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ToothSeg: Robust Tooth Instance Segmentation
and Numbering in CBCT using Deep Learning
and Self-Correction

Niels van Nistelrooij, Lars Kramer, Steven Kempers, Michel Beyer, Federico Bolelli, Tong Xi, Stefaan
Bergé, Max Heiland, Klaus H. Maier-Hein, Shankeeth Vinayahalingam, and Fabian Isensee

Abstract— Accurate interpretation of cone-beam com-
puted tomography (CBCT) scans is critical for oral diag-
nosis and treatment planning. Existing methods for auto-
mated tooth segmentation in CBCT face challenges, such
as difficulties in generalizing across imaging artifacts and
anatomical variations, as well as requiring manual revi-
sions in many cases. To address these limitations, this
study introduces ToothSeg, a fully automated approach for
tooth instance segmentation and numbering in CBCT us-
ing deep learning and self-correction. ToothSeg combines
semantic and instance segmentation into a unified method
where their respective strengths are complemented. In par-
ticular, self-correction is employed when combining the
segmentations, resolving merged or split teeth and deter-
mining the optimal sequence of tooth numbers for each
dental arch. We conducted a comprehensive evaluation
using a diverse in-house dataset (n = 1282, 25+ devices)
and the publicly available ToothFairy2 challenge dataset (n
= 480, 1 device), including an ablation study, a comparison
to state-of-the-art methods, and an analysis of challenging
cases. Compared to an optimized semantic segmentation
model, including instance segmentation and self-correction
consistently improved tooth segmentation (True Positive
Dice: 93.6% to 94.3%) and tooth detection and number-
ing (multiclass instance F1: 94.2% to 95.5%). Further-
more, ToothSeg outperformed the other methods on both
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datasets (True Positive Dice: > +0.4%, multiclass instance
F1: > +1.8%), particularly for challenging cases. This study
provides a promising approach for automated tooth seg-
mentation and numbering in CBCT, which is significant for
reducing manual workload and supporting scalable, data-
driven research in oral and craniofacial health. Code and
models are publicly available at https:/github.com/MIC-
DKFZ/ToothSeg.

Index Terms—3D Segmentation, Cone-Beam Computed
Tomography, Deep Learning, Dental Imaging, Tooth In-
stance Segmentation and Numbering

[. INTRODUCTION

EDICAL image analysis has advanced significantly

through integration of deep learning [1], [2]. It is
not surprising, therefore, that data-driven dentistry promises
to revolutionize oral diagnosis, treatment decision-making,
and patient communication [3]-[5]. Interpreting dental image
modalities, such as panoramic radiographs, intraoral scans, and
cone-beam computed tomography (CBCT) scans [6], [7], is
fundamental. CBCT, in particular, provides a volumetric view
of the oral and maxillofacial region at a reduced radiation
exposure compared to conventional computed tomography
(CT) [8], [9]. CBCT enables 3D evaluation of scanned areas,
aiding in the assessment of anatomical structures, implant
sites, root canal morphology, and the visualization of impacted
teeth, tooth alignment, and tooth localization [10]. Moreover,
CBCT examinations often lead to a better-informed treatment
plan [11].

Tooth segmentation in CBCT is a fundamental component
in daily clinical procedures, but its effectiveness highly de-
pends on the examiner’s experience [12], [13]. Therefore,
the efficient and precise automated interpretation of dental
data provides many opportunities for improving diagnostic
accuracy and streamlining treatment planning [14], [15]. A
3D reconstruction of the teeth can be used as a comprehensive
overview of a patient’s dental anatomy, to support radiographic
interpretation and patient communication [16], [17]. Further-
more, numbering of the individual teeth is crucial for precise
and consistent documentation. In addition to its direct applica-
tions, the efficient and automated interpretation facilitates the
analysis of large datasets, providing the opportunity to gain
new insights in the setting of clinical research. However, the



Fig. 1: Tooth instance predictions for a CBCT scan using
ToothSeg. By combining semantic and instance segmentation
with self-correction, our method ensures precise segmentation
and accurate numbering, robustly handling metal-induced ar-
tifacts and anatomical variations.

current standard for determining a 3D reconstruction is based
on semi-automated segmentation of CBCT, which introduces
examiner-dependent variation and is too time-consuming for
routine dental practice [18], [19].

Tooth instance segmentation and numbering involves two
challenges: accurately segmenting each tooth instance and
correctly assigning the appropriate tooth numbers. From a
technical perspective, the difficulty in solving this task arises
from the complex anatomical structures in the oral and max-
illofacial region. Teeth have a large variability in shape, size,
and orientation across patients, and imaging artifacts, such
as noise and metal-induced distortions, further complicate
segmentation. As a result, many existing methods lack ro-
bustness and fail to generalize across different datasets, often
requiring manual revisions to achieve acceptable accuracy.
This dependence on human oversight undermines the goal of
fully automated workflows in clinical practice. The reliability
of the segmentation method is relevant for clinical application,
particularly when dealing with missing teeth, as the lack of
contextual information makes it challenging to distinguish be-
tween teeth with similar shapes. This is complemented by the
inherent shortcomings that arise from CBCT, such as limited
soft tissue contrast, higher noise, and scattering artifacts [20],
[21]. In addition to the problems on the methodological side,
there is a lack of publicly available datasets, and source code
of existing methods is not available or not easily usable [22].
Often small (< 100 CBCT scans) and in-house datasets are
used that may not reflect the general population, for example
by excluding pathological cases [23]. This makes meaningful
benchmarking difficult and undermines the reliability of eval-
uations. Additionally, the adaptability of the methods to other
datasets that differ, for example in terms of scanners, fields of
view, or patient symptoms and populations, is not evaluated,
which leads to overfitting and overengineering for individual
use cases [24], [25].

To address these limitations, we present ToothSeg, a fully
automated approach using deep learning and self-correction
designed to overcome the inherent variability of teeth in CBCT
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scans. In contrast to existing methods that mostly depend on
multistage detect-then-segment pipelines, ToothSeg combines
two independent branches for instance and semantic segmen-
tation to mitigate error propagation, achieving a high degree of
robustness. Tooth instance segmentation is implemented using
a border—core semantic formulation and region-growing, and
both branches use baseline nnU-Net models to avoid archi-
tectural overfitting. In addition, a probabilistic self-correction
approach is employed when combining the branch outputs
to automatically resolve tooth numbering inconsistencies and
merged or split teeth without dataset-specific adjustments. Our
approach eliminates the need for manual revisions in most
cases, offering a solution that surpasses the current state-
of-the-art on two large datasets. To validate our method’s
performance, a diverse dataset comprising 1,282 CBCT scans
was compiled and annotated [14], [26], [27]. Additionally, we
validated our method on the recently released ToothFairy2
challenge dataset (Fig. 1) [28]-[30]. Our method’s ability
to generalize across varied dental conditions and imaging
artifacts demonstrates its potential for widespread clinical
application. By eliminating the need for manual revisions in
most cases, in combination with accurate tooth numbering,
ToothSeg can streamline clinical workflows and reduce diag-
nostic variability. In addition to the technical contributions,
we embrace open science by publishing the source code
of our method and all comparison methods. By including
validation on a public dataset, we embrace accessibility and
reproducibility.

[I. RELATED WORK

Tooth segmentation in CBCT scans is typically formulated
as one of three tasks. The first is binary semantic segmenta-
tion, which separates teeth from surrounding tissues without
distinguishing individual teeth. While useful, this approach
has limited clinical utility due to difficulties in assessing
closely spaced or adjacent teeth. The second task, tooth
instance segmentation, identifies individual teeth but does not
assign specific labels to them. The third task, tooth instance
segmentation and numbering, not only identifies individual
teeth but also assigns them unique numbers according to the
FDI tooth numbering system [31]. Since a fully automated
method for tooth instance segmentation and numbering can
provide significant benefits to clinical practice, numerous deep
learning methods have been developed [32].

A. Binary semantic segmentation

This task focuses on separating teeth from the background.
A publicly available dataset, CTooth, has been introduced,
featuring expert annotations on 22 CBCT scans [33]. Various
convolutional neural network (CNN) approaches have been
proposed for binary segmentation, incorporating advanced
network architectures with custom modules and hybrid loss
functions [34], as well as combinations of 2D and 3D net-
works [35]. Additionally, postprocessing techniques have been
employed to refine CNN predictions, including the use of
posterior probability maps based on grayscale values [36]
and dense conditional random fields [37]. Another approach
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extended the segmentation task by differentiating between the
background, jaws, and teeth, enabling a more detailed 3D
reconstruction [38].

B. Tooth instance segmentation

The second task involves identifying individual tooth in-
stances. This is typically performed using a detect-then-
segment approach. The detection can be implemented through
various techniques, including bounding box detection [39],
[40], multiclass segmentation [41], tooth center heatmap pre-
diction [42], or location offset regression [43]-[45]. Once tooth
instances are identified, volumes of interest (VOIs) can be
cropped from the CBCT scan around each identified tooth,
after which another model predicts a binary segmentation of
the tooth at the center of each VOI. Additional tasks can be
integrated into the method to enhance its effectiveness. For
example, a second input channel with predicted tooth bound-
aries can assist in tooth detection [39], whereas tooth boundary
segmentation and tooth apices keypoint detection can provide
auxiliary supervision for individual tooth segmentation [42],
[43], [45]. Various network architectures incorporating self-
attention, dilated convolutions, and dense skip connections,
have been explored to improve effectiveness [42], [44]. Addi-
tionally, focal loss and boundary-aware Dice loss have been
employed to focus more on challenging tooth boundary voxels
[34], [42].

C. Tooth instance segmentation and numbering

This task presents two key challenges: precisely segment-
ing each tooth instance and assigning the appropriate FDI
numbers. The FDI system attributes a unique number to each
tooth from a set of 32 numbers. Tooth instance segmentation
and numbering could thus be implemented using multiclass
semantic segmentation with 33 output classes within a single
deep neural network, offering greater efficiency compared to
multistage approaches [41], [46]. However, the trade-off is
often reduced effectiveness, as the model may struggle to
specialize in both tooth segmentation and numbering simulta-
neously. Additionally, individual teeth can be mistakenly split
into multiple classes (splitters), or multiple tooth instances
may be assigned the same tooth number (mergers). Alternative
approaches incorporate tooth numbering into the detect-then-
segment approach for tooth instance segmentation. Shaheen
et al. [41] downsampled the complete CBCT scan to predict
a coarse multiclass semantic segmentation, identifying tooth
instances. Then, tooth crops were extracted from the original
scan to produce finer segmentations of individual teeth. Lee
et al. [47] also downsampled the complete CBCT scan and
predicted 32 heatmaps and bounding box sizes to perform
tooth detection and numbering. As before, individual teeth
were cropped from the original scan to predict a tooth instance
segmentation. Wang et al. [15] performed tooth numbering
after the detection stage. They used a common encoder
with three decoders for binary segmentation, centroid offset
regression, and tooth numbering, respectively. The outputs
of the first two decoders were combined to determine tooth
instances, with volumes of interest (VOIs) cropped around

these instances. Features from the third decoder for tooth
numbering were then pooled and processed by a multi-layer
perceptron (MLP) to assign tooth numbers. One recent method
preprocessed a CBCT scan by standardizing its intensity value
distribution, after which a first stage predicted a binary tooth
segmentation, which was used to inform the second stage
for multiclass semantic segmentation [48]. Other studies inte-
grated tooth numbering directly into the model for individual
tooth segmentation by processing latent features with global
pooling and an MLP [39], [45]. These methods operating on
small VOIs around detected tooth instances, often struggle
to incorporate broader contextual information necessary for
accurate tooth numbering. As a result, they exhibit reduced
effectiveness in cases with significant anatomical variations.
Such multistage approaches were typically prone to error
propagation, where inaccuracies in an early stage could add
up and lead to degraded performance in subsequent stages.

[1l. METHOD

This study followed the principles of the Declaration of
Helsinki. The need for ethical approval was waived by the in-
stitutional review board (CMO Arnhem-Nijmegen, file number
2021-13253). Each subject provided their informed consent.

Tooth instance segmentation and numbering involves iden-
tifying and segmenting individual teeth, then assigning a
specific tooth number to each one. Conceptually, this could
be handled as semantic segmentation since each tooth number
appears at most once per image. However, semantic segmen-
tation struggles with voxel-wise predictions that lack object-
level understanding, often causing teeth to be fragmented with
multiple numbers. Despite this, semantic segmentation offers
key advantages: its voxel-wise supervision is data-efficient and
delivers highly precise predictions.

Therefore, semantic segmentation could be a strong basis
for tooth identification but requires reinforcement through
dedicated tooth instance segmentation strategies. To address
this, we introduce ToothSeg, a hybrid methodology that com-
bines the complementary strengths of semantic and instance
segmentation. The proposed approach comprises three main
components: a semantic branch responsible for assigning
tooth numbers, an instance branch that precisely delineates
individual teeth, and an algorithm for combining the semantic
and instance predictions that employs self-correction to resolve
merged or split teeth and that determines an optimal sequence
of tooth numbers. Our model corrects errors inherent to
each branch individually, delivering a highly robust solution.
Both branches of ToothSeg are based on nnU-Net [49]. In
contrast to existing methods, our approach obviates the need
for cropping around the volume of interest (VOI). Instead,
ToothSeg generates two independent predictions for the entire
image, which are subsequently combined with self-correction
to produce the final result. Fig. 2 provides an overview of how
the semantic and instance branches are combined.

A. Semantic segmentation branch

Within the proposed method, the semantic segmentation
branch is responsible for allocating the correct FDI number
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Fig. 2: ToothSeg consists of two independently trained branches for instance and semantic segmentation, combined through self-
correction for the final prediction. The instance branch uses a border-core representation, reformulating instance segmentation
as a semantic segmentation task. From a border-core prediction, individual instances are obtained by region growing of the
core components. The semantic branch is trained using the multiclass semantic ground truth and predicts the tooth numbers of
the detected instances. Self-correction splits merged instances and removes false positives. For the final prediction, the optimal
sequence of tooth numbers is determined for each dental arch based on the tooth number predictions and the expected position

differences between subsequent teeth in the sequence.

to each tooth instance. Our semantic segmentation branch is
based on nnU-Net’s default 3d_fullres configuration and we
extensively modified the default settings to maximize tooth
numbering performance.

Tooth numbering performance strongly depends on the
context processed by the network. Ideally, the complete dental
arch is processed at once, such that contralateral teeth can be
compared to ensure consistent tooth numbers. Therefore, we
use a large patch size of 256x256x256 voxels and a large voxel
size of 0.3mm, to accommodate the larger input, we increase
the network’s receptive field by adding an additional pooling
operation. We use a batch size of 8, compared to nnU-Net’s
default of 2, to improve gradient quality. During training, ex-
tensive data augmentation following nnU-Net’s default settings
is applied. Due to the need to distinguish left from right teeth
in a mostly symmetrical jaw, we find that disabling left-right
mirroring drastically improves performance.

B. Instance segmentation branch

We formulate tooth instance segmentation as a three-class
semantic segmentation task: background, tooth border, and
tooth core. From this representation, tooth cores can be identi-
fied as connected components of the core voxels, as the border
voxels prevent the interaction of core voxels from adjacent
teeth. Based on the identified tooth cores, a precise tooth
instance segmentation can be determined by assigning border
voxels to the closest tooth core. Ground truth tooth instance
segmentation maps are converted to border-core semantic
segmentation maps by eroding individual teeth and setting the
eroded areas to the tooth border label. The remaining tooth
voxels are assigned as tooth cores.

The design of the instance segmentation branch is geared

towards precisely outlining the individual teeth while ignoring
the tooth numbers, which requires a high resolution with
less contextual information. However, a high resolution does
considerably increase inference time with diminishing returns
for effectiveness. For these reasons, 0.2mm is chosen as voxel
size and a patch size of 192x192x192 is used. A border
thickness of three voxels provides the optimal value to prevent
split or merged tooth instances. Other configuration settings
remain consistent with the semantic segmentation branch,
except that left-right mirroring is included.

Tooth instances are recovered from the predicted border-
core segmentation by first determining the connected com-
ponents of the core voxels, where small core regions (<16
mm?) are removed. Each remaining tooth instance is assigned
a unique sequential label, which is then propagated to all cor-
responding voxels. Subsequently, border voxels are assigned
to the core regions by iteratively dilating the cores by one
voxel into the predicted border area until all border voxels
are accounted for. This method is advantageous over directly
computing distances from border voxels to each core, as it
prevents skipping across background voxels.

C. Combining semantic and instance predictions

Unlike previous approaches that rely on multistage pro-
cesses, leading to error accumulation, our self-correcting ap-
proach allows for simultaneous correction of semantic and
instance errors, resulting in a more reliable system.

Given a CBCT scan of size W x H x D, the semantic branch
determines a probability distribution over 32 tooth numbers
and a background class for each voxel (S = RW*HxDx33)
Conversely, the instance branch determines an index map
Z = {0,1,..., K}WxHxD) " with the background as 0 and
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each instance as an index from 1 to K.
The probabilities from the semantic prediction were ag-

gregated for all M voxels belonging to tooth instance k as
Sl'fk c R]WX?)?):

Stk = {Suy. ER¥lz € {1,.., W},
ye{l,...H},ze{l,..,D}\Z, , . =k}. (1)
1) Splitting merged instances.: An overall probability dis-

tribution of an instance (SI:k S R33) was computed as the
average over the M voxel probability distributions:

| M
Si—k = Vi E (Sz=k)p, - 2)
m=1

Additionally, labels were determined for the instance voxels
(1% € {0,1,...,32}M) based on their probabilities:

1% .= {argmax (Sz=t)m.cIm € {1,...; M}, c € {0, ...,32}} .

3)

Subsequently, tooth numbers with an overall probability of

at least 0.1 ((Sz=x), > 0.1) were selected and their confi-

dences were computed by determining the average probability
over each tooth number’s corresponding voxels:

b 1 i (Sz=k)m.c
ik ey =c}| = |0

m

if ¥, = c and

otherwise.
4)
Then, the final tooth numbers with p’j > 0.95 are selected
as c¥ and the M instance voxels are split among the final
tooth numbers as:

17 .= {argmax (Sz=k)pmcm €{1,.., M}, c€ ck} S

With the split instance, the original index map (Z) is
updated by setting the voxels of the first tooth number of
c® to index k and setting the voxels of the remaining tooth
numbers of c* to indices following the maximum index of
the index map. This process is repeated for each original
instance to split all possible merged instances.

2) Removing false-positive instances.: With the updated
index map following the splitting of the merged instances,
the overall probability distribution of each instance (Sz—p)
was re-computed. Instances with a background probability of
at least 0.95 ((Szzk)o > 0.95) were removed.

3) Optimal sequence of tooth numbers.: Following the steps
above, the resulting index map represents the prediction of
all connected components comprising teeth. To effectively
attribute a tooth number to each connected component, an
algorithm was developed that merges the semantic and in-
stance predictions and compares the order of tooth numbers
to the expected order to mitigate potential mistakes. Previous
methods for optimizing the sequence of tooth numbers relied
on heuristic functions [50], whereas the current study opti-
mizes the tooth number sequence by employing a probabilistic
perspective.

The algorithm operates on one dental arch at a time, so the
connected components of the index map were categorized as
either upper or lower arch using:

arch? — {upper if Z}il (SI:k)C > Ziin (SI:k)C and
lower otherwise.
(6)

The numbers for the tooth instances in each arch were de-
termined independently and the following paragraphs apply to
teeth of the upper arch. First, the center position or centroid of
each connected component was determined by reorienting and
rescaling the predictions into the patient-centered coordinate
system and computing the average over the coordinates of the
voxels belonging to each instance.

Based on these centroids, a sequence of teeth was de-
termined following the dental arch, starting with the most
posterior tooth and iteratively adding the nearest tooth, until
all teeth of an arch were included in the sequence.

The overall probability distribution of each instance (Sz—)
was normalized by ensuring the probabilities of the arch-
specific tooth numbers sum to 1. The cost of assigning a tooth
number to the ith instance in the sequence was computed as
the negative log of its normalized probability:

S (5=, ) )

The sequence of tooth numbers with the minimum sum of
tooth number costs assigns the numbers with the maximum
probability, i.e. the argmax approach. This methodology is
further improved by also considering tooth pair costs.

The ground-truth annotations were used to model the dif-
ferences between centroids of instances. More specifically, the
ground truth annotations of the training set were converted
to border-core representation and back to an index map
to allow for multiple connected components per tooth (e.g.
root remnants). The centroid of each connected component
was computed in the patient-centered coordinate system and
categorized as belonging to the upper or lower dental arch
according to the corresponding FDI number. Then, the dif-
ferences (left-right, anterior-posterior, and inferior-superior)
between the centroids of all pairs of connected components
were determined for teeth within the same dental arch and
differences were grouped by the pair of corresponding tooth
numbers. Subsequently, the differences of each tooth number
pair were modeled using a multi-variate Gaussian distribution
with mean vector (u.,_,.,) and a full covariance matrix
(B —er)-

A tooth pair cost was computed as the negative log likeli-
hood of transitioning from a tooth number to another tooth
number based on the centroid differences between subse-
quent teeth in the tooth sequence. First, the centroid differ-
ences between each pair of subsequent teeth were determined
(d;—i+1)- These differences were used to compute probability
densities for each pair of corresponding tooth numbers, which
were converted to tooth pair costs as:

Li(c) := —log <

L7 (1, 00) = —10g N (disyit1|Be, eys Der—ses) - (8)



Based on the computed costs, an optimal sequence of tooth
numbers was determined (c*) that minimized the total cost
after summing all tooth number and tooth pair costs along the
sequence from index 1 to K:

K K-1
c* ;= argmin Z4£i(ci) + Z L7 e 1), (9)
ce{1,...,16}K T =
To find the optimal sequence in polynomial time, a dynamic
programming algorithm was developed, see Listing 1. The
algorithm requires the tooth number costs for each tooth
and the tooth pair costs for each pair of tooth numbers and
pairs of subsequent teeth in the sequence. The total cost after
selecting the first tooth number is stored in g and p stores the
predecessors to recover the sequence after the algorithm.

The algorithm then iteratively selects a tooth number for
the next tooth in the sequence and determines the minimum
total cost up to selecting that next tooth number (min_cost).
After the algorithm exhausts all possible sequences, the final
sequence is read from the predecessors from the last to the first
tooth number. The et a parameter is introduced to balance the
contribution of the tooth number and tooth pair costs. This
parameter was set to 4 based on an empirical investigation,
showing that the semantic predictions were already highly
effective for tooth numbering.

The final output is a semantic segmentation map, where
all voxels associated with a given tooth are labeled with
its corresponding tooth number (FDI notation). This refined
merging of the two branches enhances the precision of the seg-
mentation and significantly strengthens the model’s robustness
by correcting mistakes by either branch.

IV. EVALUATION & RESULTS

To enable meaningful validation, we compiled a compre-
hensive CBCT dataset of 1,282 scans. The ground truth anno-
tations were generated by experts following the FDI notation
system [31]. The dataset includes scans from more than 25
different scanners and various operators with a wide range of
fields of view (FOVs), enhancing the dataset’s applicability to
real-world scenarios (Table I). 49% of patients were male and
the median age, inter-quartile range, and age range were 59
years, 18 years, and 16 to 93 years, respectively. The only
excluded cases were those containing primary teeth, as their
small sample size hindered robust learning and validation. To
provide a public benchmark, we also included the ToothFairy2
dataset [28]-[30], which consists of 480 CBCT scans. For
both datasets, segmentation focused on the 32 permanent tooth
classes.

The models were evaluated by two categories of metrics:
instance metrics and multiclass instance metrics. Instance met-
rics assess segmentation performance by comparing instances
without considering tooth numbers. In contrast, multiclass
instance metrics also evaluate how accurately FDI numbers are
assigned. The three metrics employed for both categories are
True Positive Dice (TP Dice), instance F1, and panoptic Dice.
TP Dice computes the average Dice score of true-positive
predicted instances to validate the voxel-level accuracy of
the segmentations. Instance F1 computes the object-level F1
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Listing 1: Pseudocode of dynamic programming algorithm to
determine minimum-cost sequence of tooth numbers.

def dynamic_programming (
tooth_costs: NDArray[ ('K’,16),
pair_costs: NDArray[('K’-1,16,16),
float=4.0,

float],
float],
eta:

#balance tooth and pair costs

tooth_costs = eta x tooth_costs

#memoization

g = np.zeros_like (tooth_costs)
qgl[0] = tooth_costs[0]
#predecessors

p = np.zeros_like(q,
pl0] = np.arange(16)

dtype=int)

#loop over each tooth in the sequence
for i in range(l, tooth_costs.shape[0]):
for j in range (16):
prev_costs = g[i - 1]
trans_costs = pair_costs[i - 1, :, Jl
costs = prev_costs + trans_costs

min_cost = costs.min ()
gli, j] = min_cost + tooth_costs[i, j]
pli, jl = costs.argmin ()

#determine final tooth number sequence
path = [g[-1].argmin ()]
for i in range(l, tooth_costs.shape[0]):
prev_number = p[-i, path[0]]
path = [prev_number] + path

return path

score to represent how reliable objects can be identified.
The underlying instance matching between ground truth and
prediction is based on greedily pairing with a Dice overlap
higher than 0.1. Additionally, in the case of multiclass instance
metrics, the FDI numbers must match. Finally, panoptic Dice
multiplies TP Dice and instance F1 to evaluate both voxel-
level and instance-level accuracy.

We compare our method to recent state-of-the-art ap-
proaches, which were included as ReluNet [41], CuiNet [45],
WangNet [15], and LiuNet [48] using the following criteria:
(1) published in 2021 or later, (2) proposed a fully automated
method for tooth instance segmentation and FDI numbering,
(3) not surpassed by another method of the same authors, and
(4) the most citations compared to other studies published in
the same year. All models are trained from scratch on both
datasets, using the same dataset splits. Due to the lack of public
source code, reference methods were replicated to the best of
our knowledge and ability.
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TABLE I: Imaging protocols in the 1,282 CBCT scans of the
in-house dataset. Each range has an open endpoint.

Cases %

Voxel size (mm)

0.12-0.16 206 16
0.16-0.2 282 22
0.2-0.25 280 22
0.25-0.3 170 13
0.3-04 292 23
0.4- 49 3.8
Field of view (cm?®)

240-400 74 6.1
400-500 249 20
500-1000 326 27
1000-1500 155 13
1500-2500 228 19
2500- 184 15
Tube voltage (kV)

70-80 5 0.43
80-90 311 27
90-100 527 45
100-110 34 2.9
110-120 23 2.0
120- 266 23
Tube current (mA)

1-3 26 2.3
3-5 184 16
5-7 505 44
7-9 226 20
9-11 88 7.7
11- 88 7.7

A. Quantitative results

Table II shows the comparison between all five methods
on our in-house dataset. For each method, a single model
was trained on all train cases (n = 903) and validated on
a separate test set (n = 397). ToothSeg demonstrates superior
performance across all metrics, achieving the highest panoptic
Dice of 93.35 and 89.32 for instance and multiclass instance
metrics, respectively. A large difference of 3.31 and 4.20 to the
next best instance and multiclass instance metrics, respectively,
can be seen.

TABLE II: Test set results on our in-house dataset. Instance
metrics ignore tooth numbers and measure the ability to
segment teeth accurately. Multiclass instance metrics include
tooth numbers to also represent how reliably the correct FDI
numbers are assigned.

Instance metrics Multiclass instance metrics
TP Dice inst. F1 panop. Dice\TP Dice inst. F1 panop. Dice

ReluNet | 9326  96.46 89.96 9330 91.19 85.10
CuiNet 87.42  98.09 85.75 87.98  92.02 80.90
WangNet| 91.34  98.58 90.04 91.62 9294 85.12
LiuNet 87.02 97.46 84.81 8720 9234 80.53
ToothSeg| 94.11  99.19 93.35 9423  94.80 89.32

The same findings were found for the ToothFairy2 challenge
dataset (Table III). The dataset was randomly split into training
and validation with a 70:30 ratio and no methodological mod-
ifications were made for all methods. Nevertheless, ToothSeg
once again outperforms all other methods, highlighting its
robustness and ability to generalize to new datasets without
requiring manual adaptation.

TABLE llI: Results on the ToothFairy2 challenge dataset.

Instance metrics Multiclass instance metrics
TP Dice inst. F1 panop. Dice\TP Dice inst. F1 panop. Dice

ReluNet | 9390  92.75 87.09 93.89  89.04 83.64
CuiNet 91.63 9497 87.02 92.23 9042 83.36
WangNet | 96.08  94.13 90.45 96.15  90.51 87.04
LiuNet 90.42 9335 84.41 90.64  90.09 81.69
ToothSeg| 96.49  95.71 92.35 96.60  93.50 90.32

CBCT GT ReluNet CuiNet WangNet LiuNet ToothSeg

Fig. 3: Comparison of different methods on held-out test cases.
The CBCT scan and ground truth (GT) are shown on the
left, followed by predictions from ReluNet, CuiNet, WangNet,
LiuNet, and ToothSeg (ours). Green frames indicate correct
predictions, while red frames and red bounding boxes highlight
errors. The six cases include: (a) a third molar, (b) a large
FOV, (c) a misaligned tooth, (d) an edentulous maxilla, (e) an
implant, and (f) an artifact.

B. Qualitative results

Fig. 3 presents a qualitative comparison between ToothSeg
and all reference methods. Two common failure cases in
tooth segmentation can be seen: splitters, where a single
tooth is incorrectly predicted as two separate instances, and
mergers, where two teeth are mistakenly connected into a
single predicted instance. Fig. 3 shows that CuiNet struggles to
detect all tooth instances, often resulting in completely missing
teeth. ReluNet and LiuNet experience difficulties with both
splitters and mergers, leading to errors in delineating indi-
vidual teeth and separating adjacent teeth. WangNet performs
better than ReluNet and CuiNet, however, it has problems
assigning the correct tooth numbers, which affects the overall
accuracy of the segmentation. Conversely, ToothSeg provides
the most reliable results, accurately predicting the boundaries
of adjacent teeth and assigning FDI numbers with the fewest
errors.

C. Ablation study

The ablation study in Table IV underscores the importance
of each component in ToothSeg. The impact of individual
modifications to our method are compared to a plain nnU-
Net baseline without left-right mirroring, which addresses the
task as a naive semantic segmentation problem. Left-right



TABLE IV: Ablation study. The study begins with the se-
mantic branch which corresponds to the default nnU-Net
configuration without left-right mirroring, with components
incrementally added from top to bottom. Only in the last step
the instance branch is added with self-correction.

Instance metrics Multiclass instance metrics
TP Dice inst. F1 panop. Dice| TP Dice inst. F1 panop. Dice
nnU-Net (no mirror) 9244 90.17 83.35 91.56  82.96 76.43
L patch size 128 9248 9149 84.61 91.24 8453 77.63
L voxel size 0.2 — 0.3 93.05 94.79 88.20 92.88  89.41 83.12
L patch size 192 9322 96.65 90.10 9325 91.67 85.51
L, patch size 256 93.50 9747 91.13 93.42  93.10 86.98
L, batch size 2 — 8 93.62  98.00 91.75 93.63 94.23 88.24
L, merge instance branch| 94.24  98.77 93.1 9425 95.26 89.78
L, self-correction 94.28  98.97 93.31 9427 9553 90.05

mirroring was disabled because bilateral symmetry in the den-
tition makes flipped counterparts indistinguishable, resulting in
anatomically inconsistent labels and degrading class-specific
learning. The experiments are performed on an 80:20 split of
the training set from our in-house dataset, ensuring the test
set remains held-out. Increasing the voxel size from 0.2mm
to 0.3mm and increasing the patch size results in further
improvements, suggesting that more contextual information is
crucial for assigning the correct tooth numbers. A larger batch
size contributes to more stable learning dynamics and poten-
tially better generalization, which was observed in this study.
Combining semantic and instance branches leads to a further
substantial performance improvement. Finally, incorporating
the self-correction mechanism yields the best overall results.
Notably, self-correction is essentially cost-free, introducing
only negligible runtime overhead. To examine the impact of
the self-correction approach in more detail, Fig. 4 shows
several cases that illustrate both its advantages and limitations.

For splitters, where a single tooth instance is predicted as
multiple instances, the semantic and instance branches can
compensate each other’s mistakes. If a splitter occurs in the
semantic prediction and the instance branch provides a correct
prediction, self-correction will assign a single tooth number,
effectively correcting the error (Fig. 4a). Conversely, if a
splitter occurs in the instance prediction, it can be compensated
by a correct prediction of the semantic branch, as all segments
of the splitter will be assigned the same tooth number (Fig.
4b). Thus, a false prediction occurs only if the branches fail
simultaneously (Fig. 4f).

For mergers, where multiple teeth are predicted as one
tooth, combining the semantic and instance predictions can
correct mistakes from either branch. An incorrect prediction
in the semantic branch can be corrected if the tooth number
probabilities of correctly detected instances assign the correct
tooth numbers (Fig. 4c) or if the sequence of tooth numbers
can be optimized based on the expected centroid differences
between the two instances (Fig. 4e). Furthermore, a merged
instance prediction can be split into two or more instances if
the semantic predictions are confident the instance should be
split (Fig. 4d).
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TABLE V: Comparison of model performance in challenging
cases found in the test set (n = 379), including those with
third molars (n = 125), misaligned teeth (n = 41), implants
or pontics (n = 174), metal artifacts (n = 137), and a large
field of view (FOV) (n = 11). Cases not included in these
subsamples were categorized as normal cases (n = 40).

Method Metric* Cases
Normal 3rd molar Misaligned Implant/pontic Artifact Full FOV

ReluNet instance | 91.78  90.70 90.33 89.41 89.17  89.30
multiclass| 90.92  85.75 86.38 84.80 83.60  87.10
numbers | 99.02  94.40 95.56 94.79 9371  97.24
CuiNet instance | 87.82  85.51 85.33 85.31 85.54 8591
multiclass| 86.03 80.81 81.59 81.03 80.29  83.24
numbers | 97.81 94.03 95.19 94.42 9335 9593
WaneNet instance | 91.61 90.22 90.13 89.92 89.44  90.33
s multiclass| 89.78 85.08 86.08 85.25 84.36  87.63
numbers | 97.88 94.08 95.33 94.51 94.05 96.71
LiuNet instance | 87.07 84.60 84.35 84.32 83.87 8592
multiclass| 86.30  80.58 80.39 80.83 79.00  84.68
numbers | 99.00 9492 95.03 95.63 93.89  98.13
ToothS instance | 95.08  93.50 9343 93.04 92.85 91.78
OOMSCE ulticlass| 9402  88.84  89.55 89.28 8878 90.03
numbers | 98.83  94.84 95.64 95.88 9547  97.99

*The results are evaluated using three metrics: instance panoptic Dice (instance),
multiclass instance panoptic Dice (multiclass), and the multiclass instance F1 divided
by the instance F1 (numbers).

D. Analysis of challenging cases

To evaluate the performance of the models in various
scenarios, we conducted a subsample analysis on the in-house
dataset. Challenging subsamples were defined by presence
of third molars, implants, pontics, metal artifacts, misaligned
teeth, or a field of view (FOV) of at least 16x16 cm. CBCT
scans could meet multiple conditions and cases without any of
these conditions were categorized as normal to assess model
performance in ideal conditions.

Table V shows noticeably higher effectiveness for normal
cases, with ToothSeg outperforming reference methods, espe-
cially in multiclass instance metrics. This trend is consistently
observed across all challenging subsamples, highlighting the
robustness and adaptability of ToothSeg. Furthermore, the
qualitative results in Fig. 3 present at least one case from each
subsample, demonstrating ToothSeg’s effectiveness across dif-
ferent dental conditions.

E. Comparison against commercial systems

To compare state-of-the-art research methods with commer-
cial systems for automated CBCT analysis, seven CBCT scans
without primary teeth were selected from cases requested
from Ilesan et al. [51]. Teeth were manually segmented and
labeled using the FDI numbering system. The scans were
processed using ToothSeg and the four baseline models trained
on the in-house dataset, as well as two commercial systems:
Relu® Creator (Relu, Leuven, Belgium) and Diagnocat Al
(Diagnocat, Tel Aviv, Israel). The commercial systems were
evaluated without prior notice to prevent any special attention
to our cases.

As shown in Table VI, ToothSeg outperformed all other
methods. Following the self-correction steps, ToothSeg was
the only method with a perfect multiclass instance F1, whereas
the other methods missed teeth, had false-positive teeth, or
predicted incorrect FDI numbers. Among the commercial sys-
tems, Relu® Creator was the most effective, improving on the
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Fig. 4: Illustration of the strengths and limitations of combining predictions from both branches. (a) A splitted semantic
prediction is corrected by the instance branch, while (b) shows the reverse. (¢) A merged semantic prediction can be resolved
by correct instance predictions. (d) For merged instance predictions, a correct semantic prediction alone is insufficient, but
instance splitting during self-correction can resolve the error. (e) Self-correction can also fix incorrect tooth numbering by
optimizing the sequence of tooth numbers. (f) When both branches fail, neither merged nor splitted errors can be corrected.

Diagnocat ToothSeg

Fig. 5: Qualitative comparison of different methods on test
cases against two commercial systems for automated CBCT
analysis. The CBCT image and ground truth (GT) segmen-
tation are shown on the left, followed by the predictions of
Relu® Creator, Diagnocat Al, and ToothSeg (ours). Green
frames indicate correct predictions, while red frames and red
bounding boxes highlight errors.

ReluNet baseline, which suggests further development since
the publication by Shaheen et al. [41]. Overall performance
on these scans was lower than on the in-house dataset, most
likely due to severe metal artifacts in four out of seven cases.

Figure 5 provides a qualitative comparison of our method
against the commercial systems. While all three methods
performed well on normal cases, critical failure cases were
identified: Relu® Creator falsely identified teeth in an eden-
tulous jaw, and Diagnocat Al missed all upper teeth in another
scan. Although these isolated failure cases provide limited
statistical significance, they serve as further evidence of the
robustness and reliability of our method.

V. DISCUSSION & CONCLUSION

This study addresses key challenges in tooth instance seg-
mentation and numbering in cone beam computed tomography
(CBCT) by introducing ToothSeg, a fully automated deep
learning method that incorporates a dedicated self-correction

TABLE VI: Results of seven cases by ToothSeg, four base-
lines, and two commercial systems. ToothSeg outperforms
all other methods in terms of instance panoptic Dice and
multiclass instance panoptic Dice.

instance panoptic Dice multiclass panoptic Dice
ReluNet 85.76 86.13
CuiNet 85.26 82.94
WangNet 86.64 86.51
LiuNet 85.61 84.91
Relu 86.76 87.42
Diagnocat 84.50 84.29
ToothSeg 87.58 87.99

mechanism. ToothSeg employs a dual-branch design that com-
bines semantic and instance segmentation to generate accurate
and anatomically consistent results, even in the presence of
imaging artifacts, anatomical variability, or missing teeth.
The proposed self-correction strategy resolves common failure
modes, such as merged or split teeth, by reconciling discrep-
ancies between the two segmentation branches. This enables
robust segmentation and reliable tooth numbering across both
routine and challenging clinical cases.

ToothSeg holds significant potential for transforming clin-
ical workflows in dental and oral radiology. Accurate and
consistent tooth segmentation and numbering are critical tasks
in routine dental care, underpinning diagnosis, treatment plan-
ning, and documentation. However, these tasks remain time-
consuming and examiner-dependent, contributing to variability
across practitioners. By automating this process with high
accuracy, ToothSeg reduces clinician workload and promotes
standardized outcomes. The metrics used in this study evaluate
tooth instance segmentation (TP Dice) and tooth detection and
numbering (instance F1). The results reported improvements in
these metrics, which directly reflects fewer misclassifications,
such as merged or split teeth or incorrect FDI numbers.
In practical terms, this leads to measurable time savings
during clinical work, as clinicians spend less time verifying
and editing segmentation outputs. The resulting increase in
automation efficiency enhances the usability of CBCT sys-
tems, particularly in general dental practices with limited
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access to oral radiology specialists. Moreover, combining the
clinician’s experience with the model’s ability to consistently
evaluate all tooth surfaces may further enhance diagnostic
quality compared to manual clinical workflows. The method
demonstrates strong performance across a wide range of
imaging conditions, including noise, metal-induced artifacts,
missing teeth, and anatomical variations. This robustness
ensures reliable results, particularly in complex cases, and
supports consistent application across clinical sites, users, and
patient populations. By enabling accurate tooth segmentation
and numbering at minimal cost, requiring no specialized
hardware, and publishing its source code, ToothSeg further
supports standardized documentation, longitudinal monitoring,
and clinical communication. Overall, ToothSeg contributes to
more efficient, reliable, and accessible dental imaging, laying
the groundwork for scalable, data-driven approaches in oral
and craniofacial healthcare.

Compared with prior hybrid segmentation-numbering ap-
proaches for CBCT, ToothSeg differs both from a technical and
clinical perspective. Previous methods often adopted multi-
stage pipelines involving separate networks for detection and
segmentation, which introduced error propagation and required
dataset-specific tuning. In contrast, ToothSeg integrates these
tasks into a dual-branch approach with self-correction steps,
enabling greater robustness across datasets and imaging condi-
tions. Clinically, earlier systems often required manual prepro-
cessing steps, such as cropping or isolating tooth regions be-
fore inference, whereas ToothSeg can process complete CBCT
scans fully automatically. This design not only streamlines
the clinical workflow but also facilitates interactive revisions
when needed. While a similar concept has been introduced
independently for intraoral scans [50], ToothSeg represents the
first application to volumetric data, validated across multiple
datasets and real-world imaging conditions.

Future research could extend the introduced method to the
segmentation of other anatomical structures in 3D medical
scans, where the combination of semantic and instance seg-
mentation could provide similar benefits. For example, individ-
ual vertebra segmentation and numbering could be a promising
application for our proposed approach [52]. Moreover, an
investigation into the time saved on manual revisions could
be conducted to compare the efficient use of commercially
available systems to ToothSeg.

Although ToothSeg demonstrates strong overall perfor-
mance, several limitations remain. The method relies on
both the semantic and instance segmentation branches, which
can compensate for each other’s errors to a certain extent.
However, when their predictions differ substantially, especially
in cases with low image quality or unusual anatomy, seg-
mentation errors such as missing or merged teeth may still
occur. Tooth numbering can also be uncertain in situations
involving extracted teeth, inclined molars, or root fragments,
where anatomical context is limited. The training dataset is
large and diverse, but certain clinically important groups, such
as children, patients with dental prostheses, or those with
advanced dental conditions, are not sufficiently represented.
Although there are indications that the method may generalize
to these cases, a reliable conclusion cannot be made without

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

further evaluation. Expanding the dataset to include more
of these cases, along with targeted data augmentation and
comprehensive validation, could improve generalizability and
extend the scope of application. Currently, scans with primary
teeth were not included, as too few were collected to be able to
develop an effective model. Thus, ToothSeg is not applicable
for pediatric patients. As this limitation is due to insufficient
data, future work can focus on incorporating adequate samples
from underrepresented groups to enable reliable extension of
the method or the training of specialized models.

Many methods for tooth instance segmentation and number-
ing in CBCT have been published in the literature. However,
due to a lack of source code, no validation on public datasets,
and the diverse technical implementations, only four studies
from 2021 to 2024 were replicated and included in the
comparison to ToothSeg. The comparison of ToothSeg to two
commercial systems was based on only seven CBCT scans,
hindering the generalizability of the findings. Furthermore,
current commercial systems provide segmentations of addi-
tional structures, such as the lower jaw and inferior alveolar
canals, whereas ToothSeg only predicts teeth. Nevertheless,
the approaches introduced by ToothSeg can be easily inte-
grated into these systems for more robust tooth segmentation.
Subsequently, a more comprehensive investigation to compare
the ToothSeg approaches to current commercial systems must
be undertaken to discover the benefits and limitations before
clinical integration. In addition, a prospective clinical valida-
tion is needed to ensure responsible use of the system, as well
as efficient integration into existing clinical workflows. Lastly,
several potential barriers for real-world deployment remain,
such as the cost and time for model inference, the integration
with existing systems, training of dental practitioners, and the
potentially lower accuracy for scans from underrepresented
patient populations.

In summary, ToothSeg represents a significant step forward
in fully automated tooth instance segmentation and numbering
for CBCT scans. Its self-correcting approach, applicability
across datasets, and its ability to handle varying imaging
conditions and challenging cases make it a robust and
reliable tool for clinical use. While there are areas for
refinement, ToothSeg offers a promising foundation for future
developments in both dental and broader medical imaging
applications. By releasing our source code and providing
validation on a public dataset, we hope to contribute to the
advancement of open science in dental imaging.

DATA AVAILABILITY STATEMENT

The in-house dataset of 1,282 CBCT scans cannot be
made public due to privacy concerns, but can be reasonably
requested from the corresponding author. The ToothFairy2
challenge dataset can be found at https://ditto.ing.
unimore.it/toothfairy2/. For this study, only the tooth
numbers were included as 32 foreground class labels.

The source code for this article is published at https:
//github.com/MIC-DKFZ/ToothSeg, including ToothSeg,
the reference methods, and all checkpoints trained on the
ToothFairy2 challenge dataset.
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