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Abstract. We introduce Bits2Bites, the first publicly available dataset
for occlusal classification from intra-oral scans, comprising 200 paired
upper and lower dental arches annotated across multiple clinically rele-
vant dimensions (sagittal, vertical, transverse, and midline relationships).
Leveraging this resource, we propose a multi-task learning benchmark
that jointly predicts five occlusal traits from raw 3D point clouds using
state-of-the-art point-based neural architectures. Our approach includes
extensive ablation studies assessing the benefits of multi-task learning
against single-task baselines, as well as the impact of automatically-
predicted anatomical landmarks as input features. Results demonstrate
the feasibility of directly inferring comprehensive occlusion information
from unstructured 3D data, achieving promising performance across all
tasks. Our entire dataset, code, and pretrained models are publicly re-
leased to foster further research in automated orthodontic diagnosis.
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1 Introduction

Deep learning has become a key enabler in dental

healthcare, supporting the automation and enhance-

ment of diagnostic workflows. The growing availability

of public 3D imaging datasets related to dental health- Bits =

care has significantly contributed to the research com- Bites
munity. For instance, in recent years, different datasets
introduced labeled CBCT scans with dozens of anatom-
ical structures, fostering research in segmenting com-
plex regions such as the inferior alveolar canal, teeth, N .
jaws, and dental implants [2J34U57)8/T7]. In the domain Fig. 1: Bits2Bites logo.
of intra-oral 3D scanning (I0S), large-scale datasets like 3DTeethSeg [I] offer
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full-tooth segmentation annotations across hundreds of scans, while the Teeth-
Land dataset, released by the same authors, provides detailed landmark annota-
tions for each tooth. These resources have catalyzed the development of a wide
range of methods—from voxel-based and surface-based segmentation networks
to point-based landmark detection approaches [TO/T3IT4UT6UTI].

Despite these advances, several clinically relevant tasks remain underexplored
in the context of 3D IOS analysis, largely due to the lack of publicly available
annotations. One such task is occlusal classification, which involves determin-
ing the relationship between the upper and lower dentition when the mouth is
closed. Accurate occlusion assessment is fundamental for orthodontic diagno-
sis and treatment planning, as it directly informs the strategy for interventions
such as braces or clear aligners and serves as a baseline for evaluating treatment
success. While prior work has investigated malocclusion detection from 2D snap-
shots of 3D models [II], these modalities lack the rich 3D surface information
captured in IOS scans. Consequently, they omit crucial depth and structural
cues that are essential for a fine-grained and comprehensive occlusion analysis.

To the best of our knowledge, no existing 3D deep learning method directly
operates on paired upper and lower IOS meshes to predict occlusion classes.
Addressing this gap, our work introduces new resources and benchmarks to fa-
cilitate progress in this direction.

Contribution. In summary, the contributions of this work are outlined below:

— We present Bits2Bites, the first publicly available dataset of 200 paired intra-
oral scans with multi-dimensional clinical labels for occlusion classification,
including sagittal, vertical, transverse, and midline relationshipsEI

— A robust multi-task and single-task learning benchmark is introduced for
this task, evaluating two state-of-the-art point cloud backbones and demon-
strating the effectiveness of jointly learning multiple occlusal traits;

— Detailed ablation studies are carried out to analyze the impact of using
automatically-predicted anatomical landmarks as input features and to val-
idate our multi-task learning strategy against single-task baselines;

— We release our entire codebase and pretrained models to ensure reproducibil-
ity and foster further research in the community[7]

2 Dataset

The dataset comprises 200 pairs of registered intra-oral scans in STL format, with
separate high-resolution meshes for the upper and lower dental arches. All scans
are spatially aligned to preserve the true occlusal relationship between the jaws
and are transformed to a shared reference RAS (Right-Anterior-Superior) frame,
a standardized coordinate system where axes are oriented toward the patient’s
right, anterior, and superior directions. Scan bases were removed to retain only
the gingival and dental structures. Meshes average 92,201 &+ 28, 140 vertices and

3 https://ditto.ing.unimore.it/bits2bites
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Fig. 2: Example of different occlusal classes present in our dataset.

182,444 4+ 55,862 faces, with bounding-box dimensions of approximately 65.9 4+
4.12mm (width), 53.84 £4.5 mm (depth), and 17.9+1.9 mm (height). The mean
mesh surface area is ~ 3,780 £ 409 mm?.

Scans were acquired using two different intra-oral scanners, Carestream and
3Shape TRIOS, to capture variability in acquisition technologies. The scans in-
cluded were selected randomly without any filtering criteria to reflect the natural
diversity and distribution observed in clinical practice.

Annotations were performed by a single orthodontic specialist with five years
of experience in the field. Each scan pair includes detailed, clinically relevant oc-
clusion labels across multiple dimensions. Sagittal classifications are provided
separately for the left and right sides, following a subset of Angle’s standard
classification [9] (i.e., Class I, Class II edge-to-edge, Class II full, Class III). Ver-
tical anterior—posterior relationships are labeled as Normal, Deep Bite, Reverse
Bite, or Open Bite. Transverse relationships are identified as Normal, Cross Bite,
or Scissor Bite, using reference teeth. Finally, midline alignment is annotated as
Centered or Deviated. Fig. 2] provides illustrations of these different characteris-
tics. This multi-label annotation scheme enables clinically meaningful classifica-
tion across sagittal, vertical, and transverse planes. The class distribution inside
the proposed dataset is reported in Fig. [

Ethical Approval. Approval of all ethical and experimental procedures and
protocols, as well as the release of data, was granted by the Comitato Etico di
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Fig. 4: Distribution of dataset classes. Distinct colors indicate different tasks.

3 Method

To address the challenge of multi-dimensional occlusion classification from in-
traoral scans, we developed a multi-task, point-based classification pipeline built
on the open-source Pointcept framework [6]. Our approach jointly predicts five
occlusal attributes from a single 3D point cloud representing the combined upper

and lower dental arches.

Input Representation. Each sample con-
sists of a registered pair of upper and lower
intra-oral scans in STL format. Meshes are
combined into a single 3D structure and con-
verted into point clouds, where each point is
represented by its zyz coordinates. This repre-
sentation is optionally enriched with one-hot
encoded per-tooth landmark features (Fig. |3)
to capture anatomical context better. These
landmarks are not manually annotated, but
automatically predicted using the publicly
availabld? state-of-the-art method from the
3DTeethLand challenge [15]. The dataset was
split into five folds of 40 scans each to support
a robust 5-fold cross-validation schema.

Cusps /.-
Vestibular ;

Fig. 3: Landmarks employed as
additional input features.

5 |https ://github.com/nnistelrooij /3dteeth1a.nd|, final_test phase commit.



https://github.com/nnistelrooij/3dteethland

Bits2Bites: Intra-oral Scans Occlusal Classification 5

Preprocessing and Augmentation. To improve generalization, our training
procedure leverages a carefully designed data augmentation pipeline. Each scan
is normalized to a unit sphere, randomly scaled in all directions ([0.95,1.05]),
shifted (£0.02mm), rotated (+£18° on z-axis), and subjected to random dropout
(50% of points with 50% probability). Finally, it is processed with grid sampling
(voxel size 0.01 mm) and converted to a tensor. Validation and testing only apply
normalization and grid sampling.

Task Formulation. We frame occlusion analysis as a multi-task classification
problem with a single common backbone and five independent output heads, each
corresponding to: (¢) right sagittal classification (3 classes), (i) left sagittal clas-
sification (3 classes), (i) anterior vertical bite type (4 classes), (iv) transverse
bite type (3 classes), and (v) midline alignment (2 classes). Each head performs
categorical classification using ground-truth annotations.

Model Architecture. We evaluated two state-of-the-art point cloud back-
bones, Point TransformerV3 [18] and SPUNet [12], both already integrated within
the Pointcept framework [6]. Our benchmark formulates occlusion analysis as a
multi-task classification problem, where a single shared feature extractor is fol-
lowed by five independent task-specific classification heads. Each head is imple-
mented as a two-layer multilayer perceptron (MLP) with a final softmax activa-
tion. To assess the effectiveness of this approach, Sec.[dlalso conducts an ablation
study comparing the multi-task learning (MTL) setup with a single-task learning
(STL) strategy that trains a separate dedicated model per task.

Training Configuration. Training was performed for 200 epochs with a batch
size of 8. The PointTransformerV3 models used the AdamW optimizer (learning
rate 1x10~%, weight decay 0.01) with a cosine annealing scheduler, while SPUNet
models employed the SGD optimizer (learning rate 1 x 1073, weight decay 0.01)
with a multistep schedule. Mixed-precision training and gradient clipping set to
1.0 were used to stabilize learning for both backbones and in all the training
performed. The total loss is computed as the unweighted mean of the five task-
specific losses. Each of these task-specific losses is a cross-entropy function with
pre-computed class weights to address label imbalance. The exact weights are
available in the source code inside the configuration files.

Evaluation Protocol. We adopted a 5-fold cross-validation scheme. In each
fold, 160 scans were used for training and 40 for testing. No dedicated validation
split was used. Final results are reported as the mean and standard deviation of
per-task classification scores across the five folds.

4 Experiments

Experimental Setup and Metrics. We conducted our experiments following
a 5-fold cross-validation protocol. For each fold, models were trained on four par-
titions and evaluated on the remaining held-out split, ensuring that every sample
is used for testing exactly once. We evaluated two different backbones, Point-
TransformerV3 and SPUNet, to provide a robust benchmark for future research.



6 L. Borghi, L. Lumetti, et al.

Table 1: Ablation study on input features. All classification metrics are
macro-averaged across the five occlusal tasks and reported as mean + std (%)
over the 5 cross-validation folds. Inference time is the average time in seconds
to process a single scan.

Input Features Model Accuracy  Precision Recall F1-Score Time (s)
Mesh 0.69+0.03 0.624+0.02 0.61+0.04 0.60+0.03 0.11
Landmarks PointTr.V3 0.70£0.04 0.62+0.04 0.63+0.05 0.61+£0.04 0.04
Mesh + Landmarks 0.71 4+ 0.03 0.64 + 0.03 0.64 + 0.02 0.63 £+ 0.03 0.11
Mesh 0.64+0.01 0.564+0.03 0.58+£0.03 0.56£0.04 0.05
Landmarks SPUNet 0.60+£0.02 0.56+0.06 0.56+0.06 0.58+£0.05 0.02
Mesh + Landmarks 0.65+£0.01 0.594£0.05 0.61£0.04 0.58£0.05 0.05

Both backbones were trained using identical data processing and augmentation
strategies to ensure a fair and direct comparison.

Given the significant class imbalance inherent in clinical dental datasets, we
selected the macro-averaged F'I-score as our primary evaluation metric. This
metric provides a balanced measure of a model’s performance by calculating the
F1-score for each class independently and then averaging them. In our context,
such an approach ensures a more informative evaluation w.r.t. using the overall
accuracy. For a more comprehensive analysis, particularly in our ablation studies,
we also report accuracy, precision, recall, and model inference time.

On the Impact of Input Features. To determine the optimal input represen-
tation, we first conducted an ablation study on the input features. We compared
the performance of models trained using three different input configurations: (%)
the raw 3D mesh only, (i) automatically-predicted landmark coordinates only,
and (%) a combination of both mesh and landmark features.

The results, summarized in Tab. [I} show that combining mesh and landmark
features yields the best overall performance for both backbones, with PointTrans-
formerV3 achieving the highest F1-score of 0.63 4+ 0.03. Interestingly, using only
landmark coordinates as input provides results that are only marginally lower
than using the full mesh. This is a noteworthy finding, as the landmark-only
models are exceptionally efficient; for instance, training takes approximately 15
minutes, compared to over 2 hours for models that process the entire mesh. De-
spite the efficiency of the landmark-only approach, to maximize performance,
we chose configuration (i) for all subsequent experiments.

Multi-Task vs. Single-Task Learning. Having established the optimal input
features, we then evaluated the difference in performance between multi-task
learning (MTL), i.e., a single backbone with a head for each different task, versus
a single-task learning (STL) approach, i.e., a dedicated network (backbone +
head) for each task. For this comparison, we trained five separate single-task
models (one for each of our classification tasks) and evaluated their performance
against that of our single, unified multi-task model.

As shown in Tab. [2| the STL approach, where each task is handled by a
specialized model, achieves superior performance in terms of F1-score. However,
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Table 2: Ablation study on Multi-Task Learning (MTL) vs. Single-Task
Learning (STL). All classification metrics are macro-averaged across the five
occlusal tasks and reported as mean + std (%) over the 5 cross-validation folds.
Inference time is the average time in seconds to process a single scan.

Model Learning Strategy Accuracy Precision Recall F1-Score Time (s)

Single-Task (STL) 0.72+£0.13 0.66+0.14 0.65+0.14 0.64+0.13 1.10
Multi-Task (MTL) 0.71£0.03 0.644+0.03 0.64£0.02 0.63+0.03 0.11

Single-Task (STL) 0.67+0.14 0.61+0.13 0.61+0.14 0.60+0.13 0.50
Multi-Task (MTL) 0.65+0.01 0.59+0.05 0.61+£0.04 0.58+0.05 0.05

PointTr.V3

SPUNet

Table 3: Per-task Fl-score (%) across occlusal classification tasks. Re-
sults are macro-averaged over 5-fold cross-validation and reported as mean +
std (%).

Model Strategy Right Occl. Left Occl. Anter. Bite Tran. Bite Midline Avg.

STL 0.71£0.05 0.6740.07 0.77+£0.14 0.59£0.10 0.49£0.06 0.64 £0.13
MTL 0.69£0.05 0.684+0.04 0.74+0.14 0.57+£0.12 0.46 £0.05 0.63 £0.03

STL 0.60 £0.02 0.574+0.02 0.78+0.13 0.58 £0.14 0.48 £0.04 0.62 £0.14
MTL 0.54+0.07 0.59+0.04 0.68+0.15 0.61+0.15 0.51+0.08 0.60+£0.13

PointTr.V3

SPUNet

this gain comes at a significant cost in computational resources and complexity.
The STL strategy requires training and maintaining five distinct models per
backbone, resulting in an increase in total training time and inference overhead
compared to the unified MTL model. Tab. [3] provides a more granular, per-
task breakdown of the F1l-scores, confirming the strong performance of the STL
models across the individual tasks.

These results present a clear trade-off: the MTL framework offers an efficient
and scalable solution well-suited for clinical application where speed may be
critical, while the STL approach can provide higher accuracy if computational
cost is not a primary constraint. Across all experiments, the Point TransformerV3
backbone consistently outperformed SPUNet, establishing it as the more robust
architecture for this problem domain.

Qualitative and Error Analysis. To better illustrate model performance be-
yond quantitative metrics, Fig. [5] shows example predictions from our test set,
highlighting both successful classifications and common failure modes. These
visualizations provide insight into the models’ ability to interpret complex inter-
arch relationships and offer a qualitative understanding of their predictive be-
havior in challenging clinical cases.

5 Conclusion

In this paper, we introduced Bits2Bites, a novel benchmark for occlusal classifi-
cation from intra-oral scans. We provided the first public dataset of 200 paired
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Patient 24 Patient 111 Patient 169

Midline Left Occlusion Transverse Bite
Pred: Deviated Pred: Class III Pred: Normal
GT: Centered GT: Class I GT: Normal
Patient 176 Patient 180 Patient 185

Anterior Bite Right Occlusion Left Occlusion
Pred: Deep Pred: Class I1 Pred: Class I1
GT: Normal GT: Class 11 GT: Class IT

Fig. 5: Qualitative analysis of PointTransformerV3 model predictions on various
occlusal classification tasks. The figure showcases both correct classifications
where the model’s prediction matches the ground truth, and failures , where
the model misclassifies one task in the scan. Each example compares the model’s
prediction (Pred) with the expert-annotated ground truth (GT) for a specific
patient from the test set.

IOS scans with detailed, multi-dimensional clinical annotations. Our evaluation
of state-of-the-art point cloud backbones within a multi-task learning framework
demonstrates the feasibility of directly predicting multiple occlusal attributes
from raw 3D point clouds. The results of our experiments lay the groundwork
for developing automated tools that can assist orthodontists in diagnosis and
treatment planning.

Future work will proceed in three main directions. First, we plan to expand
the dataset to include a larger and more diverse cohort of patients, capturing
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a wider range of rare malocclusions. Second, we will validate the clinical anno-
tations by involving multiple experts to establish inter-rater reliability, further
strengthening the quality of the ground truth. Finally, once the dataset is en-
riched, support for the previously merged Class II edge-to-edge and Class II full
sagittal classifications, as well as for tooth-level identification in crossbite and
scissor bite cases, will be reinstated and fully integrated.
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