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Template matching
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Template matching
• Goal: find       in image

• Main challenge: What is a good 
similarity or distance measure 
between two patches?
– Correlation
– Zero-mean correlation
– Sum Square Difference
– Normalized Cross Correlation
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Matching with filters
• Goal: find       in image
• Method 0: filter the image with eye patch

Input Filtered Image
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What went wrong?

f = image
g = filter
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Matching with filters
• Goal: find       in image
• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image
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True detections

False 
detections

mean of f
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Matching with filters
• Goal: find       in image
• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image
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True detections



Short Master Machine Learning 2019

Matching with filters
• Goal: find       in image
• Method 2: SSD

Input 1- sqrt(SSD)
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,
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What’s the potential 
downside of SSD?



Short Master Machine Learning 2019

Matching with filters
• Goal: find       in image
• Method 3: Normalized cross-correlation
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Matching with filters
• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections
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Matching with filters
• Goal: find       in image
• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections
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Q: What is the best method to use?

A: Depends
• SSD: faster, sensitive to overall intensity
• Normalized cross-correlation: slower, invariant to local average intensity 

and contrast
• But really, neither of these baselines are representative of modern 

recognition.
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Q: What if we want to find larger or smaller eyes?

A: Image Pyramid
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Review of Sampling

Low-Pass 
Filtered ImageImage

Gaussian
Filter Sample Low-Res 

Image
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Gaussian pyramid

Source: Forsyth



Short Master Machine Learning 2019

Template Matching with Image Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps with non-maxima 
suppression
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Coarse-to-fine Image Registration

1. Compute Gaussian pyramid
2. Align with coarse pyramid
3. Successively align with finer 

pyramids
– Search smaller range

Why is this faster?

Are we guaranteed to get the same 
result?
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2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian
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Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: Lazebnik
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Computing Gaussian/Laplacian Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Can we reconstruct the original 
from the laplacian pyramid?
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Laplacian pyramid

Source: Forsyth
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Image representation

• Pixels: great for spatial resolution, poor access 
to frequency

• Fourier transform: great for frequency, not for 
spatial info

• Pyramids/filter banks: balance between spatial 
and frequency information



Short Master Machine Learning 2019

Major uses of image pyramids

• Compression

• Object detection
– Scale search
– Features

• Detecting stable interest points 

• Registration
– Course-to-fine
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Texture
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Representing Texture

Source: Forsyth
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Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
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Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/
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Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Short Master Machine Learning 2019

What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or 
markings
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How can we represent texture?

• Compute responses of blobs and edges at various orientations and 
scales
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Overcomplete representation: filter banks

LM Filter Bank

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Filter banks
• Process image with each filter and keep responses (or squared/abs 

responses)
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How can we represent texture?

• Measure responses of blobs and edges at various orientations and 
scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter 
responses
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Can you match the texture to the response?

Mean abs responses

Filters A

B

C

1

2

3
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Representing texture by mean abs response

Mean abs responses

Filters
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Representing texture
• Idea 2: take vectors of filter responses at each pixel and 

cluster them, then take histograms
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Interest points and corners
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Interest points
• Note: “interest points” = “keypoints”, also sometimes called 

“feature points”

• Many applications
– tracking: which points are good to track?
– recognition: find patches likely to tell us something about object 

category
– 3D reconstruction: find correspondences across different views
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Interest points
• Suppose you have to click on 

some point,  go away and come 
back after I deform the image, 
and click on the same points 
again.  
– Which points would you choose?

original

deformed
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Overview of Keypoint Matching

K. Grauman, B. Leibe

Af Bf

A1

A2 A3

Tffd BA <),(

1. Find a set of   
distinctive key-
points 

3. Extract and 
normalize the    
region content  

2. Define a region 
around each 
keypoint   

4. Compute a local 
descriptor from the 
normalized region

5. Match local 
descriptors



Short Master Machine Learning 2019

Goals for Keypoints

Detect points that are repeatable and distinctive
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Key trade-offs

More Repeatable More Points

A1

A2 A3

Detection of interest points

More Distinctive More Flexible

Description of patches

Robust to occlusion
Works with less texture

Minimize wrong matches Robust to expected variations
Maximize correct matches

Robust detection
Precise localization
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Invariant Local Features

•Image content is transformed into local feature coordinates that are 
invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors
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Choosing interest points

Where would you tell your 
friend to meet you?
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Choosing interest points

Where would you tell your 
friend to meet you?



Short Master Machine Learning 2019

Feature extraction: Corners

9300 Harris Corners Pkwy, Charlotte, NC

Slides from Rick Szeliski, Svetlana Lazebnik, and Kristin Grauman
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Corner Detection: Basic Idea
• We should easily recognize the point by looking through a 

small window
• Shifting a window in any direction should give a large change

in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Source: A. Efros
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Corner Detection: Mathematics
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Change in appearance of window w(x,y) 
for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)



Short Master Machine Learning 2019

Corner Detection: Mathematics

[ ]2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y= + + −∑

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) 
for the shift [u,v]:
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Corner Detection: Mathematics

[ ]2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y= + + −∑

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) 
for the shift [u,v]:
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Corner Detection: Mathematics

[ ]2

,
( , ) ( , ) ( , ) ( , )

x y
E u v w x y I x u y v I x y= + + −∑

We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

E(u, v)
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Corner Detection: Mathematics
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x y
E u v w x y I x u y v I x y= + + −∑

Local quadratic approximation of E(u,v) in the 
neighborhood of (0,0) is given by the second-order 
Taylor expansion:
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:
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Corner Detection: Mathematics
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Second-order Taylor expansion of E(u,v) about (0,0):
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Corner Detection: Mathematics
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Second-order Taylor expansion of E(u,v) about (0,0):
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Corner Detection: Mathematics
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Second-order Taylor expansion of E(u,v) about (0,0):
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Corner Detection: Mathematics
The quadratic approximation simplifies to

2

2
,

( , ) x x y

x y x y y

I I I
M w x y
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where M is a second moment matrix computed from image 
derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:
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The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

const][ =







v
u

Mvu
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

RRM 







= −

2

11

0
0
λ

λ

The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2
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Mvu

Diagonalization of M:
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Visualization of second moment matrices
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Visualization of second moment matrices
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Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues 
of M:
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Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR

α: constant (0.04 to 0.06)
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Harris corner detector

1) Compute M matrix for each image window to get their cornerness 
scores.

2) Find points whose surrounding window gave large corner 
response (f> threshold)

3) Take the points of local maxima, i.e., perform non-maximum 
suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Detector [Harris88]

• Second moment matrix


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64

1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(σI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det
trace

M
M

λ λ
λ λ

=
= +

(optionally, blur first)
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Harris Detector: Steps
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Harris Detector: Steps
Compute corner response R
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Harris Detector: Steps
Find points with large corner response: R>threshold
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Harris Detector: Steps
Take only the points of local maxima of R
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Harris Detector: Steps
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Invariance and covariance
• We want corner locations to be invariant to photometric 

transformations and covariant to geometric transformations
– Invariance: image is transformed and corner locations do not change
– Covariance: if we have two transformed versions of the same image, features 

should be detected in corresponding locations
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Affine intensity change

• Only derivatives are used => 
invariance to intensity shift I → I + b

• Intensity scaling: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I → a I + b
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Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
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Image rotation

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
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Scaling

All points will 
be classified 
as edges

Corner

Corner location is not covariant to scaling!
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Local descriptors
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Harris Detector [Harris88]

• Second moment matrix
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1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(σI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)

222222 )]()([)]([)()( yxyxyx IgIgIIgIgIg +−− α
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DIDIhar σσµασσµ

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det
trace

M
M

λ λ
λ λ

=
= +

(optionally, blur first)
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So far: can localize in x-y, but not scale
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Automatic Scale Selection

K. Grauman, B. Leibe

)),((      )),((
11

σσ ′′= xIfxIf
mm iiii 

How to find corresponding patch sizes?
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
)),((

1
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection
• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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What Is A Useful Signature Function?
• Difference-of-Gaussian = “blob” detector

K. Grauman, B. Leibe
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Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

- =
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DoG – Efficient Computation
• Computation in Gaussian scale pyramid

K. Grauman, B. Leibe

σ

Original image
4
1

2=σ

Sampling with
step σ4 =2

σ

σ

σ
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Find local maxima in position-scale space of Difference-of-
Gaussian

K. Grauman, B. Leibe

)()( σσ yyxx LL +

σ

σ2

σ3

σ4

σ5

⇒ List of
(x, y, s)
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Results: Difference-of-Gaussian

K. Grauman, B. Leibe
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T. Tuytelaars, B. Leibe

Orientation Normalization
• Compute orientation histogram
• Select dominant orientation
• Normalize: rotate to fixed orientation 

0 2π

[Lowe, SIFT, 1999]
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Image representations

• Templates
– Intensity, gradients, etc.

• Histograms
– Color, texture, SIFT descriptors, etc.
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Space Shuttle 
Cargo Bay

Image Representations: Histograms

Global histogram
• Represent distribution of features

– Color, texture, depth, …

Images from Dave Kauchak
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Image Representations: Histograms

• Joint histogram
– Requires lots of data
– Loss of resolution to 

avoid empty bins

Images from Dave Kauchak

Marginal histogram
• Requires independent features
• More data/bin than 

joint histogram

Histogram: Probability or count of data in each bin
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Computing histogram distance

Chi-squared Histogram matching distance
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Histogram intersection (assuming normalized histograms)

Cars found by color histogram matching using chi-squared
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What kind of things do we compute histograms of?

• Color

• Texture (filter banks or HOG over regions)

L*a*b* color space HSV color space 
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What kind of things do we compute histograms of?
• Histograms of oriented gradients

SIFT – Lowe IJCV 2004
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SIFT vector formation

• Computed on rotated and scaled version of 
window according to computed orientation & 
scale

– resample the window

• Based on gradients weighted by a Gaussian of 
variance half the window (for smooth falloff)
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SIFT vector formation

• 4x4 array of gradient orientation histogram 
weighted by magnitude

• 8 orientations x 4x4 array = 128 dimensions
• Motivation:  some sensitivity to spatial layout, but 

not too much.

showing only 2x2 here but is 4x4
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Ensure smoothness
• Gaussian weight 
• Trilinear interpolation 

– a given gradient contributes to 8 bins: 
4 in space times 2 in orientation
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Reduce effect of illumination

• 128-dim vector normalized to 1 
• Threshold gradient magnitudes to avoid 

excessive influence of high gradients
– after normalization, clamp gradients >0.2
– renormalize
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Local Descriptors
• Most features can be thought of as templates, histograms (counts), or 

combinations
• The ideal descriptor should be

– Robust
– Distinctive
– Compact
– Efficient

• Most available descriptors focus on edge/gradient information
– Capture texture information
– Color rarely used

K. Grauman, B. Leibe
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Local Descriptors: SURF

K. Grauman, B. Leibe

• Fast approximation of SIFT idea
 Efficient computation by 2D box filters 

& integral images
⇒ 6 times faster than SIFT

 Equivalent quality for object 
identification

[Bay, ECCV’06], [Cornelis, CVGPU’08]

• GPU implementation available
 Feature extraction @ 200Hz

(detector + descriptor, 640×480 img)
 http://www.vision.ee.ethz.ch/~surf



Short Master Machine Learning 2019

Choosing a descriptor

• Again, need not stick to one

• For object instance recognition or stitching, SIFT or variant is a good 
choice
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Things to remember

• Keypoint detection: repeatable 
and distinctive
– Corners, blobs, stable regions
– Harris, DoG

• Descriptors: robust and 
selective
– spatial histograms of orientation
– SIFT
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