
How does Connected Components Labeling 
with Decision Trees perform on GPUs?

Federico Bolelli

Università degli Studi di Modena e Reggio Emilia, DIEF, Italy



Connected Components Labeling (CCL)
• Extracts connected components (objects) from a binary image.
• All pixels of the same object are given the same label.
Foreground Background

2 / 16



Optimizing CCL Algorithms

• CCL has an exact solution.
• Computational complexity is proven to be O(N).
• Optimization can be achieved in different ways:

1. Designing algorithms to reduce the average
number of memory accesses and to take
advantage of instruction cache;

2. Using hardware acceleration.

4-connectivity

8-connectivity

3 / 16



• Traditionally, on sequential machines a two-scan algorithm is
employed:

1. First scan, scans the input assigning provisional labels to the output 
and storing equivalences in the Union-Find data structure.

2. Flattening, establishes the definitive labels.
3. Second scan, updates the output replacing provisional with final labels.

• The second scan can be avoided when only statistics about the
objects are required.

CPU-Based Algorithms

Scan Mask
4 / 16



• It is based on the Rosenfeld scan-mask:

• Exploits a decision tree to avoid unnecessary
read/write operations.

• Implements the Union-Find using arrays.

Scan Array-Based Union-Find 
Algorithm (SAUF)

5 / 16



Block-Based with Decision Trees (BBDT)
• Introduce the concept of 2x2 block mask.

6 / 16



• Compresses the memory
footprint of the source code.

• Does not impact on memory
accesses.

Tree to Directed Rooted
Acyclic Graph (DRAG)

• Increases the instruction
cache hit rate.

7 / 16



• A GPU uses the SIMT paradigm 
grouping threads into packets 
(warp).

• Branch divergence occurs when 
threads inside warps branch to 
different execution path.

• SIMT paradigm can group 
threads into warps flexibly i.e.
can group threads supposed to 
truly execute the same 
instruction.

Decision Trees on GPU

…

8 / 16



Adapting Tree-Based Algorithms to GPUs …
First scan translates into two different kernels

Initialization Merge

𝐿𝐿 𝑖𝑖𝑑𝑑𝑥𝑥 = 𝑖𝑖𝑑𝑑𝑥𝑥 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

9 / 16



Adapting Tree-Based Algorithms to GPUs …
Flattening

Compression

𝐿𝐿 𝑖𝑖𝑑𝑑𝑥𝑥 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐿𝐿, 𝑖𝑖𝑑𝑑𝑥𝑥)

Second scan

Final Labeling

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

10 / 16



Comparative Evaluation
• We compared our proposals to state-of-the-art GPU algorithms.
• YACCLAB is employed:

• Open source C++ benchmarking system  github/prittt/YACCLAB;
• Collection of real cases datasets;
• Tests over diverse points of view;

• Our device is a Quadro K2200
• CUDA capability 5.0;

Medical imagingVideo surveillance Fingerprints Natural Text analysis



Average Execution Time 
• Optimized Label Equivalence (OLE):

• propagates minimum label

• Block Equivalence (BE):
• same as OLE, but works on 2x2 blocks
• needs more data structures

• Union Find (UF)
• uses the union-find data structure

• Distanceless Label Propagation (DPL)
• merges the UF and OLE strategies

• Komura Equivalence (KE):
• changes the initialization kernel of the UF

Text Analysis

12 / 16










	How does Connected Components Labeling with Decision Trees perform on GPUs?
	Connected Components Labeling (CCL)
	Optimizing CCL Algorithms
	CPU-Based Algorithms
	Scan Array-Based Union-Find �Algorithm (SAUF)
	Block-Based with Decision Trees (BBDT)
	Tree to Directed Rooted�Acyclic Graph (DRAG)	
	Decision Trees on GPU
	Adapting Tree-Based Algorithms to GPUs …
	Adapting Tree-Based Algorithms to GPUs …
	Comparative Evaluation
	Average Execution Time 
	Diapositiva numero 13
	Density
	Conclusion Remarks
	How does Connected Components Labeling with Decision Trees perform on GPUs?

