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Images and color
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Sensor Array

CMOS sensor
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Sampling and Quantization
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Images
• A (digital) image is defined by integrating and sampling continuous 

(analog) data in a spatial domain.
• It consists of a rectangular array of pixels 𝑥𝑥,𝑦𝑦,𝑢𝑢 , each combining a 

location 𝑥𝑥,𝑦𝑦 ∈ ℤ2 and a value 𝑢𝑢, the sample at location 𝑥𝑥,𝑦𝑦 .
• An image I with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 is defined on a rectangular set

Ω = 𝑥𝑥,𝑦𝑦 : 1 ≤ 𝑥𝑥 ≤ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∧ 1 ≤ 𝑦𝑦 ≤ 𝑁𝑁𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 ⊂ ℤ2

containing the pixel locations.
• It is common practice to have x increase from left to right and y increase 

from top to bottom, which is contrary to the classical Cartesian practice.
• The sample u can be a scalar value, which usually represents light 

intensity, or a vector value, that is the intensity of different light spectra.
• The value can be binary (0 or 1) in case of black and white images, or an 

integer value from 0 to 2𝑛𝑛, when images have n bits per pixel (bpp). A 
typical graylevel image has 256 levels (8 bpp), but current digital 
cameras can deliver values with 12, 14 or even 16 bpp.
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Color spaces
• How can we represent color?

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg
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RGB color space
• Color representation is usually done with 3 color channels representing Red, 

Green and Blue wavelengths.

• Typically we use truecolor images, which have three 8 bit values for every pixel, 
used to drive the monitor display.

• Without other information, it’s logical to assume that the values have been 
gamma corrected, meaning that a power low transformation has been applied to 
every value.
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Color spaces for transmission
• When created, the color video signal had to be seen also by black and white TVs, 

so the color components were separated from the luminance one.
• Many standard were proposed, between which we just remember the following:

– YIQ (NTSC)
– YUV (PAL)
– YCC (Kodak PhotoCD)
– YCBCR (Digital Video, JPEG, MPEG)

• YIQ and YUV were designed for analogic signals, while in the digital domain the 
most important one is currently YCBCR.

• The conversion formulas from gamma corrected RGB values in the range [0..255] 
are:

• These are the ones used in the JPEG File Interchange Format, the one we use 
every day for storing digital pictures.
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Example of YCBCR

• In this example it’s possible to see the effect of the YCBCR

decomposition.
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Graphics oriented color spaces
• In addition to the RGB standard, other color spaces used to introduce 

some kind of numerical specification of color.
• This kind of transformation is useful when dealing with an interface with 

the human operator.
• These color spaces have no claim of accuracy and are obtained as a 

transformation from an undefined RGB color space, contrary to other 
professional colorimetry standards.

• Their representation is based on the concept of luminance and 
chrominance (A.H. Munsell)

• All characterized by two basic concepts:
– H = Hue
– S = Saturation Hue

Saturation
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HSV color space
• HSV (hue, saturation, value): H is an angle between 0 and 360 degrees, 

S and V are values in the range [0,1]. This is a transformation of the RGB 
color space with 0 ≤ R,G,B ≤ 1.

• For every pixel we define

• The coordinates are given by the following equations:
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HLS color space
• It’s just a variation of the HSV color system where “value” is substituted 

with “lightness”:

• We need to change the definition of S accordingly:
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• The pyramidal structure of HSV is 
doubled as shown here.

• This is the color system used in the 
standard color selection dialog box 
on Windows systems.
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Color Sensing in Camera (RGB)
• 3-chip vs. 1-chip: quality vs. cost
• Why more green?

Why 3 colors?

Slide by Steve Seitz



Short Master Machine Learning 2019

Practical Color Sensing: Bayer Grid

• Estimate RGB
at ‘G’ cells from 
neighboring values

Slide by Steve Seitz
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Color Image
R

G

B
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If you had to choose, would you rather go without 
luminance or chrominance?
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If you had to choose, would you rather go without 
luminance or chrominance?
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Most information in intensity

Only color shown – constant intensity
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Most information in intensity

Only intensity shown – constant color
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Most information in intensity

Original image
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Image processing point operators
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Image processing operators
1. Point operators: the value of each pixel of the resulting image depends 

only on the original pixel in the same image’s spatial position (e.g. 
thresholding)

𝐼𝐼′ 𝑥𝑥,𝑦𝑦 = ℎ 𝐼𝐼 𝑥𝑥,𝑦𝑦 or in vectorial form 𝐼𝐼𝐼(𝒙𝒙) = ℎ 𝐼𝐼 𝒙𝒙

2. Local (Neighborhood) operators: the value of each pixel depends on 
the original pixel in the same image’s position and on those in a local 
Neighborhood (e.g. filters)

𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) = ℎ 𝐼𝐼 𝑥𝑥, 𝑦𝑦 ,ℵ 𝐼𝐼 𝑥𝑥,𝑦𝑦

3. Global operators: the value of each pixel depends on all the pixels of 
the original image (e.g. Fourier transform)

𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) = ℎ �𝐼𝐼 𝑥𝑥,𝑦𝑦



Short Master Machine Learning 2019

Linear point operator
• Punctual (point) operators can be applied on one or more images: 

• 𝑔𝑔(𝒙𝒙) = ℎ(𝑓𝑓(𝒙𝒙)) or g(𝒙𝒙) = ℎ 𝑓𝑓0 𝒙𝒙 ,𝑓𝑓1 𝒙𝒙 , … , 𝑓𝑓𝑛𝑛 𝒙𝒙
• 𝒙𝒙 is defined on the domain of the function/image; for the image, it is the 

pixel location, represented by the point coordinates in the 2D plane 𝒙𝒙 =
𝑖𝑖, 𝑗𝑗 .

• h() is the operator which transforms an image to another image after an 
image processing operation

• If the h() transformation is linear it can be written as  
𝑔𝑔 𝒙𝒙 = ℎ 𝑓𝑓 𝒙𝒙 = 𝑠𝑠 ⋅ 𝑓𝑓 𝒙𝒙 + 𝑘𝑘

• s is the scale factor, often called also gain or contrast
• k is the offset constant often called also bias or brightness
• Linear operators obey the superposition principle, i.e. ℎ(𝑓𝑓0 + 𝑓𝑓1) =

ℎ(𝑓𝑓0) + ℎ(𝑓𝑓1)
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Saturated arithmetic

• Be careful in discretized computer world: in integer arithmetic we 
approximate to the nearest integer. 

• It’s also common to use saturated arithmetic:
– 𝐼𝐼𝐼 𝑥𝑥 = 0if 𝑠𝑠 ⋅ 𝐼𝐼 𝑥𝑥 + 𝑘𝑘 < 0
– 𝐼𝐼𝐼 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚 if 𝑠𝑠 ⋅ 𝐼𝐼 𝑥𝑥 + 𝑘𝑘 > 𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚

• maxrange is often 255.
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Luminance variation
• If the image has low contrast it’s possible to improve the visibility of 

details, by changing the scale factor (e.g. a 10% more):
𝑠𝑠 = 1.1, 𝑘𝑘 = 0

• Sometimes white on black is
poorly intelligible, so changing it
to black on white is better. This is
called the negative operator:

𝑠𝑠 = −1, 𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚
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• The gray level histogram is a vector with as many 
elements (bins) as the number of gray levels; 

• The value of each bin is the accumulation of the number 
of pixels which, in that image, assume the correspondent 
gray level;

• The histogram gives important information for image 
processing, especially for contrast enhancement and 
segmentation.

Histogram
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Histogram

• Histogram can be viewed as a discrete approximation of a
probability distribution

𝐻𝐻𝐼𝐼 𝑖𝑖 = ℎ𝑖𝑖 = #{𝒙𝒙: 𝐼𝐼(𝒙𝒙) = 𝑖𝑖}

where # means “the number of elements in the following set”, and 
0 ≤ 𝑖𝑖 ≤ 𝐿𝐿, with 𝐿𝐿 the number of possible levels in the image.

• In order to treat the bin values as the probability of occurrence of a 
gray level in the image, the normalized version of histogram must 
be used (the sum of all bins shall be equal to 1):

�
𝑗𝑗=0

𝐿𝐿−1

𝑝𝑝𝐼𝐼 𝑗𝑗 = 1
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Normalized histogram
• Consider a discrete grayscale image I(x) and let ni be the number of 

occurrences of gray level i. 
• The probability of an occurrence of a pixel of level i in the image is

pI(𝑖𝑖) = # 𝑥𝑥: 𝐼𝐼 𝑥𝑥 =𝑖𝑖
𝑛𝑛

0 ≤ 𝑖𝑖 ≤ 𝐿𝐿

• L being the total number of gray levels in the image, n being the total 
number of pixels in the image, and p(i) being in fact the image's 
histogram for pixel value i, normalized to [0,1].

• the normalized histogram is the probability distribution
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HISTOGRAM
• We can compute:

– Mean
– Standard Deviation

• Histogram is fundamental to
1) Measuring the distribution of a feature in the image (gray level, color, 

motion, gradient…)
2) Verifying the mono-multimodality of an image for segmentation
3) Implementing tools for imaging such as histogram equalization etc

Similar mean
different sd
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0   min1                             max1

Contrast-stretching
Contrast stretching expansion for gray level with a dynamic range given 

the histogram 

0          min            max

for each pixel p it computes 𝑂𝑂(p):

ScaleFactor = (max1 - min1)/(max - min);
if (I(p) <= min)

O(p) = min1;
else if (I(p) >= max)

O(p) = max1; 
else

O(p) = (I(p) - min) * ScaleFactor + min1;

again 𝑂𝑂(𝒑𝒑) = 𝑓𝑓(𝐼𝐼(𝒑𝒑)) = 𝑠𝑠 𝐼𝐼(𝒑𝒑) + 𝑘𝑘

h(x)

h’(x)
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Examples
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Histogram Equalization
• To improve the appearance of the image for visual enhancement, 

the histogram can provide useful clues for automatic 
modifications.

• One solution is equalization, i.e. obtaining a histogram such that 
all values are used equally, or 𝐻𝐻 𝑖𝑖 = 𝐾𝐾.

• We would like to create a transformation from image 𝑥𝑥 to image 𝑦𝑦, 
𝑦𝑦 = 𝑇𝑇(𝑥𝑥) to produce a new image y with a flat histogram, such 
that its cumulative density function cdf is a straight across the 
value range, i.e.

𝑐𝑐𝑐𝑐𝑓𝑓𝑥𝑥 𝑖𝑖 ≝�
𝑗𝑗=0

𝑖𝑖

𝑝𝑝𝑥𝑥 𝑗𝑗 𝑐𝑐𝑐𝑐𝑓𝑓𝑦𝑦 𝑖𝑖 = 𝑖𝑖𝐾𝐾

• Such transform is given by:
𝑦𝑦 𝑝𝑝 = 𝑇𝑇 𝑥𝑥 𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑓𝑓𝑥𝑥 𝑥𝑥 𝑝𝑝

• This maps the levels into the range [𝑚𝑚, 1], with 𝑚𝑚 the probability of 
the minimum value of the image, so we need to contrast stretch to 
the desired range.
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Histogram Equalization

h ch eh ech
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Thresholding
• Thresholding: it consists in the selection of a value T of brightness 

(intensity) capable of dividing the image into 2 regions of pixels with 
intensity greater or less than T .

• It is an operator which transforms a grey level image into a binary image 
(thresholding-based binarization)

• Given an image I(x), with x=(i,j), it is transformed to O(x) 
• 𝑂𝑂(𝒙𝒙) = 𝑇𝑇ℎ𝑚𝑚𝑚𝑚𝑠𝑠ℎ(𝐼𝐼(𝒙𝒙),𝑇𝑇)

if (I(i,j) >= T)
O(i,j) = 1; 

else 
O(i,j) = 0; 

Global threshold if 𝑇𝑇 = 𝐾𝐾 or 𝑇𝑇 = 𝑓𝑓 𝐼𝐼
Adaptive threshold if 𝑇𝑇 = 𝑓𝑓(𝐼𝐼, 𝐱𝐱), i.e. if it depends on a 

window 𝑊𝑊 𝐱𝐱 around the current position.
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Automatic thresholding
• How to define T automatically?:

• Without knowing the objects of interest let’s give the computer the 
chance of seeing, measuring the statistic proprieties of the histogram

• Hp: the points of the target object have a grey level different from the 
background gray level (bimodal histogram)
 T must divide the two modes
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Example
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Otsu thresholding
• Histogram is regarded as a probability distribution:

𝑝𝑝𝑖𝑖 =
𝑚𝑚𝑖𝑖
𝑁𝑁

• If we threshold at level 𝑘𝑘, we are making two classes 𝐶𝐶0 and 𝐶𝐶1, where 𝐶𝐶0
has all pixels with levels from 1 to 𝑘𝑘, and 𝐶𝐶1 from 𝑘𝑘 + 1 to 𝐿𝐿.

• We can now compute the zeroth- and first-order cumulative moments of 
the histogram

𝜔𝜔 𝑘𝑘 ≝�
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖

𝜇𝜇 𝑘𝑘 ≝�
𝑖𝑖=1

𝑘𝑘

𝑖𝑖𝑝𝑝𝑖𝑖

• and from these, for every class, the probability of occurrence and the 
mean value.
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Otsu thresholding
• Probability of occurrence

𝜔𝜔0 ≝ 𝑃𝑃𝑚𝑚 𝐶𝐶0 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖 = 𝜔𝜔 𝑘𝑘

𝜔𝜔1 ≝ 𝑃𝑃𝑚𝑚 𝐶𝐶1 = �
𝑖𝑖=𝑘𝑘+1

𝐿𝐿

𝑝𝑝𝑖𝑖 = 1 − 𝜔𝜔 𝑘𝑘

• Mean value

𝜇𝜇0 ≝�
𝑖𝑖=1

𝑘𝑘

𝑖𝑖𝑃𝑃𝑚𝑚 𝑖𝑖|𝐶𝐶0 = �
𝑖𝑖=1

𝑘𝑘
𝑖𝑖𝑝𝑝𝑖𝑖
𝜔𝜔0

=
1
𝜔𝜔0

�
𝑖𝑖=1

𝑘𝑘

𝑖𝑖𝑝𝑝𝑖𝑖 =
𝜇𝜇 𝑘𝑘
𝜔𝜔 𝑘𝑘

𝜇𝜇1 ≝ �
𝑖𝑖=𝑘𝑘+1

𝐿𝐿

𝑖𝑖𝑃𝑃𝑚𝑚 𝑖𝑖|𝐶𝐶1 = �
𝑖𝑖=𝑘𝑘+1

𝐿𝐿
𝑖𝑖𝑝𝑝𝑖𝑖
𝜔𝜔1

=
𝜇𝜇 𝐿𝐿 − 𝜇𝜇 𝑘𝑘

1 − 𝜔𝜔 𝑘𝑘

• Let’s call 𝜇𝜇 𝐿𝐿 = 𝜇𝜇𝑇𝑇, and stress that 
𝜔𝜔0𝜇𝜇0 + 𝜔𝜔1𝜇𝜇1 = 𝜇𝜇𝑇𝑇

𝜔𝜔0 + 𝜔𝜔1 = 1
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Otsu thresholding
• The class variances are given by

𝜎𝜎02 ≝�
𝑖𝑖=1

𝑘𝑘

𝑖𝑖 − 𝜇𝜇0 2𝑃𝑃𝑚𝑚 𝑖𝑖|𝐶𝐶0 = �
𝑖𝑖=1

𝑘𝑘

𝑖𝑖 − 𝜇𝜇0 2 𝑝𝑝𝑖𝑖
𝜔𝜔0

𝜎𝜎12 ≝ �
𝑖𝑖=𝑘𝑘+1

𝐿𝐿

𝑖𝑖 − 𝜇𝜇1 2𝑃𝑃𝑚𝑚 𝑖𝑖|𝐶𝐶1 = �
𝑖𝑖=𝑘𝑘+1

𝐿𝐿

𝑖𝑖 − 𝜇𝜇1 2 𝑝𝑝𝑖𝑖
𝜔𝜔1

• With this we characterized the distributions, and now we need to 
measure how different/separated they are. We can either check how 
compact each part is (low within class  variance, 𝜎𝜎𝑊𝑊2 ), or how separated 
they are (high between class variance, 𝜎𝜎𝐵𝐵2). Formally

𝜎𝜎𝑊𝑊2 ≝ 𝜔𝜔0𝜎𝜎02 + 𝜔𝜔1𝜎𝜎12
𝜎𝜎𝐵𝐵2 ≝ 𝜔𝜔0 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 2 + 𝜔𝜔1 𝜇𝜇1 − 𝜇𝜇𝑇𝑇 2

• We want both compactness and separation, so we will maximize

𝜆𝜆 =
𝜎𝜎𝐵𝐵2

𝜎𝜎𝑊𝑊2
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Otsu thresholding
• Maximizing 𝜆𝜆 is not so nice, because we need, for every 𝑘𝑘 to first 

compute the means and then compute the variances.
• But two observations greatly simplify the task. The first is that if we define 

𝜎𝜎𝑇𝑇2 ≝�
𝑖𝑖=1

𝐿𝐿

𝑖𝑖 − 𝜇𝜇𝑇𝑇 2𝑝𝑝𝑖𝑖

• the following relation holds:
𝜎𝜎𝑊𝑊2 + 𝜎𝜎𝐵𝐵2 = 𝜎𝜎𝑇𝑇2

• So we can rewrite 𝜆𝜆 as follows:

𝜆𝜆 =
𝜎𝜎𝐵𝐵2

𝜎𝜎𝑊𝑊2
=

𝜎𝜎𝐵𝐵2

𝜎𝜎𝑇𝑇2 − 𝜎𝜎𝐵𝐵2
=

1
𝜎𝜎𝑇𝑇2
𝜎𝜎𝐵𝐵2

− 1

• Maximizing 𝜆𝜆 is equivalent to minimize 𝜎𝜎𝑇𝑇
2

𝜎𝜎𝐵𝐵
2, but the numerator is constant, 

so the same result is obtained just by maximizing 𝝈𝝈𝑩𝑩𝟐𝟐 .
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Otsu thresholding
• Now we can concentrate on 𝜎𝜎𝐵𝐵2, in order to get the simplest possible 

version.
𝜎𝜎𝐵𝐵2 = 𝜔𝜔0 𝜇𝜇0 − 𝜇𝜇𝑇𝑇 2 + 𝜔𝜔1 𝜇𝜇1 − 𝜇𝜇𝑇𝑇 2 =

= 𝜔𝜔0 𝜇𝜇0 − 𝜔𝜔0𝜇𝜇0 − 𝜔𝜔1𝜇𝜇1 2 + 𝜔𝜔1 𝜇𝜇1 − 𝜔𝜔0𝜇𝜇0 − 𝜔𝜔1𝜇𝜇1 2 =
= 𝜔𝜔0 1 − 𝜔𝜔0 𝜇𝜇0 − 𝜔𝜔1𝜇𝜇1 2 + 𝜔𝜔1 1 − 𝜔𝜔1 𝜇𝜇1 − 𝜔𝜔0𝜇𝜇0 2 =

= 𝜔𝜔0 𝜔𝜔1𝜇𝜇0 − 𝜔𝜔1𝜇𝜇1 2 + 𝜔𝜔1 𝜔𝜔0𝜇𝜇1 − 𝜔𝜔0𝜇𝜇0 2 =
= 𝜔𝜔0𝜔𝜔12 𝜇𝜇0 − 𝜇𝜇1 2 + 𝜔𝜔1𝜔𝜔02 𝜇𝜇1 − 𝜇𝜇0 2 =

= 𝜔𝜔0𝜔𝜔1 𝜇𝜇0 − 𝜇𝜇1 2 𝜔𝜔1 + 𝜔𝜔0 =
= 𝜔𝜔0𝜔𝜔1 𝜇𝜇0 − 𝜇𝜇1 2

• So the final quantity to be maximized is given by:

𝜎𝜎𝐵𝐵2 =
𝜇𝜇𝑇𝑇𝜔𝜔 𝑘𝑘 − 𝜇𝜇 𝑘𝑘 2

𝜔𝜔 𝑘𝑘 1 − 𝜔𝜔 𝑘𝑘

• The maximization is done by just trying all possible values of 𝑘𝑘.
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Example
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Example
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Adaptive thresholding

• Instead of computing 𝑇𝑇 on the whole image, compute 𝑇𝑇 𝑖𝑖, 𝑗𝑗 for 
every point 𝑖𝑖, 𝑗𝑗 only in a window 𝑊𝑊𝑖𝑖,𝑗𝑗 of side 2 × 𝑚𝑚 + 1.

• Many simple algorithms:
𝑇𝑇 𝑖𝑖, 𝑗𝑗 = mean 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑇𝑇 𝑖𝑖, 𝑗𝑗 = median 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑇𝑇 𝑖𝑖, 𝑗𝑗 = ⁄max 𝑊𝑊𝑖𝑖,𝑗𝑗 − min 𝑊𝑊𝑖𝑖,𝑗𝑗 2

• Nice results can be obtained by using a variation of the previous 
ones, lowering them with a constant computed with some global 
method:

𝑇𝑇 𝑖𝑖, 𝑗𝑗 = mean 𝑊𝑊𝑖𝑖,𝑗𝑗 − 𝐶𝐶

• The constant may also be a user tuned threshold.
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Example

Original image
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Example

Otsu thresholding
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Example

Adaptive thresholding (mean)
𝑚𝑚 = 10,𝐶𝐶 = 15
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Prof. Costantino Grana

Neighborhood operators
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Linear filtering

• Given an initial image F, linear filtering consists in a process which gives  in 
output a new image  array G , where  each location is a weighted sum of the 
original pixel values from the locations surrounding the corresponding 
location in the image, using the same set of weights each time. 

• The result is 
• shift-invariant — meaning that the value depends on the pattern in an image 

neighborhood, rather than the position of the neighborhood — and 
• linear — meaning that the output for the sum of two images is the same as 

the sum of the outputs obtained for the images separately.
• The pattern of weights used for a linear filter is usually referred to as the 

kernel of the filter.
• The process of applying the filter is usually referred to as correlation or 

convolution (slight difference, but in practice equivalent).

• Depending on the kernel  the linear filtering can have effects ad a low pass, 
high-pass filter etc.
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Correlation and convolution
• Local operators or neighborhood operators can be used as a linear filter.
• Given an image transformation H: FG
• A linear filter on the image F produces the output G as the weighted sum of the 

input pixels, weighted with a kernel or mask H that are the filter coefficients

𝑔𝑔 𝑖𝑖, 𝑗𝑗 = �
𝑘𝑘,𝑐𝑐

𝑓𝑓 𝑖𝑖 + 𝑘𝑘, 𝑗𝑗 + 𝑚𝑚 ℎ(𝑘𝑘, 𝑚𝑚)

• It is called cross-correlation.
• Often we uses its variant with the – instead of + that is called convolution,

borrowed by signal processing

𝑔𝑔 𝑖𝑖, 𝑗𝑗 = �
𝑘𝑘,𝑐𝑐

𝑓𝑓 𝑖𝑖 − 𝑘𝑘, 𝑗𝑗 − 𝑚𝑚 ℎ(𝑘𝑘, 𝑚𝑚) = �
𝑘𝑘,𝑐𝑐

𝑓𝑓 𝑘𝑘, 𝑚𝑚 ℎ(𝑖𝑖 − 𝑘𝑘, 𝑗𝑗 − 𝑚𝑚)

• They are normally identical in CV since kernel coefficients are usually symmetric.
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example
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Linear filters properties
• linearity:  ℎ° 𝑓𝑓𝑐𝑐 + 𝑓𝑓1 = ℎ°𝑓𝑓𝑐𝑐 + ℎ°𝑓𝑓1
• scalarity:  h° (𝑘𝑘𝑓𝑓) = 𝑘𝑘ℎ°𝑓𝑓
• shift invariance:  the answer to a shifted stimulus is the shift of the answer to the 

stimulus
– 𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑓𝑓(𝑖𝑖 + 𝑘𝑘, 𝑗𝑗 + 𝑚𝑚) ↔ (ℎ°𝑔𝑔)(𝑖𝑖, 𝑗𝑗) = (ℎ°𝑓𝑓) 𝑖𝑖 + 𝑘𝑘, 𝑗𝑗 + 𝑚𝑚

• The output value depends on the pixel value and maybe its neighborhood but not 
on its position in the image 

• Not only for punctual operators but also for neighborhood or local 
operators

• If shift invariant linear systems We can apply convolution.
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Padding
• What happens when the filter kernel goes outside the image borders?

• Many possibilities of padding, or extension mode in an are where the correct 
information is not available:
• Zero padding: insert 0 pixels
• Constant padding insert a specific color in the border
• Clamp to edge, repeat the edge value
• Wrap : loop around  in a toroidal configuration
• Mirror: reflect the edge
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Noise reduction: smoothing
• Mean filter (moving average filter) (smoothing or blurring)
The simple low pass blurring is given by averaging the pixel with the neighbor ones. 

It corresponds to convolving the image with a kernel of 1 values and then 
scaling . The size of the filter depends on the size fo the noise frequency w.r.t. 
the signal spatial frequency 

1/9 1/9 1/9
1/9 1/9 1/9

1/9 1/9 1/9         3 x 3 kernel
cons: it limits also the information with the same spatial frequency ( blurring) , does 

not work on salt-pepper noise

Gaussian noise Filter 3 x 3 Filter 5 x 5



Short Master Machine Learning 2019

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0
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0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz
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Gaussian Filter
• The best filter to smooth Gaussian noise
• Is an isotropic mask given by a Gaussian function with zero average

value and a given standard deviation, convolved with the image

• In 2D
• Gaussian 13 x 13

22 2/
2
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Gaussian Filter
The filter must be discretized, choosing k, that is the size of the filter, and the 

standard deviation:
Mask k x k , k about 5 σ ( cover 98.7%)
e.g. σ=1 k=5
h = 

0.0029    0.0131    0.0215    0.0131    0.0029
0.0131    0.0585    0.0965    0.0585    0.0131
0.0215    0.0965    0.1592    0.0965    0.0215
0.0131    0.0585    0.0965    0.0585    0.0131
0.0029    0.0131    0.0215    0.0131    0.0029

• Best values
• σ=1 7 X 7
• σ=2 13 X 13
• σ=3 19 X 19
• It is computational severe but now is always adopted
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Smoothing: Gaussian filter

• The weights are samples of the Gaussian function

mask size:

σ = 1.4
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The simplest

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

This kernel is an approximation 
of a Gaussian function:
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Smoothing: Gaussian

•As σ increases, more samples must be obtained to represent 
the Gaussian function accurately.

• Therefore, σ controls the amount of smoothing 

σ = 3
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Examples

• σ=1, σ=2, σ=5
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comments
• We must select
• Size of kernel or mask:  Gaussian function has infinite support, but discrete filters 

use finite kernels
• Eg 10x10 vs 30x30 with sigma=5

• Variance of Gaussian: determines extent of smoothing
• 30x30 with sigma=2
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example
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Averaging vs Gaussian Smoothing

Averaging

Gaussian
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Gaussian Smoothing

http://www.michaelbach.de/ot/cog_blureffects/index.html

The Gaussian smoothing is provided by our 

Vision system

In our eyes, by lens, depending 

on the distance of observation

by Charles Allen Gillbert

All is Vanity 

http://www.michaelbach.de/ot/cog_blureffects/index.html
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Gaussian Smoothing
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Predict the filtered outputs

* = ?
000
100
000

* = ?

111
111
111

000
020
000 -* = ?

Thanks to T.Darrel

111
111
111

filter

?
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Practice with linear filters

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences with local 
average

Source: D. Lowe



Short Master Machine Learning 2019

High pass filter
Using this mask of convolution

-1 -1 -1
-1 9 -1
-1 -1 -1

A high pass filter is achieved for sharpening
• Useful for emphasizing transitions in image intensity (e.g., edges).
• Note that the response of high-pass filtering might be negative.
• Values must be re-mapped to [0, 255]



Short Master Machine Learning 2019

sharpen
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Median filter
• Median filter NON LINEAR filter useful for impulsive noise
• The output pixel is the median value in the neighborhood

120 123 123 130 128
121 123 128 130 128
120 125 146 132 126 
129 120 123 122 130
120 123 123 120 129

120 122 123 123 125 128 130 132 146

120 123 123 130 128
121 123 128 130 128
120 125 125 132 126 
129 120 123 122 130
120 123 123 120 129
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Median filter
• Discard the outliers: the median filter for salt and pepper noise

• This implementation will be slow. Specialized algorithms exist to speed up the 
process.

1)Consider a 2D neighborhood
2)Order it
3)Choose the central value
4)Substitute pixel with the median one
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Bilateral filters

• Bilateral filters combine a weighted filter 
kernel with outlier rejection

• -Every sample is replaced by a 
weighted average of its neighbors.

• These weights reflect two forces
– How close are the neighbor and the 

center sample, so that larger weight 
to closer samples,

– How similar are the neighbor and the 
center sample – larger weight to 
similar samples.

• All the weights should be normalized to 
preserve the local mean.

bilateral
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Bilateral filter
• Improved weighted filter
• In a neighborhood of f(i,j) the result g(i,j) is a normalized weighted sum

𝑔𝑔 𝑖𝑖, 𝑗𝑗 =
∑𝑘𝑘,𝑐𝑐 𝑓𝑓 𝑘𝑘, 𝑚𝑚 𝑤𝑤(𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑚𝑚)

∑𝑘𝑘,𝑐𝑐 𝑤𝑤(𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑚𝑚)
• Weights are given by 

𝑤𝑤 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑚𝑚 = exp −
𝑖𝑖 − 𝑘𝑘 2 + 𝑗𝑗 − 𝑚𝑚 2

2𝜎𝜎𝑑𝑑2
−

𝑓𝑓 𝑖𝑖, 𝑗𝑗 − 𝑓𝑓 𝑘𝑘, 𝑚𝑚 2

2𝜎𝜎𝑟𝑟2

• In color the range kernel is a vector distance

Domain kernel

Range  kernel
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Bilateral filter
• Remove texture


Bilateral Filtering for Gray and Color Images
www.cs.duke.edu/~tomasi/.../tomasiIccv98.pdf

http://www.cs.duke.edu/%7Etomasi/papers/tomasi/tomasiIccv98.pdf
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Prof. Costantino Grana

Edge detectors
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Contours
• We perceive  shape by strong luminance variation
• We recognize objects by contours

• How can we compute contours?
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Borders
• An important vision task: border detection to
• Convert an image in a shape representation
• Convert a 2D image into a set of curves
• Extract salient features of the scene more compact than pixels
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Boundary detection
• Task easy for human (but often subjective) but a challenging problem for 

machine
• Edges occur at boundary between homogeneous region, but often 

segmentation is difficult so that edge detection is provided using local 
variation
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Edge and borders
• Many physical causes for edges:

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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EDGE
• EDGE: is a local proprety of a pixel and its neighborhood to have a 

«rapid intensity variation» ( or it is the location where the rapid intensity 
variation occurs)

• Edge  it is a VECTOR with a magnitude and a direction
• It depends on the luminance variation: We can compute this luminance 

variation  as a gradient . The edge has the direction perpendicular to the 
gradient direction 

• The BORDER  is a propretey af a Region while Edge is a local propriety
• We can compute borders by selecting the high edges

Gradient
direction

Edge direction
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Edge detection
• Edge: point or set of points where there is a «high» gradient.

• Border  detection:
1. Use of an edge detection operator (edge detector)
2. Selection of strong edges with some given criteria
3. Linking the edge

• Problem: noise creates many false edge points
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Edge detection

• Many algorithms

1. Methods based on first derivative computation
– gradient  masks (Roberts, Sobel..)

2. Regularization techniques using filtering and optimal masks  
– Canny
– Sarkar-Bowyler
– Marr-Hildreth

3. Border following local techniques based on neighborhood operation of 
labeled edges 
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Edge: ideal case

F(x)                                                  F

0                                                                                        

x

x (x)

x 0F xx (x)

Luminosity

luminosity
gradient

second derivative 
Laplacian

Edge direction 
Gradient
direction

Change is measured by derivative in 1D
Biggest change, derivative has maximum magnitude
Or 2nd derivative is zero.
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Image gradient
• The gradient of a 2D continuous  function f(x,y) : 

The gradient direction is given by:

the direction of the edge is perpendicular to the gradient direction
The edge strength is given by the gradient magnitude
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Discrete detectors
• In one dimension: Three forms are commonly considered: forward, 

backward, and central differences.
• A forward difference is an expression of the form
• A backward difference uses the function values at x and x − h, instead 

of the values at x + h and x:
• The central difference is given by

• We can compute central difference given the function f(x,y) and the 
discretization f(r,c) 

• Corresponding to the convolution masks:

0 -1 0      0 0 0
0  0 0      -1 0 1
0  1 0       0 0 0 

( ) ( )crfcrf
r

crf ,1,1),(
−−+=

∂
∂

( ) ( )1,1,),(
−−+= crfcrf

c
crf

∂
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The Sobel Operators

• Better approximations of the gradients exist, but the most 
commonly used is called Sobel operator; it uses a first central 
derivative , smoothed in the opposite direction
– The Sobel operators below are commonly used

– Still better : Frei and Chen operator

-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

-1 -√2-1    -1  0  1
0  0  0    -√2 0  √2
1  √2 1    -1  0  1

(e)
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Comparing Edge Operators

-1 0 1
-1 0 1
-1 0 1

1 1 1
0 0 0
-1 -1 -1

Gradient:

Roberts (2 x 2):

Prewitt (3 x 3):

Sobel (3 x 3)

Sobel (5 x 5): -1 -2 0 2 1

-2 -3 0 3 2

-3 -5 0 5 3

-2 -3 0 3 2

-1 -2 0 2 1

1 2 3 2 1

2 3 5 3 2

0 0 0 0 0

-2 -3 -5 -3 -2

-1 -2 -3 -2 -1

0 1
-1 0

1 0
0 -1

Good Localization
Noise Sensitive
Poor Detection

Poor Localization
Less Noise Sensitive
Good Detection

-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1
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Edge detection with SOBEL

SOBELx
Sx

SOBELy
Sy

[ ] [ ]22 SySxG +=

For each point :

G>Th ?

Edge=1

Edge=0
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Examples

Original Prewitt, Roberts, Roberts, 
Th = 100 Th = 100 Th = 50 

Sobel,                Frei and Chen 
Th = 100 Th = 100
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Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge? Using the first derivative is very sensitive to noise
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smoothing
• Finite difference filters respond strongly to  noise
• • Image noise results in pixels that look very different from their neighbors
• • Generally, the larger the noise the stronger the response

• What is to be done?
• • Smoothing the image should help, by forcing pixels different to their 

neighbors (=noise pixels?) to look more like neighbors

• Smoothing and then derivate
• Derivate of a smoothing filter
• Derivate of a gaussian DOG
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Edges: effect of orientation
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CRITERIA (Canny)
A good operator should have three crteria
1) GOOD DETECTION
search for low error probability in recognizing true edges and recognizing

false edges. If non-edge is considered noise, both probabilities are
monotonic descent function with the SNR, this criterium corresponds to
try to maximize the signal-to-noise ratio (good detectionhigh SNR, high
recall)

2) GOOD LOCALIZATION
The selected edge points by the operator must be more closed as possible

to the true edge , to have perfect localization (good localizationprecise
position)

3) ONE RESPONSE TO SINGLE EDGE
If there is a single edge the operator should return a single edge too and low

false positives (one response high precision) (partially in the first
criterium since if we have two answers, one is a false one!)

The edge selection is a ill-posed problem!!                    
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Where is the edge?  

Solution:  smooth first

Look for peaks in 
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Canny proposal

• Define the best continuous filter (in 1D) and then discretize it and extend 
to 2D

A. It needs a smoothing filter to keep high the SNR
B. It needs to find the true direction of gradients to extract only one edge
C. It needs to suppress the false edges
• Smoothing filter? Gaussian! 
• And then use the derivative of gaussian!
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Canny Edge Operator
• Algorithm:
A. Smooth image with 2D Gaussian:
B. Find local edge normal directions for each pixel
C. Compute edge magnitudes
D. Locate edges by finding zero-crossings along the edge normal 

directions (non-maximum suppression): search for points which cross 
zero with second derivative

E. Hysteresis-thresholding
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DOG
A. Regularization with a smooth function
• 1.2.3. points: find the  direction and the magnitude of the gradient of the 

gaussian convolution of the image
• Smoothing and image and then differentiating is the same as convolving 

the image with the derivative of the smoothed kernel.

• Thus this is convenient so that we can do a single convolution.
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DOG
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Derivative of gaussian
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Non-maxima Suppression

• B. To find the true edge we verify if pixel is local maximum along gradient 
direction

• Thus we  do not select with a high gradient of with a local maximum of 
DOG but only the true maxima which are the one in the direction of 
edges

• We need subpixel interpolation
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Non-maxima Suppression

NON MAXIMA SUPPRESSION:

if P is a valid edge

The hp. is that all the points in the neighborhood of P have the same gradient

direction

To find the direction we need of a suitable interpolation of neighbor gradient

⇒




≥
≥

)()(
)()(

2

1

PGradPGrad
PGradPGrad

P1    P    P2



Short Master Machine Learning 2019

Non-maxima Suppression
NON MAXIMA SUPPRESSION 
if Gradx(i,j)>Grady(i,j)
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NON MAXIMA SUPPRESSION 
if Grady(i,j)>Gradx(i,j)
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Thresholding
• After non maxima suppression the selected edges have the propriety to

create closed curves; nevertheless only the strong edges should be
selected Canny proposed the use of an Hysteresis -based threshloding

Canny canny +hysteresis
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Threshold with hysteresis
• Hysteresis threshold:
• 1.Select a very strong Thh, (strong edges)
• 2. Edges are the weak edges (highest than a low threshold Thl) but

connected with strong edges

• Normally:

• Use Thh to start and low threshold to continue the curve
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Canny edge detector

original image (Lena)
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magnitude of the gradient

Canny edge detector
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Canny edge detector

Non maxima suppression
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Canny Edge Operator

Canny with Canny with original 

• The choice of     depends on desired behavior
– large       detects large scale edges
– small      detects fine features
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fine scale
high 
threshold
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high 
threshold
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