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Introduction

• Video captioning has picked up a considerable attention in the last
decade;

• Recurrent networks are a popular choice as video encoders for
captioning, however ..

• they require a significantly long training time;
• they can not optimally deal with long video sequences;

• The memory of the LSTM (Long Short-Term Memory) mixes
representations computed while attending at different actions and
appearances.
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Goals
• Employing QRNNs (Quasi-Recurrent

Neural Networks) to allow parallel
computation across both time and
minibatch dimensions, enabling:

• High throughput
• Good scaling

• Introducing a video encoding
architecture capable of identifying
temporal boundaries and producing
a better video representation.
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Long Short-Term Memory (LSTM)
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• Dyamic average pooling variant of LSTM:
ℎ𝑡𝑡 = 𝑓𝑓𝑡𝑡 ʘ ℎ𝑡𝑡 −1 + 1 − 𝑓𝑓𝑡𝑡 ʘ 𝑧𝑧𝑡𝑡

where
𝑧𝑧𝑡𝑡 = tanh 𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡 −1 + 𝑏𝑏𝑥𝑥
𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡 −1 + 𝑏𝑏𝑥𝑥)

…LSTM



Quasi-Recurrent Neural Networks [1]
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• Convolution on timestamp dimensions:
Z = tanh(Wz ∗ X)
F = 𝜎𝜎 Wf ∗ X
O = 𝜎𝜎(Wo ∗ X)

where X ϵ ℝ𝑇𝑇×𝑛𝑛

• Pooling subcomponents:

ℎ𝑡𝑡 = 𝑓𝑓𝑡𝑡ʘ ℎ𝑡𝑡 −1 + 1 − 𝑓𝑓𝑡𝑡 ʘ 𝑧𝑧𝑡𝑡

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ʘ 𝑐𝑐𝑡𝑡 −1 + 1 − 𝑓𝑓𝑡𝑡 ʘ 𝑧𝑧𝑡𝑡
ℎ𝑡𝑡 = o𝑡𝑡 ʘ 𝑐𝑐𝑡𝑡

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ʘ 𝑐𝑐𝑡𝑡 −1 + 𝑖𝑖𝑡𝑡 ʘ 𝑧𝑧𝑡𝑡
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ʘ 𝑐𝑐𝑡𝑡

fo-pooling

ifo-pooling

f-pooling

[1] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-recurrent neural networks,” in ICLR. Toulon, France: OpenReview.net, 2017.



The Hierarchical Approach
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• The proposed video encoder process the input video in a hierarchical
fashion:

• (𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑚𝑚) is the first level representation based on connectivity 
schema that varies with both the current input and the hidden state.

• The second recurrent layer encodes this variable-length representation 
into a feature vector for the overall video.
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The Boundary Detector
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• A video encoding cell capable of
identifying discontinuity points
and modify the layer connectivity
through time.

• During training: stochastic version
of the step function in the forward
pass, and a differentiable estimator
in the backward pass.



The Boundary Detector
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• When a boundary is estimated, the hidden state and memory cell are reinitialized, and
the previous hidden state is given to the output, as a summary of the detected
segment:

• The connectivity schema of the layer is thought as an activation rather than as a non-
learnable hyperparameter.
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Training and Sentence Generation
• The boundary detector is treated as a stochastic neuron during forward:

τ 𝑥𝑥 = 1σ 𝑥𝑥 >𝑥𝑥 ,𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑧𝑧 ∼ 𝑈𝑈 0,1
where 𝑈𝑈[0,1] is the uniform probability distribution over [0,1]

• and as a differentiable estimator during backward:
𝜕𝜕τ
𝜕𝜕𝑥𝑥

𝑥𝑥 = σ(𝑥𝑥)(1 − σ 𝑥𝑥 )

• Decoder: optimize the log-likelihood of correct words over the sequence

max
𝑤𝑤

�
𝑡𝑡=1

𝑇𝑇

log𝑃𝑃𝑃𝑃 (𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡 −2, … ,𝑦𝑦0, 𝑣𝑣)

the probability of a word is modeled via a softmax layer applied on the output of the decoder.
𝑣𝑣: video vector produced by the encoder

𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑇𝑇: sentence encoded with one-hot vector



Experimental Results
• Performed on the Montreal Video Annotation Dataset (M-VAD):

• 36,921 training clips
• 4,651 validation clips
• 4,951 test clips

• .. with the Microsoft CoCo evaluation toolkit:
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• QRNN and LSTM have a similar epoch time.
• QRNN converges in 1/3 of the epochs required by LSTM.



Conclusions
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• We introduced a novel video encoding architecture for captioning
which combines the effective QRNN in a hierarchical structure.

• The connectivity over time of the QRNN layer is changed when an
action discontinuity is detected.

• Experimental results on the M-VAD dataset are comparable with the
state-of-the-art on movie description, with a fraction of the required
training time.
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