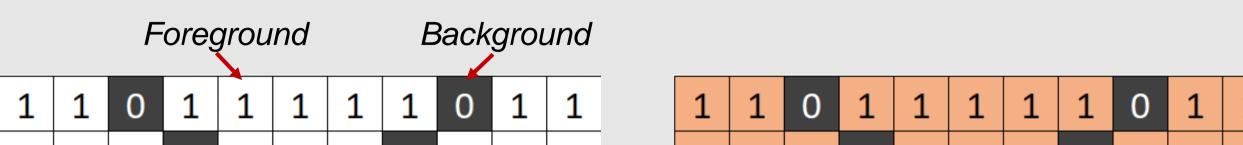
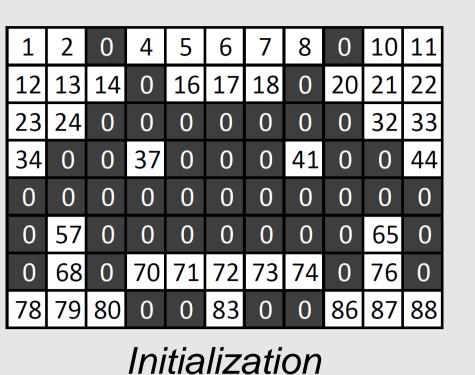


A Block-Based Union-Find Algorithm to Label Connected Components on GPUs


UNIMORE UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA


Stefano Allegretti, Federico Bolelli, Michele Cancilla and Costantino Grana DIEF, Università degli Studi di Modena e Reggio Emilia, Italy

Abstract

Connected Components Labeling (CCL) is a fundamental image processing algorithm that extracts objects from an input binary image, giving each of them a different label. In the last decade, the fast development of GPUs supported the design of a few parallel approaches to efficiently solve the problem.

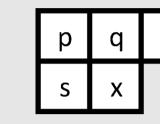
GPU Union Find CCL

The Union Find algorithm consists of three functions executed by multiple threads in parallel (kernels). Each pixel is assigned a thread.

1. Initialization

Initial labels are pixels raster indexes.

2. Merge


Foreground pixels are linked to their neighbors, by means of *Union-Find* procedures. The thread working on pixel x checks neighbors p, q, r and s.

1	1	1	0	1	1	1	0	1	1	1	1	1	1	0	1	1	1	0	1	1	1
1	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	1	0	0	1	1	0	0	2	0	0	0	3	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	4	0	0	0	0	0	0	0	4	0
0	1	0	1	1	1	1	1	0	1	0	0	4	0	4	4	4	4	4	0	4	0
1	1	1	0	0	1	0	0	1	1	1	4	4	4	0	0	4	0	0	4	4	4

Goal: improve the performance of a Union-Find GPU-based

algorithm by applying the 2x2 Grana mask, to reduce the number of

I											
	1	1	0	4	4	4	4	4	0	10	10
	1	Ĥ	14	0	16	17	18	0	20	21	22
	23	24	0	0	0	0	0	0	0	32	33
	34	0	0	37	0	0	0	41	0	0	44
	0	0	0	0	0	0	0	0	0	0	0
	0	57	0	0	0	0	0	0	0	65	0
	0	68	0	70	71	72	73	74	0	76	0
	78	79	80	0	0	83	0	0	86	87	88
					M	ler	ge				

At the end of the kernel, pixels belonging to the same connected component are linked together in a Union-Find tree.

Compression 3.

Each pixel is given a final label equal to that of the root of its Union-Find tree.

The block-based mask

threads and memory accesses.

Foreground pixels in a 2x2 block are always connected.

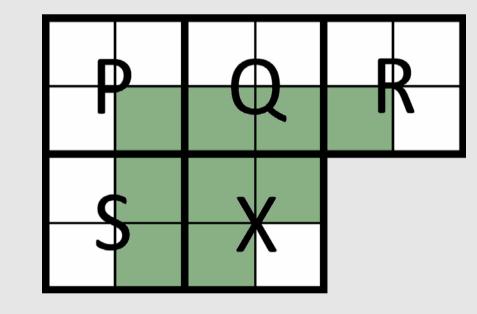
For this reason, a Connected Components Labeling algorithm can assign labels to blocks in the first step. This approach allows to divide by 4 the number of threads, and to decrease the amount and average height of Union-Find trees.

GPU Block-based Union Find CCL

0 0 57 0 0

Compression

57


4	~	-5	7	9	-11
23	25	27	29	31	-33
45	47	49	51	-53	-55
67	69	71	73	75	-77

Block-based Union Find has the same kernels of Union Find, plus a final one to assign labels to single pixels. Each thread operates on one whole block.

1. Initialization

Block labels are initialized in raster scan order.

Blocks connectivity depends on lower level pixels connectivity. The neighborhood mask becomes larger:

Green pixels are responsible for connecting block X to P, Q, R and S. They are read by the thread working on block X, in order to know which blocks must be linked together.

-29-

-51

Compression

25

-26

47 49

2. Merge

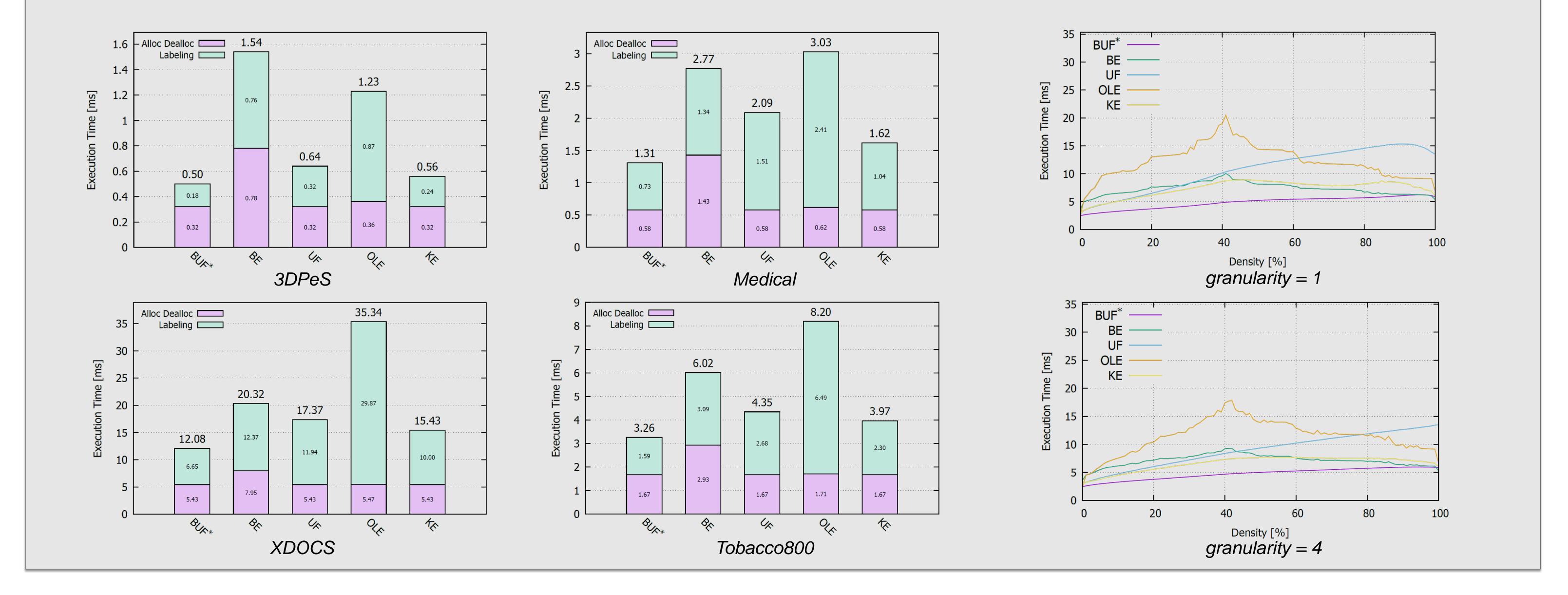
Neighbor blocks are linked together with Union-Find, using the larger mask.

3. Compression

Final block labels are set to the roots of trees.

4. FinalLabeling

Block labels are copied into internal foreground pixels.


Experimental Results

Block-based Union Find (BUF) has been compared to state-of-the-art using the common benchmark YACCLAB. Test cases are:

- Real world datasets of video surveillance, fingerprints, text, medical images and natural images.
- Synthetic datasets of images with varying density and granularity of foreground pixels.

Test environment is a Quadro K2200 NVIDIA GPU (Maxwell architecture) with CUDA 10.0. Code has been compiled with NVCC V10.0.130 with optimizations enabled.

