e. the best performing according to [26], in
order to showcase the performance of the proposed algorithm.
For convenience, the following acronyms will be used to
identify algorithms: SAUF is the Scan Array Union Find
algorithm by Wu et al. [36], BBDT is the Block-Based with
Decision Trees algorithm by Grana et al. [23], CTB is the
Configuration-Transition-Based algorithm by He et al. [16],
PRED is the Optimized Pixel Prediction by Grana et al. [25],
DRAG represents the Direct Rooted Acyclic Graph algorithm
introduced by Bolelli et al. [19], [37]. Moreover, NULL is
a lower bound limit for all CCL algorithms over a specific
dataset/image, obtained by reading once the input image and
writing it on the output again [26]. Finally, the proposed
method is identified as Spaghetti.

The benchmark provides a template implementation of the
algorithms over the labels solving strategy. Using different
label solvers can significantly change the performance of
a specific combination of dataset, algorithm and operating
system. To increase the readability of charts without losing
information, we select, according to [26], the labels solvers
that provide the best performance on the selected environ-
ment for a specific algorithm, i.e. standard Union-Find (UF)
for SAUF and the interleaved Rem algorithm with SPlicing



for (int r = 2; r < rows; r += 2) {
int ¢ = -2;
// Start from root_0

root_0:
¢ += 2; // Move to next block

if (c >= cols - 2) {
// Manage the last column/s
goto last_column_0;

R L R I SR R CE

if (CONDITION_O) { 1

if (CONDITION_J) { 12

// Leaf: do action and 13
ACTION_4 14

// jump to next root 15

goto root_11; 16

} 17

else { 18
root_6: 20
c += 2; // Move to next block 2

if (¢ >= cols - 2) { 2

// Manage the last column/s 23

goto last_column_6; 24

} 25

if (CONDITION_O) { 26

// Name this node, because 27

// it will be reused 28

NODE_80: 29

if (CONDITION_J) { 30

ce 3
root_11: 32
c += 2; // Move to next block 3

if (¢ >= cols - 2) { 34

// Manage the last column/s 35

goto last_column_11; 36

} 37

if (CONDITION_O) { 38

if (CONDITION_N) { 39

// Jump to existing subtree 40

goto NODE_80; 41

} 42

else { 43

if (CONDITION_R) { 44

45

} 46

Listing 1. C++ like pseudo-code example of the Spaghetti algorithm. It is

possible to observe the logic of block advancing (both on rows and columns),
the action performed in leaves, the jump to the next tree, and the jump within
conditions to reuse existing subtrees.

(RemSP) [38] for all the others.

The YACCLAB dataset [26], [39] covers most applications
in which CCL may be useful, and features a significant
variability in terms of resolution, image density, variance of
density, and number of components. It includes six real-world
datasets, and specifically:

— 3DPeS originates from a surveillance dataset mainly
designed for people re-identification [40]. Using back-
ground camera models and Otsu thresholding [41], a
basic technique of motion segmentation has been applied
to generate the foreground binary masks;

— Fingerprints dataset contains 960 fingerprints images
synthetically generated or collected with low-cost optical
sensors [42]. Fingerprints images have been binarized
with an adaptive threshold [43] and negated to have
foreground pixels with value 1;

— Medical is composed of 343 binary segmentations of
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Fig. 14. Average run-time tests with steps in ms on the Tobacco800 dataset,
obtained on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with Windows
10.0.17134 (64 bit) OS and MSVC 19.15.26730 compiler. Lower is better.

histological images, originally published by Dong et al.
in [44];

— MIRflickr [45] contains an Otsu-binarized version of the
MIRflickr dataset;

— Tobacco800 [46] is a realistic database for document
image analysis research. These documents have been
collected using a wide variety of equipment over time,
and are characterized by a significant variability in terms
of resolution;

— XDOCS dataset [11], [47], [48] collects a huge amount of
high resolution images taken from the civil registries that
are available since the constitution of the Italian state.

A. Average Run-Time Results

For a given dataset, the set of algorithms is randomly
shuffled, and each of them is run for a total of 10 iterations on
each image. The minimum execution times are then considered
and averaged on the dataset size [26]. Experimental results are
reported in Fig. 15.

Algorithms that make use of Grana mask (BBDT, DRAG
and Spaghetti) always perform better than those based on
Rosenfeld mask (SAUF and PRED) or He mask (CTB),
because of the lower number of merge operations and mem-
ory accesses on the output image and the equivalence data
structures. Regarding the Rosenfeld mask, the advantage of
PRED over SAUF is attributed to state prediction. Combining
benefits of the two paradigms (block-based mask and state
prediction), Spaghetti always has the lowest execution time.
The improvement over DRAG, which represents the state-of-
the-art of algorithms with publicly available implementations,
is around 8%, which is significant considering the maturity of
the problem and the small gap between state-of-the-art and the
theoretical lower bound (NULL).

In order to highlight how the optimization introduced by
our proposal influences the performance, a stacked bar chart
obtained on the Tobacco800 dataset is also reported in Fig. 14.
In this experiment, the performance of an algorithm is eval-
uated splitting the allocation-deallocation (alloc/dealloc) time
from the one required to compute CCL. Moreover, each scan
involved in the labeling procedure is displayed separately. It is
important to underline that alloc/dealloc is an upper bound of
the real allocation time [26], and this explains why execution



L2/ 114 111 1
- 0.97 L0 097 J
z 0.88
g 08f 069 |
S osl i
2
g 04 g
s

02} 4

0
oS & 2 Py S 1,
Y 0 R T Ty Ry, %
NN \,% 0’); vps \,% GQ;
KN o e,
Y
(a) 3DPeS
‘T 3m ERZRN i
35r 3.14 3.13 iy

0.5

Execution Time [ms]
- N
o = N W
T T T T T T
N
j¥=3
o
N
o
D
Il Il Il Il Il Il

O, <
e Sy TR R R, %
")\90 Y Ib\s,‘o /))‘% \420/))
Y
(c) Medical
14+ 1346 13.3 .
1L 11.62 1226 41 60 N
10.64

10+ -

7.97

Execution Time [ms]

o N & O ®
T
|

(e) Tobacco800

0.45 ] 042 41 1

0.4 0.37
0.35

03 -
0.25 -
0.2
0.15 -
0.1 -
0.05 -

Execution Time [ms]
o
v
2
/‘b\?
o
w
~N
o
w
D
=
=
(=)}
1 1 1 1 1 1 1 1

0.7

064 062 061
- 06 0.54 0.53 )
E o5 0.49 i
g
E 04f g
=
0.31
S o03f .
E
g o2f .
0.1 .
0
& & 2 %) ) %
KIS Q‘i’@ G Y
\OA v% % \% \,fzQ 0@
/7)% So O{% ’))% \,%/))
Y
(d) MIRflickr
52.14 50.99
_sor s 47.81 . .
(%) .
E 40t g
g 29.85
= 30 1
c
o
3 20t E
&
10 - g
0

(f) XDOCS

Fig. 15. Average run-time tests in ms on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with Windows 10.0.17134 (64 bit) OS and MSVC 19.15.26730

compiler (lower is better).

times in Fig.14 are higher than the ones in Fig.15e. As it can
be seen, the allocation time of SAUF, DRAG and Spaghetti
is the same. Indeed, they require the same data structures
to compute labeling, i.e. the output image and the vector
to solve the labels equivalences. The NULL algorithm has
a faster allocation step since it does not need an additional
equivalences vector. During the first scan, temporary labels
are assigned to the output image and possible equivalences
between them are stored in the equivalence vector. During
the second scan the provisional values are replaced with final
labels. For what concerns these steps the following conclusions
can be draw:

— the first scan of DRAG algorithm is clearly faster than the
one of SAUF and this underlines the benefit of labeling
pixels 2 by 2;

— on the other hand, the second scan of DRAG (equal to
the one of Spaghetti) is slower. This is linked to the fact
that the algorithms based on the 2 x 2 mask require a

bunch of if statements which are avoided during the first
scan. Anyway, the benefits introduced in the first scan
outclass the penalties in the second one;

— all the optimizations introduced with Spaghetti labeling
are restricted to the first scan.

Moreover, given that allocation/deallocation time is fixed and
does not depend on the algorithm, the fraction of the execution
time that can be improved is a small percentage of the total
execution time and this confirms again the effectiveness of the
proposal.

To highlight the validity of the proposal, additional average-
run time results carried out on different environments (i.e.
different CPU architecture combined with different OS and
compilers) are reported in Appendix A.

B. Load/store Operations

In Table I, the average number of load/store operations for
each algorithm on the Tobacco800 dataset is reported. The goal



TABLE I
AVERAGE NUMBER OF LOAD/STORE OPERATIONS ON THE Tobacco800
DATASET. QUANTITIES ARE GIVEN IN MILLIONS.

Algorithm Binary | Labels | Equivalences Total
Image | Image Vector/s

SAUF_UF | 4.935 | 14.286 4.638 23.860
BBDT_RemSP | 4.942 | 11.586 0.120 16.648
CTB_RemSP | 4.732 | 14.290 4.661 23.683
PRED_RemSP | 4.860 | 14.286 4.649 23.795
DRAG_RemSP | 4.942 | 11.586 0.120 16.648
Spaghetti_RemSP | 4.902 | 11.586 0.120 16.608
NULL | 4.604 4.604 0.000 9.208

is to observe how the choice of the mask and state prediction
affects read and write operations, and thus the performance of
an algorithm. It is important to notice that counts displayed
in the table do not distinguish between cache hits and misses.
However, they allow to draw more detailed conclusions than
raw execution times.

The use of Grana mask (BBDT and DRAG) causes a small
increase in the number of accesses to the input image w.r.t.
the Rosenfeld mask (SAUF), but drastically reduces those to
the output one and to the resolution vector/s. As expected,
the code compression introduced with DRAG does not affect
data accesses, but only instruction fetch, increasing instruction
cache hits.

The saving of loads to the input image allowed by state
prediction can be observed in the comparison between SAUF
and PRED or BBDT and Spaghetti. This optimization does
not affect neither the operations on the output image nor the
ones on equivalence vector/s. The difference between SAUF
and PRED over the equivalence vector/s is solely imputable
to the different label solvers.

As of CTB, it can be observed that the use of a reduced
block mask, that only labels two pixels at a time, leads to
the lowest number of read operations on the input image.
Nevertheless, it requires the maximum number of accesses to
the output image and to the equivalence data structures.

Spaghetti is overall the algorithm with the lowest number
of load/store operations. This feature strictly affects perfor-
mance, and explains the reason why our proposal is less time
consuming than state-of-the-art alternatives.

C. Synthetic Images

Following a common practice in literature [16], [23], [25],
[26], we test the performance on images with varying density
and size, taken from density and granularity datasets of
the YACCLAB benchmark. Density is composed of black
and white random noise square images with nine different
foreground densities and with a resolution varying between
32 x 32 and 4096 x 4096 pixels. For each couple density-size
10 images are provided for a total of 720 samples. Images have
been generated as described in [23] and have been already
used to evaluate the performance of CCL algorithms in terms
of scalability on the number of pixels. Experimental results
obtained on this dataset are reported in Fig. 17. It can be
noticed that state-of-the-art CCL algorithms are linear in the

! SAUF_UF ——
BBDT_RemSP ——
CTB_RemSP
PRED_RemSP
DRAG_RemSP
Spaghetti_RemSP —— |
NULI

Execution Time [ms]

0 20 40 60 80 100
Density [%]

@g=1

SAUF_UF ——
BBDT_RemSP ——
CTB_RemSP
PRED_RemSP
DRAG_RemSP A
Spaghetti_RemSP ——
NULL— |

40 -
35 -
30 -

Execution Time [ms]

i ? 0 60 80 100
Density [%]
b)g=2
B;D’?Alg F—%E*
ol 6 Remsp )
PRED_RemSP
21 DRAG_RemSP 4
£ Spaghetti_RemSP ——
£ oy NULL—— |
‘s
E 251 |
=
S 20 |
s
© 15F [ S S S
3 e
] — —
10 F——"" =
5 | -
0 I j ‘ ‘
’ * 0 €0 80 100
Density [%]
©g=38
‘ B;D‘?A#F"lsjgi
M B RemSp ]
PRED_RemSP
"l DRAG_RemSP |
£ Spaghetti_RemSP ——
£ wr NULL— |
‘o
E 25 ]
=
§ 20 ]
5
g 15+ ]
> S ST SRS W
) - o - |
wpeE——————————
5 | 4
0 | | ; ‘
i ? 0 60 80 100
Density [%]
(d) g=16

Fig. 16. Granularity results in ms on an Intel(R) Core(TM) i7-4790 CPU
@ 3.60GHz with Windows 10.0.17134 (64 bit) OS and MSVC 19.15.26730
compiler. Lower is better.

number of pixels. The difference relies on the y-intercept
of the lines. The gap observable around 10° pixels is easily
explainable taking into account that images do not fit L2 cache
anymore, and require L3 cache to be employed.

Granularity is composed of ten different images for each
value of density (from 0% to 100% with steps of 1%)
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and granularity (i.e. dimension of the minimum foreground
block). Images have a resolution of 2048 x 2048 and are
synthetically generated with the Mersenne Twister MT19937
random number generator [49]. Results obtained with differ-
ent values of granularity (1, 2, 8, and 16) are depicted in
Fig. 16: the behaviour of all algorithms is strictly linked to
the number of foreground pixels. More in detail, the parabolic
trend can be explained considering the effects of the branch
prediction unit, which heavily affects the algorithms around
50%. Focusing on granularity-1, it can be noticed that CTB
and PRED algorithms have an analogous behaviour, since they
share a very similar paradigm, though realized differently.
Benefits introduced by state prediction can be appreciated
when comparing these two algorithms to classic SAUF. BBDT
and DRAG also have similar behaviour to each other, with the
second being slightly better thanks to the code compression
technique. The Spaghetti algorithm, combining all previous
improvements, shows the best performance at most densities.

When the granularity grows, the execution time for middle
density images decreases. This can be explained considering
again the effects of the branch prediction unit: when fore-
ground pixel blocks in the input image increase in size, the
prediction of their values, which are totally random, is more
accurate, thus decreasing the cost associated to failures. At any
rate, considerations for granularity-1 are still valid at different
granularities.

V. CONCLUSION

This paper combined all the successful techniques that
improved CCL algorithms performance, producing an ex-
tremely fast solution. The proposed approach showed superior
performance, beating the results obtained by all compared
approaches in all settings. In order to achieve this result an
automatic simplified trees generation was required, along with
a solution to leverage all the savings obtainable at image
edges, i.e. the removal of if statements. Moreover, a greedy
algorithm was designed allowing to convert decision forests
into DAGs and thus reducing the machine code size more
than a compiler could ever do. This is possible thanks to
the concept of equivalent subtrees. The source-code of the
proposed strategy is available in [33].
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TABLE 11
AVERAGE RUN-TIME TESTS IN MS ON AN INTEL(R) CORE(TM) 17-8700
CPU @ 3.20GHz oN WINDOWS 10.0.17134 (64 BIT) OS WITH MSVC
19.15.26730 COMPILER. LOWER IS BETTER.

3DPeS Fingerprints Medical MIRflickr Tobacco800 XDOCS

SAUF_RemSP  0.876 0.394  2.889 0.519  10.267 39.784
SAUF_UF 0.876  0.394  2.890 0.522  10.264 39.772
SAUF_UFPC 1.020 0.424  3.226 0.554  11.804 44.939
SAUF_TTA 0.866 0.379  2.863 0.504  10.159 39.333
BBDT_RemSP  0.669  0.300  2.193 0.394 7.841 29.916
BBDT_UF 0.670 0.302  2.197 0.395 7.849  30.009
BBDT_UFPC 0.670 0.299  2.185 0.394 7.831 29.894
BBDT_TTA 0.685 0.299  2.224 0.393 8.007 30.471
CTB_RemSP 0.860 0.355  2.788 0.496  10.094 38.477
CTB_UF 0.861  0.357  2.793 0.500  10.104 38.522
CTB_UFPC 0.862 0.358  2.793 0.501  10.102 38.564
CTB_TTA 0.960 0.377  3.021 0.517  11.195 42.213
PRED_RemSP  0.790 0.347  2.672 0.487 9.303  36.190
PRED_UF 0.771  0.341 2.611  0.482 9.080 35.375
PRED_UFPC 0.792 0.350  2.673 0.493 9.311 36.251
PRED_TTA 0.803 0.348  2.648 0.471 9.423  36.536
DRAG_RemSP 0.670 0.299  2.169 0.390 7.815 29.785
DRAG_UF 0.687 0.303  2.224 0.396 8.028  30.539
DRAG_UFPC  0.670 0.302  2.178 0.392 7.821  29.841
DRAG_TTA 0.694 0.305  2.250 0.398 8.092  30.843
Spaghetti_RemSP 0.617  0.274  2.027 0.362 7.263  27.738
Spaghetti_UF ~ 0.599 0.271  1.990 0.360 7.063 27.051
Spaghetti_UFPC  0.600  0.274  2.008 0.362 7.084 27.187
Spaghetti_TTA  0.603  0.273  2.030 0.363 7.120 27.385
NULL 0.451  0.111 1.353  0.205 5.140 18.614
APPENDIX A

This Appendix provides additional experimental results and
allows to compare the proposed strategy with state-of-the-
art algorithms from a different and exhaustive point of view.
These tests have been performed on an Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz (6 x 32 KB L1 data cache, 6 x 32
KB L1 instruction cache, 6 x 256 KB L2 cache, and 12 MB
of L3 cache) running Windows 10.0.17134 (64 bit) OS with
both MSVC 19.15.26730 (Table II) and GCC 5.1.0 (Table III)
compilers and Linux 4.18.0 (64 bit) OS with GCC 5.5.0
compiler (Table IV). This comparison highlights how the
performance of an algorithm coupled with a label solver may
significantly change with the environment. The RemSP label
solver is not always the best choice for Spaghetti. On this
specific architecture, the algorithm performs better with UF
solver on Windows (both with MSVC and GCC) and with
RemSP solver under Linux (with GCC).

fi| )’ |
li | P2
l2 | P2
Is | p3

Fig. 18. Scan mask for CTBE [28]. Gray squares identify current pixels to
be labeled using information extracted from white pixels.



5.1.0 COMPILER. LOWER IS BETTER.

TABLE III
AVERAGE RUN-TIME TESTS IN MS ON AN INTEL(R) CORE(TM) 17-8700
CPU @ 3.20GHz oN WINDOWS 10.0.17134 (64 BIT) OS WITH GCC

3DPeS Fingerprints Medical MIRflickr Tobacco800 XDOCS

SAUF_RemSP  0.986  0.364 3.052  0.531 11.602  43.068
SAUF_UF 0.988  0.369 3.062 0.537 11.625 43.214
SAUF_UFPC 0.999  0.402 3.119  0.543 11.758  44.069
SAUF_TTA 1.037  0.389 3.265 0.560 12.032  45.111
BBDT_RemSP  0.735  0.342 2.338 0.422 8.523  32.575
BBDT_UF 0.731  0.330 2.275 0.404 8.477  32.232
BBDT_UFPC 0.736  0.344 2.345 0.424 8.532  32.655
BBDT_TTA 0.756  0.348 2.383 0.426 8.686  33.233
CTB_RemSP 0.697  0.319 2.492 0.473 8.524  32.987
CTB_UF 0.679  0.311 2.365 0.451 8.287  31.899
CTB_UFPC 0.673  0.321 2.466  0.481 8.271  32.245
CTB_TTA 0.692  0.322 2.512  0.476 8.426  32.846
PRED_RemSP  0.700  0.329 2.405 0.440 8.532 33.114
PRED_UF 0.693  0.313 2.352  0.428 8.404  32.388
PRED_UFPC 0.701  0.330 2.407 0.443 8.528  33.105
PRED_TTA 0.719  0.333 2.448 0.441 8.677  33.681
DRAG_RemSP  0.760  0.353 2.451 0.444 8.814  33.808
DRAG_UF 0.715  0.333 2.311  0.420 8.309 31.914
DRAG_UFPC 0.761  0.353 2.448 0.445 8.822  33.859
DRAG_TTA 0.784  0.359 2.512  0.450 9.015  34.564
Spaghetti_RemSP 0.692  0.324 2.280 0.421 8.069  31.045
Spaghetti_UF 0.644 0.302 2.084 0.382 7.526 28.978
Spaghetti_UFPC 0.693  0.327 2.296  0.425 8.083 31.210
Spaghetti_TTA  0.712  0.327 2.328 0.423 8.226  31.686
NULL 0.448  0.109 1.350 0.204 5.130  18.587
TABLE IV

AVERAGE RUN-TIME TESTS IN MS ON AN INTEL(R) CORE(TM) 17-8700
CPU @ 3.20GHz ON LINUX 4.18.0 (64 BIT) OS WIiTH GCC 5.5.0
COMPILER. LOWER IS BETTER.

3DPeS Fingerprints Medical MIRflickr Tobacco800 XDOCS

SAUF_RemSP  0.922  0.350 2.845 0.491 11.010 41.181
SAUF_UF 0.926  0.365 2.959  0.502 11.156  41.890
SAUF_UFPC 0.931  0.370 2.891 0.497 11.106  41.794
SAUF_TTA 0.954  0.368 3.014 0.514 11.290 42.639
BBDT_RemSP  0.672  0.316 2.126  0.376 8.114  31.036
BBDT_UF 0.739  0.328 2.262  0.389 8.848  33.258
BBDT_UFPC 0.673  0.317 2.132  0.378 8.123  31.117
BBDT_TTA 0.727  0.330 2.223  0.390 8.651  32.753
CTB_RemSP 0.617 0.288  2.197 0.413 7.717  29.962
CTB_UF 0.621  0.295 2.160 0.410 7.729  30.059
CTB_UFPC 0.680  0.310 2.382  0.446 8.306  31.920
CTB_TTA 0.626  0.288 2.182  0.407 7.739  30.243
PRED_RemSP  0.633  0.293 2.172  0.388 7.816  30.507
PRED_UF 0.634  0.299 2.151 0.388 7.826  30.586
PRED_UFPC 0.635  0.297 2.170  0.393 7.828  30.592
PRED_TTA 0.643  0.306 2.182  0.393 7.885  30.940
DRAG_RemSP  0.690  0.321 2.190 0.388 8.311  31.746
DRAG_UF 0.687  0.329 2.158  0.392 8.287  31.338
DRAG_UFPC 0.690  0.323 2.196  0.389 8.304 31.808
DRAG_TTA 0.628  0.317 2.047 0.376 7.579  29.312
Spaghetti_RemSP 0.578  0.292 1.910 0.352 7.013 27.155
Spaghetti_UF 0.644  0.311 2.076  0.375 7.734  29.662
Spaghetti_UFPC 0.592  0.298 1.957 0.360 7.165 27.710
Spaghetti_TTA  0.651  0.314 2.084 0.375 7.762  29.826
NULL 0.400  0.099 1.190 0.173 4.801 17.595
TABLE V

AVERAGE RUN-TIME TESTS FOR OUR ALGORITHM APPLIED TO THE MASK
DESCRIBED IN [28]. SETTINGS OF TABLE II.

3DPeS Fingerprints Medical MIRflickr Tobacco800 XDOCS

CTBE_RemSP 0
CTBE_UF 0
CTBE_UFPC 0
CTBE_TTA 0

747
.736
.769
784

0.297
0.298
0.306
0.304

2.380
2.360
2.447
2.486

0.420
0.420
0.433
0.429

8.811
8.700
9.047
9.193

33.539
33.160
34.418
34.935

Additionally, in Table V the same strategy of Spaghetti
is also applied to the mask presented in [28], which is
identified by CTBE (CTB Enhanced to work with three lines).
Applying the proposed strategy to this mask (Fig. 18) lowers
the performance, because it is unable to consider the fact that
all pixels in a single block share the same label, running
the mask twice for blocks which are instead a single step
for the block based mask. Even if our implementation is not
the original one, it is possible to see that effectively CTBE
improves CTB a little, as reported in [28].

Federico Bolelli received the B.Sc. and M.Sc.
degrees in Computer Engineering from Universita
degli Studi di Modena e Reggio Emilia, Italy. He
is currently pursuing the Ph.D. degree at the Alm-
agelab Laboratory at Dipartimento di Ingegneria
“Enzo Ferrari” of Universita degli studi di Modena
e Reggio Emilia, Italy. His research interests include
image processing, algorithms optimization, historical
document analysis and medical imaging.

Stefano Allegretti received the B.Sc. and M.Sc.
degrees in Computer Engineering from Universita
degli Studi di Modena e Reggio Emilia, Italy. He is
currently a postgraduate researcher at the Almagelab
Laboratory at Dipartimento di Ingegneria “Enzo Fer-
rari” of Universita degli Studi di Modena e Reggio
Emilia, Italy. His research interests include deep
learning, pattern recognition, and image processing.

Lorenzo Baraldi received the Ph.D. degree cum
laude in Information and Communication Technolo-
gies from Universita degli studi di Modena e Reggio
Emilia, Italy, in 2018. He is currently Assistant
Professor at the Dipartimento di Ingegneria “Enzo
Ferrari” of Universita degli Studi di Modena e
Reggio Emilia, Italy. He was a Research Intern
at Facebook AI Research (FAIR) in 2017. He has
authored or coauthored more than 30 publications
in scientific journals and international conference
proceedings. His research interests include image
processing, video understanding, deep learning and multimedia.

Costantino Grana graduated at Universita degli
Studi di Modena e Reggio Emilia, Italy in 2000
and achieved the Ph.D. in Computer Science and
Engineering in 2004. He is currently Associate Pro-
fessor at Dipartimento di Ingegneria “Enzo Ferrari”
of Universita degli studi di Modena e Reggio Emilia,
Italy. His research interests are mainly in computer
vision and multimedia and include analysis and
search of digital images of historical manuscripts
and other cultural heritage resources, multimedia
image and video retrieval, medical imaging, color
based applications, motion analysis for tracking and surveillance. He published
5 book chapters, 34 papers on international peer-reviewed journals and more
than 100 papers on international conferences.




